parent
c9dacaa254
commit
78ef76165e
7 changed files with 588 additions and 571 deletions
@ -0,0 +1,33 @@ |
|||||||
|
Common Interfaces of Descriptor Extractors |
||||||
|
========================================== |
||||||
|
|
||||||
|
.. highlight:: cpp |
||||||
|
|
||||||
|
Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch |
||||||
|
between different algorithms solving the same problem. This section is devoted to computing descriptors |
||||||
|
represented as vectors in a multidimensional space. All objects that implement the ``vector`` |
||||||
|
descriptor extractors inherit the |
||||||
|
:ocv:class:`DescriptorExtractor` interface. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
CalonderDescriptorExtractor |
||||||
|
--------------------------- |
||||||
|
.. ocv:class:: CalonderDescriptorExtractor |
||||||
|
|
||||||
|
Wrapping class for computing descriptors by using the |
||||||
|
:ocv:class:`RTreeClassifier` class. :: |
||||||
|
|
||||||
|
template<typename T> |
||||||
|
class CalonderDescriptorExtractor : public DescriptorExtractor |
||||||
|
{ |
||||||
|
public: |
||||||
|
CalonderDescriptorExtractor( const string& classifierFile ); |
||||||
|
|
||||||
|
virtual void read( const FileNode &fn ); |
||||||
|
virtual void write( FileStorage &fs ) const; |
||||||
|
virtual int descriptorSize() const; |
||||||
|
virtual int descriptorType() const; |
||||||
|
protected: |
||||||
|
... |
||||||
|
} |
@ -0,0 +1,118 @@ |
|||||||
|
Common Interfaces of Generic Descriptor Matchers |
||||||
|
================================================ |
||||||
|
|
||||||
|
.. highlight:: cpp |
||||||
|
|
||||||
|
OneWayDescriptorMatcher |
||||||
|
----------------------- |
||||||
|
.. ocv:class:: OneWayDescriptorMatcher |
||||||
|
|
||||||
|
Wrapping class for computing, matching, and classifying descriptors using the |
||||||
|
:ocv:class:`OneWayDescriptorBase` class. :: |
||||||
|
|
||||||
|
class OneWayDescriptorMatcher : public GenericDescriptorMatcher |
||||||
|
{ |
||||||
|
public: |
||||||
|
class Params |
||||||
|
{ |
||||||
|
public: |
||||||
|
static const int POSE_COUNT = 500; |
||||||
|
static const int PATCH_WIDTH = 24; |
||||||
|
static const int PATCH_HEIGHT = 24; |
||||||
|
static float GET_MIN_SCALE() { return 0.7f; } |
||||||
|
static float GET_MAX_SCALE() { return 1.5f; } |
||||||
|
static float GET_STEP_SCALE() { return 1.2f; } |
||||||
|
|
||||||
|
Params( int poseCount = POSE_COUNT, |
||||||
|
Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), |
||||||
|
string pcaFilename = string(), |
||||||
|
string trainPath = string(), string trainImagesList = string(), |
||||||
|
float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(), |
||||||
|
float stepScale = GET_STEP_SCALE() ); |
||||||
|
|
||||||
|
int poseCount; |
||||||
|
Size patchSize; |
||||||
|
string pcaFilename; |
||||||
|
string trainPath; |
||||||
|
string trainImagesList; |
||||||
|
|
||||||
|
float minScale, maxScale, stepScale; |
||||||
|
}; |
||||||
|
|
||||||
|
OneWayDescriptorMatcher( const Params& params=Params() ); |
||||||
|
virtual ~OneWayDescriptorMatcher(); |
||||||
|
|
||||||
|
void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() ); |
||||||
|
|
||||||
|
// Clears keypoints stored in collection and OneWayDescriptorBase |
||||||
|
virtual void clear(); |
||||||
|
|
||||||
|
virtual void train(); |
||||||
|
|
||||||
|
virtual bool isMaskSupported(); |
||||||
|
|
||||||
|
virtual void read( const FileNode &fn ); |
||||||
|
virtual void write( FileStorage& fs ) const; |
||||||
|
|
||||||
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
||||||
|
protected: |
||||||
|
... |
||||||
|
}; |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
FernDescriptorMatcher |
||||||
|
--------------------- |
||||||
|
.. ocv:class:: FernDescriptorMatcher |
||||||
|
|
||||||
|
Wrapping class for computing, matching, and classifying descriptors using the |
||||||
|
:ocv:class:`FernClassifier` class. :: |
||||||
|
|
||||||
|
class FernDescriptorMatcher : public GenericDescriptorMatcher |
||||||
|
{ |
||||||
|
public: |
||||||
|
class Params |
||||||
|
{ |
||||||
|
public: |
||||||
|
Params( int nclasses=0, |
||||||
|
int patchSize=FernClassifier::PATCH_SIZE, |
||||||
|
int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, |
||||||
|
int nstructs=FernClassifier::DEFAULT_STRUCTS, |
||||||
|
int structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
||||||
|
int nviews=FernClassifier::DEFAULT_VIEWS, |
||||||
|
int compressionMethod=FernClassifier::COMPRESSION_NONE, |
||||||
|
const PatchGenerator& patchGenerator=PatchGenerator() ); |
||||||
|
|
||||||
|
Params( const string& filename ); |
||||||
|
|
||||||
|
int nclasses; |
||||||
|
int patchSize; |
||||||
|
int signatureSize; |
||||||
|
int nstructs; |
||||||
|
int structSize; |
||||||
|
int nviews; |
||||||
|
int compressionMethod; |
||||||
|
PatchGenerator patchGenerator; |
||||||
|
|
||||||
|
string filename; |
||||||
|
}; |
||||||
|
|
||||||
|
FernDescriptorMatcher( const Params& params=Params() ); |
||||||
|
virtual ~FernDescriptorMatcher(); |
||||||
|
|
||||||
|
virtual void clear(); |
||||||
|
|
||||||
|
virtual void train(); |
||||||
|
|
||||||
|
virtual bool isMaskSupported(); |
||||||
|
|
||||||
|
virtual void read( const FileNode &fn ); |
||||||
|
virtual void write( FileStorage& fs ) const; |
||||||
|
|
||||||
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
||||||
|
|
||||||
|
protected: |
||||||
|
... |
||||||
|
}; |
||||||
|
|
@ -0,0 +1,433 @@ |
|||||||
|
Feature Detection and Description |
||||||
|
================================= |
||||||
|
|
||||||
|
.. highlight:: cpp |
||||||
|
|
||||||
|
RandomizedTree |
||||||
|
-------------- |
||||||
|
.. ocv:class:: RandomizedTree |
||||||
|
|
||||||
|
Class containing a base structure for ``RTreeClassifier``. :: |
||||||
|
|
||||||
|
class CV_EXPORTS RandomizedTree |
||||||
|
{ |
||||||
|
public: |
||||||
|
friend class RTreeClassifier; |
||||||
|
|
||||||
|
RandomizedTree(); |
||||||
|
~RandomizedTree(); |
||||||
|
|
||||||
|
void train(std::vector<BaseKeypoint> const& base_set, |
||||||
|
RNG &rng, int depth, int views, |
||||||
|
size_t reduced_num_dim, int num_quant_bits); |
||||||
|
void train(std::vector<BaseKeypoint> const& base_set, |
||||||
|
RNG &rng, PatchGenerator &make_patch, int depth, |
||||||
|
int views, size_t reduced_num_dim, int num_quant_bits); |
||||||
|
|
||||||
|
// next two functions are EXPERIMENTAL |
||||||
|
//(do not use unless you know exactly what you do) |
||||||
|
static void quantizeVector(float *vec, int dim, int N, float bnds[2], |
||||||
|
int clamp_mode=0); |
||||||
|
static void quantizeVector(float *src, int dim, int N, float bnds[2], |
||||||
|
uchar *dst); |
||||||
|
|
||||||
|
// patch_data must be a 32x32 array (no row padding) |
||||||
|
float* getPosterior(uchar* patch_data); |
||||||
|
const float* getPosterior(uchar* patch_data) const; |
||||||
|
uchar* getPosterior2(uchar* patch_data); |
||||||
|
|
||||||
|
void read(const char* file_name, int num_quant_bits); |
||||||
|
void read(std::istream &is, int num_quant_bits); |
||||||
|
void write(const char* file_name) const; |
||||||
|
void write(std::ostream &os) const; |
||||||
|
|
||||||
|
int classes() { return classes_; } |
||||||
|
int depth() { return depth_; } |
||||||
|
|
||||||
|
void discardFloatPosteriors() { freePosteriors(1); } |
||||||
|
|
||||||
|
inline void applyQuantization(int num_quant_bits) |
||||||
|
{ makePosteriors2(num_quant_bits); } |
||||||
|
|
||||||
|
private: |
||||||
|
int classes_; |
||||||
|
int depth_; |
||||||
|
int num_leaves_; |
||||||
|
std::vector<RTreeNode> nodes_; |
||||||
|
float **posteriors_; // 16-byte aligned posteriors |
||||||
|
uchar **posteriors2_; // 16-byte aligned posteriors |
||||||
|
std::vector<int> leaf_counts_; |
||||||
|
|
||||||
|
void createNodes(int num_nodes, RNG &rng); |
||||||
|
void allocPosteriorsAligned(int num_leaves, int num_classes); |
||||||
|
void freePosteriors(int which); |
||||||
|
// which: 1=posteriors_, 2=posteriors2_, 3=both |
||||||
|
void init(int classes, int depth, RNG &rng); |
||||||
|
void addExample(int class_id, uchar* patch_data); |
||||||
|
void finalize(size_t reduced_num_dim, int num_quant_bits); |
||||||
|
int getIndex(uchar* patch_data) const; |
||||||
|
inline float* getPosteriorByIndex(int index); |
||||||
|
inline uchar* getPosteriorByIndex2(int index); |
||||||
|
inline const float* getPosteriorByIndex(int index) const; |
||||||
|
void convertPosteriorsToChar(); |
||||||
|
void makePosteriors2(int num_quant_bits); |
||||||
|
void compressLeaves(size_t reduced_num_dim); |
||||||
|
void estimateQuantPercForPosteriors(float perc[2]); |
||||||
|
}; |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RandomizedTree::train |
||||||
|
------------------------- |
||||||
|
Trains a randomized tree using an input set of keypoints. |
||||||
|
|
||||||
|
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
||||||
|
|
||||||
|
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
||||||
|
|
||||||
|
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training. |
||||||
|
|
||||||
|
:param rng: Random-number generator used for training. |
||||||
|
|
||||||
|
:param make_patch: Patch generator used for training. |
||||||
|
|
||||||
|
:param depth: Maximum tree depth. |
||||||
|
|
||||||
|
:param views: Number of random views of each keypoint neighborhood to generate. |
||||||
|
|
||||||
|
:param reduced_num_dim: Number of dimensions used in the compressed signature. |
||||||
|
|
||||||
|
:param num_quant_bits: Number of bits used for quantization. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RandomizedTree::read |
||||||
|
------------------------ |
||||||
|
Reads a pre-saved randomized tree from a file or stream. |
||||||
|
|
||||||
|
.. ocv:function:: read(const char* file_name, int num_quant_bits) |
||||||
|
|
||||||
|
.. ocv:function:: read(std::istream &is, int num_quant_bits) |
||||||
|
|
||||||
|
:param file_name: Name of the file that contains randomized tree data. |
||||||
|
|
||||||
|
:param is: Input stream associated with the file that contains randomized tree data. |
||||||
|
|
||||||
|
:param num_quant_bits: Number of bits used for quantization. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RandomizedTree::write |
||||||
|
------------------------- |
||||||
|
Writes the current randomized tree to a file or stream. |
||||||
|
|
||||||
|
.. ocv:function:: void write(const char* file_name) const |
||||||
|
|
||||||
|
.. ocv:function:: void write(std::ostream &os) const |
||||||
|
|
||||||
|
:param file_name: Name of the file where randomized tree data is stored. |
||||||
|
|
||||||
|
:param os: Output stream associated with the file where randomized tree data is stored. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RandomizedTree::applyQuantization |
||||||
|
------------------------------------- |
||||||
|
.. ocv:function:: void applyQuantization(int num_quant_bits) |
||||||
|
|
||||||
|
Applies quantization to the current randomized tree. |
||||||
|
|
||||||
|
:param num_quant_bits: Number of bits used for quantization. |
||||||
|
|
||||||
|
|
||||||
|
RTreeNode |
||||||
|
--------- |
||||||
|
.. ocv:class:: RTreeNode |
||||||
|
|
||||||
|
Class containing a base structure for ``RandomizedTree``. :: |
||||||
|
|
||||||
|
struct RTreeNode |
||||||
|
{ |
||||||
|
short offset1, offset2; |
||||||
|
|
||||||
|
RTreeNode() {} |
||||||
|
|
||||||
|
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) |
||||||
|
: offset1(y1*PATCH_SIZE + x1), |
||||||
|
offset2(y2*PATCH_SIZE + x2) |
||||||
|
{} |
||||||
|
|
||||||
|
//! Left child on 0, right child on 1 |
||||||
|
inline bool operator() (uchar* patch_data) const |
||||||
|
{ |
||||||
|
return patch_data[offset1] > patch_data[offset2]; |
||||||
|
} |
||||||
|
}; |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier |
||||||
|
--------------- |
||||||
|
.. ocv:class:: RTreeClassifier |
||||||
|
|
||||||
|
Class containing ``RTreeClassifier``. It represents the Calonder descriptor originally introduced by Michael Calonder. :: |
||||||
|
|
||||||
|
class CV_EXPORTS RTreeClassifier |
||||||
|
{ |
||||||
|
public: |
||||||
|
static const int DEFAULT_TREES = 48; |
||||||
|
static const size_t DEFAULT_NUM_QUANT_BITS = 4; |
||||||
|
|
||||||
|
RTreeClassifier(); |
||||||
|
|
||||||
|
void train(std::vector<BaseKeypoint> const& base_set, |
||||||
|
RNG &rng, |
||||||
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
||||||
|
int depth = DEFAULT_DEPTH, |
||||||
|
int views = DEFAULT_VIEWS, |
||||||
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
||||||
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
||||||
|
bool print_status = true); |
||||||
|
void train(std::vector<BaseKeypoint> const& base_set, |
||||||
|
RNG &rng, |
||||||
|
PatchGenerator &make_patch, |
||||||
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
||||||
|
int depth = DEFAULT_DEPTH, |
||||||
|
int views = DEFAULT_VIEWS, |
||||||
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
||||||
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
||||||
|
bool print_status = true); |
||||||
|
|
||||||
|
// sig must point to a memory block of at least |
||||||
|
//classes()*sizeof(float|uchar) bytes |
||||||
|
void getSignature(IplImage *patch, uchar *sig); |
||||||
|
void getSignature(IplImage *patch, float *sig); |
||||||
|
void getSparseSignature(IplImage *patch, float *sig, |
||||||
|
float thresh); |
||||||
|
|
||||||
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10); |
||||||
|
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, |
||||||
|
int sig_len=176); |
||||||
|
static inline uchar* safeSignatureAlloc(int num_sig=1, |
||||||
|
int sig_len=176); |
||||||
|
|
||||||
|
inline int classes() { return classes_; } |
||||||
|
inline int original_num_classes() |
||||||
|
{ return original_num_classes_; } |
||||||
|
|
||||||
|
void setQuantization(int num_quant_bits); |
||||||
|
void discardFloatPosteriors(); |
||||||
|
|
||||||
|
void read(const char* file_name); |
||||||
|
void read(std::istream &is); |
||||||
|
void write(const char* file_name) const; |
||||||
|
void write(std::ostream &os) const; |
||||||
|
|
||||||
|
std::vector<RandomizedTree> trees_; |
||||||
|
|
||||||
|
private: |
||||||
|
int classes_; |
||||||
|
int num_quant_bits_; |
||||||
|
uchar **posteriors_; |
||||||
|
ushort *ptemp_; |
||||||
|
int original_num_classes_; |
||||||
|
bool keep_floats_; |
||||||
|
}; |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::train |
||||||
|
-------------------------- |
||||||
|
Trains a randomized tree classifier using an input set of keypoints. |
||||||
|
|
||||||
|
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
||||||
|
|
||||||
|
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
||||||
|
|
||||||
|
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training. |
||||||
|
|
||||||
|
:param rng: Random-number generator used for training. |
||||||
|
|
||||||
|
:param make_patch: Patch generator used for training. |
||||||
|
|
||||||
|
:param num_trees: Number of randomized trees used in ``RTreeClassificator`` . |
||||||
|
|
||||||
|
:param depth: Maximum tree depth. |
||||||
|
|
||||||
|
:param views: Number of random views of each keypoint neighborhood to generate. |
||||||
|
|
||||||
|
:param reduced_num_dim: Number of dimensions used in the compressed signature. |
||||||
|
|
||||||
|
:param num_quant_bits: Number of bits used for quantization. |
||||||
|
|
||||||
|
:param print_status: Current status of training printed on the console. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::getSignature |
||||||
|
--------------------------------- |
||||||
|
Returns a signature for an image patch. |
||||||
|
|
||||||
|
.. ocv:function:: void getSignature(IplImage *patch, uchar *sig) |
||||||
|
|
||||||
|
.. ocv:function:: void getSignature(IplImage *patch, float *sig) |
||||||
|
|
||||||
|
:param patch: Image patch to calculate the signature for. |
||||||
|
:param sig: Output signature (array dimension is ``reduced_num_dim)`` . |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::getSparseSignature |
||||||
|
--------------------------------------- |
||||||
|
Returns a sparse signature for an image patch |
||||||
|
|
||||||
|
.. ocv:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh) |
||||||
|
|
||||||
|
:param patch: Image patch to calculate the signature for. |
||||||
|
|
||||||
|
:param sig: Output signature (array dimension is ``reduced_num_dim)`` . |
||||||
|
|
||||||
|
:param thresh: Threshold used for compressing the signature. |
||||||
|
|
||||||
|
Returns a signature for an image patch similarly to ``getSignature`` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed. |
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::countNonZeroElements |
||||||
|
----------------------------------------- |
||||||
|
Returns the number of non-zero elements in an input array. |
||||||
|
|
||||||
|
.. ocv:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10) |
||||||
|
|
||||||
|
:param vec: Input vector containing float elements. |
||||||
|
|
||||||
|
:param n: Input vector size. |
||||||
|
|
||||||
|
:param tol: Threshold used for counting elements. All elements less than ``tol`` are considered as zero elements. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::read |
||||||
|
------------------------- |
||||||
|
Reads a pre-saved ``RTreeClassifier`` from a file or stream. |
||||||
|
|
||||||
|
.. ocv:function:: read(const char* file_name) |
||||||
|
|
||||||
|
.. ocv:function:: read(std::istream& is) |
||||||
|
|
||||||
|
:param file_name: Name of the file that contains randomized tree data. |
||||||
|
|
||||||
|
:param is: Input stream associated with the file that contains randomized tree data. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::write |
||||||
|
-------------------------- |
||||||
|
Writes the current ``RTreeClassifier`` to a file or stream. |
||||||
|
|
||||||
|
.. ocv:function:: void write(const char* file_name) const |
||||||
|
|
||||||
|
.. ocv:function:: void write(std::ostream &os) const |
||||||
|
|
||||||
|
:param file_name: Name of the file where randomized tree data is stored. |
||||||
|
|
||||||
|
:param os: Output stream associated with the file where randomized tree data is stored. |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
RTreeClassifier::setQuantization |
||||||
|
------------------------------------ |
||||||
|
Applies quantization to the current randomized tree. |
||||||
|
|
||||||
|
.. ocv:function:: void setQuantization(int num_quant_bits) |
||||||
|
|
||||||
|
:param num_quant_bits: Number of bits used for quantization. |
||||||
|
|
||||||
|
The example below demonstrates the usage of ``RTreeClassifier`` for matching the features. The features are extracted from the test and train images with SURF. Output is |
||||||
|
:math:`best\_corr` and |
||||||
|
:math:`best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. :: |
||||||
|
|
||||||
|
CvMemStorage* storage = cvCreateMemStorage(0); |
||||||
|
CvSeq *objectKeypoints = 0, *objectDescriptors = 0; |
||||||
|
CvSeq *imageKeypoints = 0, *imageDescriptors = 0; |
||||||
|
CvSURFParams params = cvSURFParams(500, 1); |
||||||
|
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors, |
||||||
|
storage, params ); |
||||||
|
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors, |
||||||
|
storage, params ); |
||||||
|
|
||||||
|
RTreeClassifier detector; |
||||||
|
int patch_width = PATCH_SIZE; |
||||||
|
iint patch_height = PATCH_SIZE; |
||||||
|
vector<BaseKeypoint> base_set; |
||||||
|
int i=0; |
||||||
|
CvSURFPoint* point; |
||||||
|
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++) |
||||||
|
{ |
||||||
|
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i); |
||||||
|
base_set.push_back( |
||||||
|
BaseKeypoint(point->pt.x,point->pt.y,train_image)); |
||||||
|
} |
||||||
|
|
||||||
|
//Detector training |
||||||
|
RNG rng( cvGetTickCount() ); |
||||||
|
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3, |
||||||
|
-CV_PI/3,CV_PI/3); |
||||||
|
|
||||||
|
printf("RTree Classifier training...n"); |
||||||
|
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000, |
||||||
|
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS); |
||||||
|
printf("Donen"); |
||||||
|
|
||||||
|
float* signature = new float[detector.original_num_classes()]; |
||||||
|
float* best_corr; |
||||||
|
int* best_corr_idx; |
||||||
|
if (imageKeypoints->total > 0) |
||||||
|
{ |
||||||
|
best_corr = new float[imageKeypoints->total]; |
||||||
|
best_corr_idx = new int[imageKeypoints->total]; |
||||||
|
} |
||||||
|
|
||||||
|
for(i=0; i < imageKeypoints->total; i++) |
||||||
|
{ |
||||||
|
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i); |
||||||
|
int part_idx = -1; |
||||||
|
float prob = 0.0f; |
||||||
|
|
||||||
|
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2, |
||||||
|
(int)(point->pt.y) - patch_height/2, |
||||||
|
patch_width, patch_height); |
||||||
|
cvSetImageROI(test_image, roi); |
||||||
|
roi = cvGetImageROI(test_image); |
||||||
|
if(roi.width != patch_width || roi.height != patch_height) |
||||||
|
{ |
||||||
|
best_corr_idx[i] = part_idx; |
||||||
|
best_corr[i] = prob; |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
cvSetImageROI(test_image, roi); |
||||||
|
IplImage* roi_image = |
||||||
|
cvCreateImage(cvSize(roi.width, roi.height), |
||||||
|
test_image->depth, test_image->nChannels); |
||||||
|
cvCopy(test_image,roi_image); |
||||||
|
|
||||||
|
detector.getSignature(roi_image, signature); |
||||||
|
for (int j = 0; j< detector.original_num_classes();j++) |
||||||
|
{ |
||||||
|
if (prob < signature[j]) |
||||||
|
{ |
||||||
|
part_idx = j; |
||||||
|
prob = signature[j]; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
best_corr_idx[i] = part_idx; |
||||||
|
best_corr[i] = prob; |
||||||
|
|
||||||
|
if (roi_image) |
||||||
|
cvReleaseImage(&roi_image); |
||||||
|
} |
||||||
|
cvResetImageROI(test_image); |
||||||
|
} |
||||||
|
|
||||||
|
.. |
Loading…
Reference in new issue