parent
c9dacaa254
commit
78ef76165e
7 changed files with 588 additions and 571 deletions
@ -0,0 +1,33 @@ |
||||
Common Interfaces of Descriptor Extractors |
||||
========================================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch |
||||
between different algorithms solving the same problem. This section is devoted to computing descriptors |
||||
represented as vectors in a multidimensional space. All objects that implement the ``vector`` |
||||
descriptor extractors inherit the |
||||
:ocv:class:`DescriptorExtractor` interface. |
||||
|
||||
|
||||
|
||||
CalonderDescriptorExtractor |
||||
--------------------------- |
||||
.. ocv:class:: CalonderDescriptorExtractor |
||||
|
||||
Wrapping class for computing descriptors by using the |
||||
:ocv:class:`RTreeClassifier` class. :: |
||||
|
||||
template<typename T> |
||||
class CalonderDescriptorExtractor : public DescriptorExtractor |
||||
{ |
||||
public: |
||||
CalonderDescriptorExtractor( const string& classifierFile ); |
||||
|
||||
virtual void read( const FileNode &fn ); |
||||
virtual void write( FileStorage &fs ) const; |
||||
virtual int descriptorSize() const; |
||||
virtual int descriptorType() const; |
||||
protected: |
||||
... |
||||
} |
@ -0,0 +1,118 @@ |
||||
Common Interfaces of Generic Descriptor Matchers |
||||
================================================ |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
OneWayDescriptorMatcher |
||||
----------------------- |
||||
.. ocv:class:: OneWayDescriptorMatcher |
||||
|
||||
Wrapping class for computing, matching, and classifying descriptors using the |
||||
:ocv:class:`OneWayDescriptorBase` class. :: |
||||
|
||||
class OneWayDescriptorMatcher : public GenericDescriptorMatcher |
||||
{ |
||||
public: |
||||
class Params |
||||
{ |
||||
public: |
||||
static const int POSE_COUNT = 500; |
||||
static const int PATCH_WIDTH = 24; |
||||
static const int PATCH_HEIGHT = 24; |
||||
static float GET_MIN_SCALE() { return 0.7f; } |
||||
static float GET_MAX_SCALE() { return 1.5f; } |
||||
static float GET_STEP_SCALE() { return 1.2f; } |
||||
|
||||
Params( int poseCount = POSE_COUNT, |
||||
Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), |
||||
string pcaFilename = string(), |
||||
string trainPath = string(), string trainImagesList = string(), |
||||
float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(), |
||||
float stepScale = GET_STEP_SCALE() ); |
||||
|
||||
int poseCount; |
||||
Size patchSize; |
||||
string pcaFilename; |
||||
string trainPath; |
||||
string trainImagesList; |
||||
|
||||
float minScale, maxScale, stepScale; |
||||
}; |
||||
|
||||
OneWayDescriptorMatcher( const Params& params=Params() ); |
||||
virtual ~OneWayDescriptorMatcher(); |
||||
|
||||
void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() ); |
||||
|
||||
// Clears keypoints stored in collection and OneWayDescriptorBase |
||||
virtual void clear(); |
||||
|
||||
virtual void train(); |
||||
|
||||
virtual bool isMaskSupported(); |
||||
|
||||
virtual void read( const FileNode &fn ); |
||||
virtual void write( FileStorage& fs ) const; |
||||
|
||||
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
||||
protected: |
||||
... |
||||
}; |
||||
|
||||
|
||||
|
||||
|
||||
FernDescriptorMatcher |
||||
--------------------- |
||||
.. ocv:class:: FernDescriptorMatcher |
||||
|
||||
Wrapping class for computing, matching, and classifying descriptors using the |
||||
:ocv:class:`FernClassifier` class. :: |
||||
|
||||
class FernDescriptorMatcher : public GenericDescriptorMatcher |
||||
{ |
||||
public: |
||||
class Params |
||||
{ |
||||
public: |
||||
Params( int nclasses=0, |
||||
int patchSize=FernClassifier::PATCH_SIZE, |
||||
int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, |
||||
int nstructs=FernClassifier::DEFAULT_STRUCTS, |
||||
int structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
||||
int nviews=FernClassifier::DEFAULT_VIEWS, |
||||
int compressionMethod=FernClassifier::COMPRESSION_NONE, |
||||
const PatchGenerator& patchGenerator=PatchGenerator() ); |
||||
|
||||
Params( const string& filename ); |
||||
|
||||
int nclasses; |
||||
int patchSize; |
||||
int signatureSize; |
||||
int nstructs; |
||||
int structSize; |
||||
int nviews; |
||||
int compressionMethod; |
||||
PatchGenerator patchGenerator; |
||||
|
||||
string filename; |
||||
}; |
||||
|
||||
FernDescriptorMatcher( const Params& params=Params() ); |
||||
virtual ~FernDescriptorMatcher(); |
||||
|
||||
virtual void clear(); |
||||
|
||||
virtual void train(); |
||||
|
||||
virtual bool isMaskSupported(); |
||||
|
||||
virtual void read( const FileNode &fn ); |
||||
virtual void write( FileStorage& fs ) const; |
||||
|
||||
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
||||
|
||||
protected: |
||||
... |
||||
}; |
||||
|
@ -0,0 +1,433 @@ |
||||
Feature Detection and Description |
||||
================================= |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
RandomizedTree |
||||
-------------- |
||||
.. ocv:class:: RandomizedTree |
||||
|
||||
Class containing a base structure for ``RTreeClassifier``. :: |
||||
|
||||
class CV_EXPORTS RandomizedTree |
||||
{ |
||||
public: |
||||
friend class RTreeClassifier; |
||||
|
||||
RandomizedTree(); |
||||
~RandomizedTree(); |
||||
|
||||
void train(std::vector<BaseKeypoint> const& base_set, |
||||
RNG &rng, int depth, int views, |
||||
size_t reduced_num_dim, int num_quant_bits); |
||||
void train(std::vector<BaseKeypoint> const& base_set, |
||||
RNG &rng, PatchGenerator &make_patch, int depth, |
||||
int views, size_t reduced_num_dim, int num_quant_bits); |
||||
|
||||
// next two functions are EXPERIMENTAL |
||||
//(do not use unless you know exactly what you do) |
||||
static void quantizeVector(float *vec, int dim, int N, float bnds[2], |
||||
int clamp_mode=0); |
||||
static void quantizeVector(float *src, int dim, int N, float bnds[2], |
||||
uchar *dst); |
||||
|
||||
// patch_data must be a 32x32 array (no row padding) |
||||
float* getPosterior(uchar* patch_data); |
||||
const float* getPosterior(uchar* patch_data) const; |
||||
uchar* getPosterior2(uchar* patch_data); |
||||
|
||||
void read(const char* file_name, int num_quant_bits); |
||||
void read(std::istream &is, int num_quant_bits); |
||||
void write(const char* file_name) const; |
||||
void write(std::ostream &os) const; |
||||
|
||||
int classes() { return classes_; } |
||||
int depth() { return depth_; } |
||||
|
||||
void discardFloatPosteriors() { freePosteriors(1); } |
||||
|
||||
inline void applyQuantization(int num_quant_bits) |
||||
{ makePosteriors2(num_quant_bits); } |
||||
|
||||
private: |
||||
int classes_; |
||||
int depth_; |
||||
int num_leaves_; |
||||
std::vector<RTreeNode> nodes_; |
||||
float **posteriors_; // 16-byte aligned posteriors |
||||
uchar **posteriors2_; // 16-byte aligned posteriors |
||||
std::vector<int> leaf_counts_; |
||||
|
||||
void createNodes(int num_nodes, RNG &rng); |
||||
void allocPosteriorsAligned(int num_leaves, int num_classes); |
||||
void freePosteriors(int which); |
||||
// which: 1=posteriors_, 2=posteriors2_, 3=both |
||||
void init(int classes, int depth, RNG &rng); |
||||
void addExample(int class_id, uchar* patch_data); |
||||
void finalize(size_t reduced_num_dim, int num_quant_bits); |
||||
int getIndex(uchar* patch_data) const; |
||||
inline float* getPosteriorByIndex(int index); |
||||
inline uchar* getPosteriorByIndex2(int index); |
||||
inline const float* getPosteriorByIndex(int index) const; |
||||
void convertPosteriorsToChar(); |
||||
void makePosteriors2(int num_quant_bits); |
||||
void compressLeaves(size_t reduced_num_dim); |
||||
void estimateQuantPercForPosteriors(float perc[2]); |
||||
}; |
||||
|
||||
|
||||
|
||||
RandomizedTree::train |
||||
------------------------- |
||||
Trains a randomized tree using an input set of keypoints. |
||||
|
||||
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
||||
|
||||
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
||||
|
||||
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training. |
||||
|
||||
:param rng: Random-number generator used for training. |
||||
|
||||
:param make_patch: Patch generator used for training. |
||||
|
||||
:param depth: Maximum tree depth. |
||||
|
||||
:param views: Number of random views of each keypoint neighborhood to generate. |
||||
|
||||
:param reduced_num_dim: Number of dimensions used in the compressed signature. |
||||
|
||||
:param num_quant_bits: Number of bits used for quantization. |
||||
|
||||
|
||||
|
||||
RandomizedTree::read |
||||
------------------------ |
||||
Reads a pre-saved randomized tree from a file or stream. |
||||
|
||||
.. ocv:function:: read(const char* file_name, int num_quant_bits) |
||||
|
||||
.. ocv:function:: read(std::istream &is, int num_quant_bits) |
||||
|
||||
:param file_name: Name of the file that contains randomized tree data. |
||||
|
||||
:param is: Input stream associated with the file that contains randomized tree data. |
||||
|
||||
:param num_quant_bits: Number of bits used for quantization. |
||||
|
||||
|
||||
|
||||
RandomizedTree::write |
||||
------------------------- |
||||
Writes the current randomized tree to a file or stream. |
||||
|
||||
.. ocv:function:: void write(const char* file_name) const |
||||
|
||||
.. ocv:function:: void write(std::ostream &os) const |
||||
|
||||
:param file_name: Name of the file where randomized tree data is stored. |
||||
|
||||
:param os: Output stream associated with the file where randomized tree data is stored. |
||||
|
||||
|
||||
|
||||
RandomizedTree::applyQuantization |
||||
------------------------------------- |
||||
.. ocv:function:: void applyQuantization(int num_quant_bits) |
||||
|
||||
Applies quantization to the current randomized tree. |
||||
|
||||
:param num_quant_bits: Number of bits used for quantization. |
||||
|
||||
|
||||
RTreeNode |
||||
--------- |
||||
.. ocv:class:: RTreeNode |
||||
|
||||
Class containing a base structure for ``RandomizedTree``. :: |
||||
|
||||
struct RTreeNode |
||||
{ |
||||
short offset1, offset2; |
||||
|
||||
RTreeNode() {} |
||||
|
||||
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) |
||||
: offset1(y1*PATCH_SIZE + x1), |
||||
offset2(y2*PATCH_SIZE + x2) |
||||
{} |
||||
|
||||
//! Left child on 0, right child on 1 |
||||
inline bool operator() (uchar* patch_data) const |
||||
{ |
||||
return patch_data[offset1] > patch_data[offset2]; |
||||
} |
||||
}; |
||||
|
||||
|
||||
|
||||
RTreeClassifier |
||||
--------------- |
||||
.. ocv:class:: RTreeClassifier |
||||
|
||||
Class containing ``RTreeClassifier``. It represents the Calonder descriptor originally introduced by Michael Calonder. :: |
||||
|
||||
class CV_EXPORTS RTreeClassifier |
||||
{ |
||||
public: |
||||
static const int DEFAULT_TREES = 48; |
||||
static const size_t DEFAULT_NUM_QUANT_BITS = 4; |
||||
|
||||
RTreeClassifier(); |
||||
|
||||
void train(std::vector<BaseKeypoint> const& base_set, |
||||
RNG &rng, |
||||
int num_trees = RTreeClassifier::DEFAULT_TREES, |
||||
int depth = DEFAULT_DEPTH, |
||||
int views = DEFAULT_VIEWS, |
||||
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
||||
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
||||
bool print_status = true); |
||||
void train(std::vector<BaseKeypoint> const& base_set, |
||||
RNG &rng, |
||||
PatchGenerator &make_patch, |
||||
int num_trees = RTreeClassifier::DEFAULT_TREES, |
||||
int depth = DEFAULT_DEPTH, |
||||
int views = DEFAULT_VIEWS, |
||||
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
||||
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
||||
bool print_status = true); |
||||
|
||||
// sig must point to a memory block of at least |
||||
//classes()*sizeof(float|uchar) bytes |
||||
void getSignature(IplImage *patch, uchar *sig); |
||||
void getSignature(IplImage *patch, float *sig); |
||||
void getSparseSignature(IplImage *patch, float *sig, |
||||
float thresh); |
||||
|
||||
static int countNonZeroElements(float *vec, int n, double tol=1e-10); |
||||
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, |
||||
int sig_len=176); |
||||
static inline uchar* safeSignatureAlloc(int num_sig=1, |
||||
int sig_len=176); |
||||
|
||||
inline int classes() { return classes_; } |
||||
inline int original_num_classes() |
||||
{ return original_num_classes_; } |
||||
|
||||
void setQuantization(int num_quant_bits); |
||||
void discardFloatPosteriors(); |
||||
|
||||
void read(const char* file_name); |
||||
void read(std::istream &is); |
||||
void write(const char* file_name) const; |
||||
void write(std::ostream &os) const; |
||||
|
||||
std::vector<RandomizedTree> trees_; |
||||
|
||||
private: |
||||
int classes_; |
||||
int num_quant_bits_; |
||||
uchar **posteriors_; |
||||
ushort *ptemp_; |
||||
int original_num_classes_; |
||||
bool keep_floats_; |
||||
}; |
||||
|
||||
|
||||
|
||||
RTreeClassifier::train |
||||
-------------------------- |
||||
Trains a randomized tree classifier using an input set of keypoints. |
||||
|
||||
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
||||
|
||||
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
||||
|
||||
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training. |
||||
|
||||
:param rng: Random-number generator used for training. |
||||
|
||||
:param make_patch: Patch generator used for training. |
||||
|
||||
:param num_trees: Number of randomized trees used in ``RTreeClassificator`` . |
||||
|
||||
:param depth: Maximum tree depth. |
||||
|
||||
:param views: Number of random views of each keypoint neighborhood to generate. |
||||
|
||||
:param reduced_num_dim: Number of dimensions used in the compressed signature. |
||||
|
||||
:param num_quant_bits: Number of bits used for quantization. |
||||
|
||||
:param print_status: Current status of training printed on the console. |
||||
|
||||
|
||||
|
||||
RTreeClassifier::getSignature |
||||
--------------------------------- |
||||
Returns a signature for an image patch. |
||||
|
||||
.. ocv:function:: void getSignature(IplImage *patch, uchar *sig) |
||||
|
||||
.. ocv:function:: void getSignature(IplImage *patch, float *sig) |
||||
|
||||
:param patch: Image patch to calculate the signature for. |
||||
:param sig: Output signature (array dimension is ``reduced_num_dim)`` . |
||||
|
||||
|
||||
|
||||
RTreeClassifier::getSparseSignature |
||||
--------------------------------------- |
||||
Returns a sparse signature for an image patch |
||||
|
||||
.. ocv:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh) |
||||
|
||||
:param patch: Image patch to calculate the signature for. |
||||
|
||||
:param sig: Output signature (array dimension is ``reduced_num_dim)`` . |
||||
|
||||
:param thresh: Threshold used for compressing the signature. |
||||
|
||||
Returns a signature for an image patch similarly to ``getSignature`` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed. |
||||
|
||||
|
||||
RTreeClassifier::countNonZeroElements |
||||
----------------------------------------- |
||||
Returns the number of non-zero elements in an input array. |
||||
|
||||
.. ocv:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10) |
||||
|
||||
:param vec: Input vector containing float elements. |
||||
|
||||
:param n: Input vector size. |
||||
|
||||
:param tol: Threshold used for counting elements. All elements less than ``tol`` are considered as zero elements. |
||||
|
||||
|
||||
|
||||
RTreeClassifier::read |
||||
------------------------- |
||||
Reads a pre-saved ``RTreeClassifier`` from a file or stream. |
||||
|
||||
.. ocv:function:: read(const char* file_name) |
||||
|
||||
.. ocv:function:: read(std::istream& is) |
||||
|
||||
:param file_name: Name of the file that contains randomized tree data. |
||||
|
||||
:param is: Input stream associated with the file that contains randomized tree data. |
||||
|
||||
|
||||
|
||||
RTreeClassifier::write |
||||
-------------------------- |
||||
Writes the current ``RTreeClassifier`` to a file or stream. |
||||
|
||||
.. ocv:function:: void write(const char* file_name) const |
||||
|
||||
.. ocv:function:: void write(std::ostream &os) const |
||||
|
||||
:param file_name: Name of the file where randomized tree data is stored. |
||||
|
||||
:param os: Output stream associated with the file where randomized tree data is stored. |
||||
|
||||
|
||||
|
||||
RTreeClassifier::setQuantization |
||||
------------------------------------ |
||||
Applies quantization to the current randomized tree. |
||||
|
||||
.. ocv:function:: void setQuantization(int num_quant_bits) |
||||
|
||||
:param num_quant_bits: Number of bits used for quantization. |
||||
|
||||
The example below demonstrates the usage of ``RTreeClassifier`` for matching the features. The features are extracted from the test and train images with SURF. Output is |
||||
:math:`best\_corr` and |
||||
:math:`best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. :: |
||||
|
||||
CvMemStorage* storage = cvCreateMemStorage(0); |
||||
CvSeq *objectKeypoints = 0, *objectDescriptors = 0; |
||||
CvSeq *imageKeypoints = 0, *imageDescriptors = 0; |
||||
CvSURFParams params = cvSURFParams(500, 1); |
||||
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors, |
||||
storage, params ); |
||||
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors, |
||||
storage, params ); |
||||
|
||||
RTreeClassifier detector; |
||||
int patch_width = PATCH_SIZE; |
||||
iint patch_height = PATCH_SIZE; |
||||
vector<BaseKeypoint> base_set; |
||||
int i=0; |
||||
CvSURFPoint* point; |
||||
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++) |
||||
{ |
||||
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i); |
||||
base_set.push_back( |
||||
BaseKeypoint(point->pt.x,point->pt.y,train_image)); |
||||
} |
||||
|
||||
//Detector training |
||||
RNG rng( cvGetTickCount() ); |
||||
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3, |
||||
-CV_PI/3,CV_PI/3); |
||||
|
||||
printf("RTree Classifier training...n"); |
||||
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000, |
||||
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS); |
||||
printf("Donen"); |
||||
|
||||
float* signature = new float[detector.original_num_classes()]; |
||||
float* best_corr; |
||||
int* best_corr_idx; |
||||
if (imageKeypoints->total > 0) |
||||
{ |
||||
best_corr = new float[imageKeypoints->total]; |
||||
best_corr_idx = new int[imageKeypoints->total]; |
||||
} |
||||
|
||||
for(i=0; i < imageKeypoints->total; i++) |
||||
{ |
||||
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i); |
||||
int part_idx = -1; |
||||
float prob = 0.0f; |
||||
|
||||
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2, |
||||
(int)(point->pt.y) - patch_height/2, |
||||
patch_width, patch_height); |
||||
cvSetImageROI(test_image, roi); |
||||
roi = cvGetImageROI(test_image); |
||||
if(roi.width != patch_width || roi.height != patch_height) |
||||
{ |
||||
best_corr_idx[i] = part_idx; |
||||
best_corr[i] = prob; |
||||
} |
||||
else |
||||
{ |
||||
cvSetImageROI(test_image, roi); |
||||
IplImage* roi_image = |
||||
cvCreateImage(cvSize(roi.width, roi.height), |
||||
test_image->depth, test_image->nChannels); |
||||
cvCopy(test_image,roi_image); |
||||
|
||||
detector.getSignature(roi_image, signature); |
||||
for (int j = 0; j< detector.original_num_classes();j++) |
||||
{ |
||||
if (prob < signature[j]) |
||||
{ |
||||
part_idx = j; |
||||
prob = signature[j]; |
||||
} |
||||
} |
||||
|
||||
best_corr_idx[i] = part_idx; |
||||
best_corr[i] = prob; |
||||
|
||||
if (roi_image) |
||||
cvReleaseImage(&roi_image); |
||||
} |
||||
cvResetImageROI(test_image); |
||||
} |
||||
|
||||
.. |
Loading…
Reference in new issue