mirror of https://github.com/opencv/opencv.git
parent
b8af7c5f86
commit
78788e1efb
4 changed files with 162 additions and 201 deletions
@ -1,174 +0,0 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
namespace cvtest |
||||
{ |
||||
|
||||
#ifdef HAVE_HALIDE |
||||
using namespace cv; |
||||
using namespace dnn; |
||||
|
||||
static void loadNet(std::string weights, std::string proto, std::string scheduler, |
||||
int inWidth, int inHeight, const std::string& outputLayer, |
||||
const std::string& framework, int targetId, Net* net) |
||||
{ |
||||
Mat input(inHeight, inWidth, CV_32FC3); |
||||
randu(input, 0.0f, 1.0f); |
||||
|
||||
weights = findDataFile(weights, false); |
||||
if (!proto.empty()) |
||||
proto = findDataFile(proto, false); |
||||
if (!scheduler.empty()) |
||||
scheduler = findDataFile(scheduler, false); |
||||
if (framework == "caffe") |
||||
{ |
||||
*net = cv::dnn::readNetFromCaffe(proto, weights); |
||||
} |
||||
else if (framework == "torch") |
||||
{ |
||||
*net = cv::dnn::readNetFromTorch(weights); |
||||
} |
||||
else if (framework == "tensorflow") |
||||
{ |
||||
*net = cv::dnn::readNetFromTensorflow(weights); |
||||
} |
||||
else |
||||
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); |
||||
|
||||
net->setInput(blobFromImage(input, 1.0, Size(), Scalar(), false)); |
||||
net->setPreferableBackend(DNN_BACKEND_HALIDE); |
||||
net->setPreferableTarget(targetId); |
||||
net->setHalideScheduler(scheduler); |
||||
net->forward(outputLayer); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// CPU target
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
PERF_TEST(GoogLeNet, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
||||
"", 224, 224, "prob", "caffe", DNN_TARGET_CPU, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(AlexNet, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
||||
"dnn/halide_scheduler_alexnet.yml", 227, 227, "prob", "caffe", |
||||
DNN_TARGET_CPU, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(ResNet50, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
||||
"dnn/halide_scheduler_resnet_50.yml", 224, 224, "prob", "caffe", |
||||
DNN_TARGET_CPU, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(SqueezeNet_v1_1, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
||||
"dnn/halide_scheduler_squeezenet_v1_1.yml", 227, 227, "prob", |
||||
"caffe", DNN_TARGET_CPU, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(Inception_5h, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/tensorflow_inception_graph.pb", "", |
||||
"dnn/halide_scheduler_inception_5h.yml", |
||||
224, 224, "softmax2", "tensorflow", DNN_TARGET_CPU, &net); |
||||
TEST_CYCLE() net.forward("softmax2"); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(ENet, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/Enet-model-best.net", "", "dnn/halide_scheduler_enet.yml", |
||||
512, 256, "l367_Deconvolution", "torch", DNN_TARGET_CPU, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// OpenCL target
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
PERF_TEST(GoogLeNet_opencl, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
||||
"", 227, 227, "prob", "caffe", DNN_TARGET_OPENCL, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(AlexNet_opencl, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
||||
"dnn/halide_scheduler_opencl_alexnet.yml", 227, 227, "prob", "caffe", |
||||
DNN_TARGET_OPENCL, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(ResNet50_opencl, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
||||
"dnn/halide_scheduler_opencl_resnet_50.yml", 224, 224, "prob", "caffe", |
||||
DNN_TARGET_OPENCL, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
|
||||
PERF_TEST(SqueezeNet_v1_1_opencl, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
||||
"dnn/halide_scheduler_opencl_squeezenet_v1_1.yml", 227, 227, "prob", |
||||
"caffe", DNN_TARGET_OPENCL, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(Inception_5h_opencl, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/tensorflow_inception_graph.pb", "", |
||||
"dnn/halide_scheduler_opencl_inception_5h.yml", |
||||
224, 224, "softmax2", "tensorflow", DNN_TARGET_OPENCL, &net); |
||||
TEST_CYCLE() net.forward("softmax2"); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
PERF_TEST(ENet_opencl, HalidePerfTest) |
||||
{ |
||||
Net net; |
||||
loadNet("dnn/Enet-model-best.net", "", "dnn/halide_scheduler_opencl_enet.yml", |
||||
512, 256, "l367_Deconvolution", "torch", DNN_TARGET_OPENCL, &net); |
||||
TEST_CYCLE() net.forward(); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
#endif // HAVE_HALIDE
|
||||
|
||||
} // namespace cvtest
|
@ -0,0 +1,149 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
#include "opencv2/core/ocl.hpp" |
||||
|
||||
#include "opencv2/dnn/shape_utils.hpp" |
||||
|
||||
namespace |
||||
{ |
||||
|
||||
#ifdef HAVE_HALIDE |
||||
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE |
||||
#else |
||||
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT |
||||
#endif |
||||
#define TEST_DNN_TARGET DNN_TARGET_CPU, DNN_TARGET_OPENCL |
||||
|
||||
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE) |
||||
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL) |
||||
|
||||
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<DNNBackend, DNNTarget> > |
||||
{ |
||||
public: |
||||
dnn::Backend backend; |
||||
dnn::Target target; |
||||
|
||||
dnn::Net net; |
||||
|
||||
void processNet(std::string weights, std::string proto, std::string halide_scheduler, |
||||
int inWidth, int inHeight, const std::string& outputLayer, |
||||
const std::string& framework) |
||||
{ |
||||
backend = (dnn::Backend)(int)get<0>(GetParam()); |
||||
target = (dnn::Target)(int)get<1>(GetParam()); |
||||
|
||||
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) |
||||
{ |
||||
#if 0 //defined(HAVE_OPENCL)
|
||||
if (!cv::ocl::useOpenCL()) |
||||
#endif |
||||
{ |
||||
throw ::SkipTestException("OpenCL is not available/disabled in OpenCV"); |
||||
} |
||||
} |
||||
|
||||
Mat input(inHeight, inWidth, CV_32FC3); |
||||
randu(input, 0.0f, 1.0f); |
||||
|
||||
|
||||
weights = findDataFile(weights, false); |
||||
if (!proto.empty()) |
||||
proto = findDataFile(proto, false); |
||||
if (!halide_scheduler.empty() && backend == DNN_BACKEND_HALIDE) |
||||
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true); |
||||
if (framework == "caffe") |
||||
{ |
||||
net = cv::dnn::readNetFromCaffe(proto, weights); |
||||
} |
||||
else if (framework == "torch") |
||||
{ |
||||
net = cv::dnn::readNetFromTorch(weights); |
||||
} |
||||
else if (framework == "tensorflow") |
||||
{ |
||||
net = cv::dnn::readNetFromTensorflow(weights); |
||||
} |
||||
else |
||||
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); |
||||
|
||||
net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false)); |
||||
net.setPreferableBackend(backend); |
||||
net.setPreferableTarget(target); |
||||
if (backend == DNN_BACKEND_HALIDE) |
||||
{ |
||||
net.setHalideScheduler(halide_scheduler); |
||||
} |
||||
|
||||
MatShape netInputShape = shape(1, 3, inHeight, inWidth); |
||||
size_t weightsMemory = 0, blobsMemory = 0; |
||||
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); |
||||
int64 flops = net.getFLOPS(netInputShape); |
||||
|
||||
net.forward(outputLayer); // warmup
|
||||
|
||||
std::cout << "Memory consumption:" << std::endl; |
||||
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl; |
||||
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl; |
||||
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl; |
||||
|
||||
PERF_SAMPLE_BEGIN() |
||||
net.forward(); |
||||
PERF_SAMPLE_END() |
||||
|
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
}; |
||||
|
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, AlexNet) |
||||
{ |
||||
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
||||
"alexnet.yml", 227, 227, "prob", "caffe"); |
||||
} |
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, GoogLeNet) |
||||
{ |
||||
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
||||
"", 224, 224, "prob", "caffe"); |
||||
} |
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, ResNet50) |
||||
{ |
||||
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
||||
"resnet_50.yml", 224, 224, "prob", "caffe"); |
||||
} |
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1) |
||||
{ |
||||
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
||||
"squeezenet_v1_1.yml", 227, 227, "prob", "caffe"); |
||||
} |
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, Inception_5h) |
||||
{ |
||||
processNet("dnn/tensorflow_inception_graph.pb", "", |
||||
"inception_5h.yml", |
||||
224, 224, "softmax2", "tensorflow"); |
||||
} |
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, ENet) |
||||
{ |
||||
processNet("dnn/Enet-model-best.net", "", "enet.yml", |
||||
512, 256, "l367_Deconvolution", "torch"); |
||||
} |
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, |
||||
testing::Combine( |
||||
::testing::Values(TEST_DNN_BACKEND), |
||||
DNNTarget::all() |
||||
) |
||||
); |
||||
|
||||
} // namespace
|
Loading…
Reference in new issue