switched to new device layer in gpucodec module

pull/1492/head
Vladislav Vinogradov 12 years ago
parent 298a1d50d2
commit 776c0cb08c
  1. 4
      modules/cudacodec/CMakeLists.txt
  2. 55
      modules/cudacodec/src/cuda/nv12_to_rgb.cu
  3. 85
      modules/cudacodec/src/cuda/rgb_to_yv12.cu
  4. 19
      modules/cudacodec/src/video_reader.cpp
  5. 7
      modules/cudacodec/src/video_writer.cpp
  6. 4
      modules/cudev/include/opencv2/cudev/ptr2d/glob.hpp

@ -4,9 +4,9 @@ endif()
set(the_description "CUDA-accelerated Video Encoding/Decoding") set(the_description "CUDA-accelerated Video Encoding/Decoding")
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4324 /wd4512 -Wundef -Wmissing-declarations) ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4324 /wd4512 -Wundef)
ocv_add_module(cudacodec opencv_highgui) ocv_add_module(cudacodec opencv_highgui OPTIONAL opencv_cudev)
ocv_module_include_directories() ocv_module_include_directories()
ocv_glob_module_sources() ocv_glob_module_sources()

@ -47,13 +47,26 @@
* source and converts to output in ARGB format * source and converts to output in ARGB format
*/ */
#include "opencv2/core/cuda/common.hpp" #include "opencv2/opencv_modules.hpp"
namespace cv { namespace cuda { namespace device #ifndef HAVE_OPENCV_CUDEV
#error "opencv_cudev is required"
#else
#include "opencv2/cudev/common.hpp"
using namespace cv;
using namespace cv::cudev;
void videoDecPostProcessFrame(const GpuMat& decodedFrame, OutputArray _outFrame, int width, int height);
namespace
{ {
__constant__ float constHueColorSpaceMat[9] = {1.1644f, 0.0f, 1.596f, 1.1644f, -0.3918f, -0.813f, 1.1644f, 2.0172f, 0.0f}; __constant__ float constHueColorSpaceMat[9] = {1.1644f, 0.0f, 1.596f, 1.1644f, -0.3918f, -0.813f, 1.1644f, 2.0172f, 0.0f};
__device__ void YUV2RGB(const uint* yuvi, float* red, float* green, float* blue) __device__ static void YUV2RGB(const uint* yuvi, float* red, float* green, float* blue)
{ {
float luma, chromaCb, chromaCr; float luma, chromaCb, chromaCr;
@ -76,7 +89,7 @@ namespace cv { namespace cuda { namespace device
(chromaCr * constHueColorSpaceMat[8]); (chromaCr * constHueColorSpaceMat[8]);
} }
__device__ uint RGBA_pack_10bit(float red, float green, float blue, uint alpha) __device__ static uint RGBA_pack_10bit(float red, float green, float blue, uint alpha)
{ {
uint ARGBpixel = 0; uint ARGBpixel = 0;
@ -99,9 +112,9 @@ namespace cv { namespace cuda { namespace device
#define COLOR_COMPONENT_BIT_SIZE 10 #define COLOR_COMPONENT_BIT_SIZE 10
#define COLOR_COMPONENT_MASK 0x3FF #define COLOR_COMPONENT_MASK 0x3FF
__global__ void NV12_to_RGB(uchar* srcImage, size_t nSourcePitch, __global__ void NV12_to_RGB(const uchar* srcImage, size_t nSourcePitch,
uint* dstImage, size_t nDestPitch, uint* dstImage, size_t nDestPitch,
uint width, uint height) uint width, uint height)
{ {
// Pad borders with duplicate pixels, and we multiply by 2 because we process 2 pixels per thread // Pad borders with duplicate pixels, and we multiply by 2 because we process 2 pixels per thread
const int x = blockIdx.x * (blockDim.x << 1) + (threadIdx.x << 1); const int x = blockIdx.x * (blockDim.x << 1) + (threadIdx.x << 1);
@ -171,18 +184,24 @@ namespace cv { namespace cuda { namespace device
dstImage[y * dstImagePitch + x ] = RGBA_pack_10bit(red[0], green[0], blue[0], ((uint)0xff << 24)); dstImage[y * dstImagePitch + x ] = RGBA_pack_10bit(red[0], green[0], blue[0], ((uint)0xff << 24));
dstImage[y * dstImagePitch + x + 1 ] = RGBA_pack_10bit(red[1], green[1], blue[1], ((uint)0xff << 24)); dstImage[y * dstImagePitch + x + 1 ] = RGBA_pack_10bit(red[1], green[1], blue[1], ((uint)0xff << 24));
} }
}
void NV12_to_RGB(const PtrStepb decodedFrame, PtrStepSz<uint> interopFrame, cudaStream_t stream) void videoDecPostProcessFrame(const GpuMat& decodedFrame, OutputArray _outFrame, int width, int height)
{ {
dim3 block(32, 8); // Final Stage: NV12toARGB color space conversion
dim3 grid(divUp(interopFrame.cols, 2 * block.x), divUp(interopFrame.rows, block.y));
NV12_to_RGB<<<grid, block, 0, stream>>>(decodedFrame.data, decodedFrame.step, interopFrame.data, interopFrame.step, _outFrame.create(height, width, CV_8UC4);
interopFrame.cols, interopFrame.rows); GpuMat outFrame = _outFrame.getGpuMat();
cudaSafeCall( cudaGetLastError() ); dim3 block(32, 8);
dim3 grid(divUp(width, 2 * block.x), divUp(height, block.y));
if (stream == 0) NV12_to_RGB<<<grid, block>>>(decodedFrame.ptr<uchar>(), decodedFrame.step,
cudaSafeCall( cudaDeviceSynchronize() ); outFrame.ptr<uint>(), outFrame.step,
} width, height);
}}}
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
#endif

@ -40,10 +40,21 @@
// //
//M*/ //M*/
#include "opencv2/core/cuda/common.hpp" #include "opencv2/opencv_modules.hpp"
#include "opencv2/core/cuda/vec_traits.hpp"
namespace cv { namespace cuda { namespace device #ifndef HAVE_OPENCV_CUDEV
#error "opencv_cudev is required"
#else
#include "opencv2/cudev/ptr2d/glob.hpp"
using namespace cv::cudev;
void RGB_to_YV12(const GpuMat& src, GpuMat& dst);
namespace
{ {
__device__ __forceinline__ void rgb_to_y(const uchar b, const uchar g, const uchar r, uchar& y) __device__ __forceinline__ void rgb_to_y(const uchar b, const uchar g, const uchar r, uchar& y)
{ {
@ -57,7 +68,7 @@ namespace cv { namespace cuda { namespace device
v = static_cast<uchar>(((int)(50 * r) - (int)(42 * g) - (int)(8 * b) + 12800) / 100); v = static_cast<uchar>(((int)(50 * r) - (int)(42 * g) - (int)(8 * b) + 12800) / 100);
} }
__global__ void Gray_to_YV12(const PtrStepSzb src, PtrStepb dst) __global__ void Gray_to_YV12(const GlobPtrSz<uchar> src, GlobPtr<uchar> dst)
{ {
const int x = (blockIdx.x * blockDim.x + threadIdx.x) * 2; const int x = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
const int y = (blockIdx.y * blockDim.y + threadIdx.y) * 2; const int y = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
@ -67,9 +78,9 @@ namespace cv { namespace cuda { namespace device
// get pointers to the data // get pointers to the data
const size_t planeSize = src.rows * dst.step; const size_t planeSize = src.rows * dst.step;
PtrStepb y_plane(dst.data, dst.step); GlobPtr<uchar> y_plane = globPtr(dst.data, dst.step);
PtrStepb u_plane(y_plane.data + planeSize, dst.step / 2); GlobPtr<uchar> u_plane = globPtr(y_plane.data + planeSize, dst.step / 2);
PtrStepb v_plane(u_plane.data + (planeSize / 4), dst.step / 2); GlobPtr<uchar> v_plane = globPtr(u_plane.data + (planeSize / 4), dst.step / 2);
uchar pix; uchar pix;
uchar y_val, u_val, v_val; uchar y_val, u_val, v_val;
@ -94,7 +105,7 @@ namespace cv { namespace cuda { namespace device
} }
template <typename T> template <typename T>
__global__ void RGB_to_YV12(const PtrStepSz<T> src, PtrStepb dst) __global__ void RGB_to_YV12(const GlobPtrSz<T> src, GlobPtr<uchar> dst)
{ {
const int x = (blockIdx.x * blockDim.x + threadIdx.x) * 2; const int x = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
const int y = (blockIdx.y * blockDim.y + threadIdx.y) * 2; const int y = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
@ -104,9 +115,9 @@ namespace cv { namespace cuda { namespace device
// get pointers to the data // get pointers to the data
const size_t planeSize = src.rows * dst.step; const size_t planeSize = src.rows * dst.step;
PtrStepb y_plane(dst.data, dst.step); GlobPtr<uchar> y_plane = globPtr(dst.data, dst.step);
PtrStepb u_plane(y_plane.data + planeSize, dst.step / 2); GlobPtr<uchar> u_plane = globPtr(y_plane.data + planeSize, dst.step / 2);
PtrStepb v_plane(u_plane.data + (planeSize / 4), dst.step / 2); GlobPtr<uchar> v_plane = globPtr(u_plane.data + (planeSize / 4), dst.step / 2);
T pix; T pix;
uchar y_val, u_val, v_val; uchar y_val, u_val, v_val;
@ -129,42 +140,28 @@ namespace cv { namespace cuda { namespace device
u_plane(y / 2, x / 2) = u_val; u_plane(y / 2, x / 2) = u_val;
v_plane(y / 2, x / 2) = v_val; v_plane(y / 2, x / 2) = v_val;
} }
}
void Gray_to_YV12_caller(const PtrStepSzb src, PtrStepb dst, cudaStream_t stream) void RGB_to_YV12(const GpuMat& src, GpuMat& dst)
{ {
dim3 block(32, 8); const dim3 block(32, 8);
dim3 grid(divUp(src.cols, block.x * 2), divUp(src.rows, block.y * 2)); const dim3 grid(divUp(src.cols, block.x * 2), divUp(src.rows, block.y * 2));
Gray_to_YV12<<<grid, block, 0, stream>>>(src, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0) switch (src.channels())
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int cn>
void RGB_to_YV12_caller(const PtrStepSzb src, PtrStepb dst, cudaStream_t stream)
{ {
typedef typename TypeVec<uchar, cn>::vec_type src_t; case 1:
Gray_to_YV12<<<grid, block>>>(globPtr<uchar>(src), globPtr<uchar>(dst));
dim3 block(32, 8); break;
dim3 grid(divUp(src.cols, block.x * 2), divUp(src.rows, block.y * 2)); case 3:
RGB_to_YV12<<<grid, block>>>(globPtr<uchar3>(src), globPtr<uchar>(dst));
RGB_to_YV12<<<grid, block, 0, stream>>>(static_cast< PtrStepSz<src_t> >(src), dst); break;
cudaSafeCall( cudaGetLastError() ); case 4:
RGB_to_YV12<<<grid, block>>>(globPtr<uchar4>(src), globPtr<uchar>(dst));
if (stream == 0) break;
cudaSafeCall( cudaDeviceSynchronize() );
} }
void RGB_to_YV12(const PtrStepSzb src, int cn, PtrStepSzb dst, cudaStream_t stream) CV_CUDEV_SAFE_CALL( cudaGetLastError() );
{ CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
typedef void (*func_t)(const PtrStepSzb src, PtrStepb dst, cudaStream_t stream); }
static const func_t funcs[] =
{
0, Gray_to_YV12_caller, 0, RGB_to_YV12_caller<3>, RGB_to_YV12_caller<4>
};
funcs[cn](src, dst, stream); #endif
}
}}}

@ -53,10 +53,7 @@ Ptr<VideoReader> cv::cudacodec::createVideoReader(const Ptr<RawVideoSource>&) {
#else // HAVE_NVCUVID #else // HAVE_NVCUVID
namespace cv { namespace cuda { namespace device void videoDecPostProcessFrame(const GpuMat& decodedFrame, OutputArray _outFrame, int width, int height);
{
void NV12_to_RGB(const PtrStepb decodedFrame, PtrStepSz<uint> interopFrame, cudaStream_t stream = 0);
}}}
using namespace cv::cudacodec::detail; using namespace cv::cudacodec::detail;
@ -125,18 +122,6 @@ namespace
CUvideoctxlock m_lock; CUvideoctxlock m_lock;
}; };
void cudaPostProcessFrame(const GpuMat& decodedFrame, OutputArray _outFrame, int width, int height)
{
using namespace cv::cuda::device;
// Final Stage: NV12toARGB color space conversion
_outFrame.create(height, width, CV_8UC4);
GpuMat outFrame = _outFrame.getGpuMat();
NV12_to_RGB(decodedFrame, outFrame);
}
bool VideoReaderImpl::nextFrame(OutputArray frame) bool VideoReaderImpl::nextFrame(OutputArray frame)
{ {
if (videoSource_->hasError() || videoParser_->hasError()) if (videoSource_->hasError() || videoParser_->hasError())
@ -195,7 +180,7 @@ namespace
// perform post processing on the CUDA surface (performs colors space conversion and post processing) // perform post processing on the CUDA surface (performs colors space conversion and post processing)
// comment this out if we inclue the line of code seen above // comment this out if we inclue the line of code seen above
cudaPostProcessFrame(decodedFrame, frame, videoDecoder_->targetWidth(), videoDecoder_->targetHeight()); videoDecPostProcessFrame(decodedFrame, frame, videoDecoder_->targetWidth(), videoDecoder_->targetHeight());
// unmap video frame // unmap video frame
// unmapFrame() synchronizes with the VideoDecode API (ensures the frame has finished decoding) // unmapFrame() synchronizes with the VideoDecode API (ensures the frame has finished decoding)

@ -62,10 +62,7 @@ Ptr<VideoWriter> cv::cudacodec::createVideoWriter(const Ptr<EncoderCallBack>&, S
#else // !defined HAVE_CUDA || !defined WIN32 #else // !defined HAVE_CUDA || !defined WIN32
namespace cv { namespace cuda { namespace device void RGB_to_YV12(const GpuMat& src, GpuMat& dst);
{
void RGB_to_YV12(const PtrStepSzb src, int cn, PtrStepSzb dst, cudaStream_t stream = 0);
}}}
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// VideoWriterImpl // VideoWriterImpl
@ -642,7 +639,7 @@ namespace
if (inputFormat_ == SF_BGR) if (inputFormat_ == SF_BGR)
{ {
device::RGB_to_YV12(frame, frame.channels(), videoFrame_); RGB_to_YV12(frame, videoFrame_);
} }
else else
{ {

@ -72,7 +72,7 @@ template <typename T> struct GlobPtrSz : GlobPtr<T>
}; };
template <typename T> template <typename T>
__host__ GlobPtr<T> globPtr(T* data, size_t step) __host__ __device__ GlobPtr<T> globPtr(T* data, size_t step)
{ {
GlobPtr<T> p; GlobPtr<T> p;
p.data = data; p.data = data;
@ -81,7 +81,7 @@ __host__ GlobPtr<T> globPtr(T* data, size_t step)
} }
template <typename T> template <typename T>
__host__ GlobPtrSz<T> globPtr(T* data, size_t step, int rows, int cols) __host__ __device__ GlobPtrSz<T> globPtr(T* data, size_t step, int rows, int cols)
{ {
GlobPtrSz<T> p; GlobPtrSz<T> p;
p.data = data; p.data = data;

Loading…
Cancel
Save