mirror of https://github.com/opencv/opencv.git
parent
94f4678d3a
commit
76f607a44c
61 changed files with 6 additions and 37544 deletions
@ -1,48 +0,0 @@ |
||||
# ---------------------------------------------------------------------------- |
||||
# CMake file for libjpeg. See root CMakeLists.txt |
||||
# |
||||
# ---------------------------------------------------------------------------- |
||||
project(${JPEG_LIBRARY}) |
||||
|
||||
ocv_include_directories(${CMAKE_CURRENT_SOURCE_DIR}) |
||||
|
||||
file(GLOB lib_srcs *.c) |
||||
file(GLOB lib_hdrs *.h) |
||||
|
||||
if(ANDROID OR IOS OR APPLE) |
||||
ocv_list_filterout(lib_srcs jmemansi.c) |
||||
else() |
||||
ocv_list_filterout(lib_srcs jmemnobs.c) |
||||
endif() |
||||
|
||||
# ---------------------------------------------------------------------------------- |
||||
# Define the library target: |
||||
# ---------------------------------------------------------------------------------- |
||||
|
||||
add_library(${JPEG_LIBRARY} STATIC ${OPENCV_3RDPARTY_EXCLUDE_FROM_ALL} ${lib_srcs} ${lib_hdrs}) |
||||
|
||||
if(CV_GCC OR CV_CLANG) |
||||
set_source_files_properties(jcdctmgr.c PROPERTIES COMPILE_FLAGS "-O1") |
||||
endif() |
||||
|
||||
ocv_warnings_disable(CMAKE_C_FLAGS -Wcast-align -Wshadow -Wunused -Wshift-negative-value -Wimplicit-fallthrough) |
||||
ocv_warnings_disable(CMAKE_C_FLAGS -Wunused-parameter) # clang |
||||
ocv_warnings_disable(CMAKE_C_FLAGS /wd4013 /wd4244 /wd4267) # vs2005 |
||||
|
||||
set_target_properties(${JPEG_LIBRARY} |
||||
PROPERTIES OUTPUT_NAME ${JPEG_LIBRARY} |
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}" |
||||
COMPILE_PDB_NAME ${JPEG_LIBRARY} |
||||
COMPILE_PDB_NAME_DEBUG "${JPEG_LIBRARY}${OPENCV_DEBUG_POSTFIX}" |
||||
ARCHIVE_OUTPUT_DIRECTORY ${3P_LIBRARY_OUTPUT_PATH} |
||||
) |
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS) |
||||
set_target_properties(${JPEG_LIBRARY} PROPERTIES FOLDER "3rdparty") |
||||
endif() |
||||
|
||||
if(NOT BUILD_SHARED_LIBS) |
||||
ocv_install_target(${JPEG_LIBRARY} EXPORT OpenCVModules ARCHIVE DESTINATION ${OPENCV_3P_LIB_INSTALL_PATH} COMPONENT dev OPTIONAL) |
||||
endif() |
||||
|
||||
ocv_install_3rdparty_licenses(libjpeg README) |
@ -1,371 +0,0 @@ |
||||
The Independent JPEG Group's JPEG software |
||||
========================================== |
||||
|
||||
README for release 9d of 12-Jan-2020 |
||||
==================================== |
||||
|
||||
This distribution contains the ninth public release of the Independent JPEG |
||||
Group's free JPEG software. You are welcome to redistribute this software and |
||||
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. |
||||
|
||||
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, |
||||
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, |
||||
John Korejwa, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, |
||||
Ge' Weijers, and other members of the Independent JPEG Group. |
||||
|
||||
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee |
||||
(previously known as JPEG, together with ITU-T SG16). |
||||
|
||||
|
||||
DOCUMENTATION ROADMAP |
||||
===================== |
||||
|
||||
This file contains the following sections: |
||||
|
||||
OVERVIEW General description of JPEG and the IJG software. |
||||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution. |
||||
REFERENCES Where to learn more about JPEG. |
||||
ARCHIVE LOCATIONS Where to find newer versions of this software. |
||||
ACKNOWLEDGMENTS Special thanks. |
||||
FILE FORMAT WARS Software *not* to get. |
||||
TO DO Plans for future IJG releases. |
||||
|
||||
Other documentation files in the distribution are: |
||||
|
||||
User documentation: |
||||
install.txt How to configure and install the IJG software. |
||||
usage.txt Usage instructions for cjpeg, djpeg, jpegtran, |
||||
rdjpgcom, and wrjpgcom. |
||||
*.1 Unix-style man pages for programs (same info as usage.txt). |
||||
wizard.txt Advanced usage instructions for JPEG wizards only. |
||||
change.log Version-to-version change highlights. |
||||
Programmer and internal documentation: |
||||
libjpeg.txt How to use the JPEG library in your own programs. |
||||
example.c Sample code for calling the JPEG library. |
||||
structure.txt Overview of the JPEG library's internal structure. |
||||
filelist.txt Road map of IJG files. |
||||
coderules.txt Coding style rules --- please read if you contribute code. |
||||
|
||||
Please read at least the files install.txt and usage.txt. Some information |
||||
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See |
||||
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. |
||||
|
||||
If you want to understand how the JPEG code works, we suggest reading one or |
||||
more of the REFERENCES, then looking at the documentation files (in roughly |
||||
the order listed) before diving into the code. |
||||
|
||||
|
||||
OVERVIEW |
||||
======== |
||||
|
||||
This package contains C software to implement JPEG image encoding, decoding, |
||||
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression |
||||
method for full-color and grayscale images. |
||||
|
||||
This software implements JPEG baseline, extended-sequential, and progressive |
||||
compression processes. Provision is made for supporting all variants of these |
||||
processes, although some uncommon parameter settings aren't implemented yet. |
||||
We have made no provision for supporting the hierarchical or lossless |
||||
processes defined in the standard. |
||||
|
||||
We provide a set of library routines for reading and writing JPEG image files, |
||||
plus two sample applications "cjpeg" and "djpeg", which use the library to |
||||
perform conversion between JPEG and some other popular image file formats. |
||||
The library is intended to be reused in other applications. |
||||
|
||||
In order to support file conversion and viewing software, we have included |
||||
considerable functionality beyond the bare JPEG coding/decoding capability; |
||||
for example, the color quantization modules are not strictly part of JPEG |
||||
decoding, but they are essential for output to colormapped file formats or |
||||
colormapped displays. These extra functions can be compiled out of the |
||||
library if not required for a particular application. |
||||
|
||||
We have also included "jpegtran", a utility for lossless transcoding between |
||||
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple |
||||
applications for inserting and extracting textual comments in JFIF files. |
||||
|
||||
The emphasis in designing this software has been on achieving portability and |
||||
flexibility, while also making it fast enough to be useful. In particular, |
||||
the software is not intended to be read as a tutorial on JPEG. (See the |
||||
REFERENCES section for introductory material.) Rather, it is intended to |
||||
be reliable, portable, industrial-strength code. We do not claim to have |
||||
achieved that goal in every aspect of the software, but we strive for it. |
||||
|
||||
We welcome the use of this software as a component of commercial products. |
||||
No royalty is required, but we do ask for an acknowledgement in product |
||||
documentation, as described under LEGAL ISSUES. |
||||
|
||||
|
||||
LEGAL ISSUES |
||||
============ |
||||
|
||||
In plain English: |
||||
|
||||
1. We don't promise that this software works. (But if you find any bugs, |
||||
please let us know!) |
||||
2. You can use this software for whatever you want. You don't have to pay us. |
||||
3. You may not pretend that you wrote this software. If you use it in a |
||||
program, you must acknowledge somewhere in your documentation that |
||||
you've used the IJG code. |
||||
|
||||
In legalese: |
||||
|
||||
The authors make NO WARRANTY or representation, either express or implied, |
||||
with respect to this software, its quality, accuracy, merchantability, or |
||||
fitness for a particular purpose. This software is provided "AS IS", and you, |
||||
its user, assume the entire risk as to its quality and accuracy. |
||||
|
||||
This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding. |
||||
All Rights Reserved except as specified below. |
||||
|
||||
Permission is hereby granted to use, copy, modify, and distribute this |
||||
software (or portions thereof) for any purpose, without fee, subject to these |
||||
conditions: |
||||
(1) If any part of the source code for this software is distributed, then this |
||||
README file must be included, with this copyright and no-warranty notice |
||||
unaltered; and any additions, deletions, or changes to the original files |
||||
must be clearly indicated in accompanying documentation. |
||||
(2) If only executable code is distributed, then the accompanying |
||||
documentation must state that "this software is based in part on the work of |
||||
the Independent JPEG Group". |
||||
(3) Permission for use of this software is granted only if the user accepts |
||||
full responsibility for any undesirable consequences; the authors accept |
||||
NO LIABILITY for damages of any kind. |
||||
|
||||
These conditions apply to any software derived from or based on the IJG code, |
||||
not just to the unmodified library. If you use our work, you ought to |
||||
acknowledge us. |
||||
|
||||
Permission is NOT granted for the use of any IJG author's name or company name |
||||
in advertising or publicity relating to this software or products derived from |
||||
it. This software may be referred to only as "the Independent JPEG Group's |
||||
software". |
||||
|
||||
We specifically permit and encourage the use of this software as the basis of |
||||
commercial products, provided that all warranty or liability claims are |
||||
assumed by the product vendor. |
||||
|
||||
|
||||
The Unix configuration script "configure" was produced with GNU Autoconf. |
||||
It is copyright by the Free Software Foundation but is freely distributable. |
||||
The same holds for its supporting scripts (config.guess, config.sub, |
||||
ltmain.sh). Another support script, install-sh, is copyright by X Consortium |
||||
but is also freely distributable. |
||||
|
||||
|
||||
REFERENCES |
||||
========== |
||||
|
||||
We recommend reading one or more of these references before trying to |
||||
understand the innards of the JPEG software. |
||||
|
||||
The best short technical introduction to the JPEG compression algorithm is |
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", |
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. |
||||
(Adjacent articles in that issue discuss MPEG motion picture compression, |
||||
applications of JPEG, and related topics.) If you don't have the CACM issue |
||||
handy, a PDF file containing a revised version of Wallace's article is |
||||
available at http://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually |
||||
a preprint for an article that appeared in IEEE Trans. Consumer Electronics) |
||||
omits the sample images that appeared in CACM, but it includes corrections |
||||
and some added material. Note: the Wallace article is copyright ACM and IEEE, |
||||
and it may not be used for commercial purposes. |
||||
|
||||
A somewhat less technical, more leisurely introduction to JPEG can be found in |
||||
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by |
||||
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides |
||||
good explanations and example C code for a multitude of compression methods |
||||
including JPEG. It is an excellent source if you are comfortable reading C |
||||
code but don't know much about data compression in general. The book's JPEG |
||||
sample code is far from industrial-strength, but when you are ready to look |
||||
at a full implementation, you've got one here... |
||||
|
||||
The best currently available description of JPEG is the textbook "JPEG Still |
||||
Image Data Compression Standard" by William B. Pennebaker and Joan L. |
||||
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. |
||||
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG |
||||
standards (DIS 10918-1 and draft DIS 10918-2). |
||||
Although this is by far the most detailed and comprehensive exposition of |
||||
JPEG publicly available, we point out that it is still missing an explanation |
||||
of the most essential properties and algorithms of the underlying DCT |
||||
technology. |
||||
If you think that you know about DCT-based JPEG after reading this book, |
||||
then you are in delusion. The real fundamentals and corresponding potential |
||||
of DCT-based JPEG are not publicly known so far, and that is the reason for |
||||
all the mistaken developments taking place in the image coding domain. |
||||
|
||||
The original JPEG standard is divided into two parts, Part 1 being the actual |
||||
specification, while Part 2 covers compliance testing methods. Part 1 is |
||||
titled "Digital Compression and Coding of Continuous-tone Still Images, |
||||
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS |
||||
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of |
||||
Continuous-tone Still Images, Part 2: Compliance testing" and has document |
||||
numbers ISO/IEC IS 10918-2, ITU-T T.83. |
||||
IJG JPEG 8 introduced an implementation of the JPEG SmartScale extension |
||||
which is specified in two documents: A contributed document at ITU and ISO |
||||
with title "ITU-T JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced |
||||
Image Coding", April 2006, Geneva, Switzerland. The latest version of this |
||||
document is Revision 3. And a contributed document ISO/IEC JTC1/SC29/WG1 N |
||||
5799 with title "Evolution of JPEG", June/July 2011, Berlin, Germany. |
||||
IJG JPEG 9 introduces a reversible color transform for improved lossless |
||||
compression which is described in a contributed document ISO/IEC JTC1/SC29/ |
||||
WG1 N 6080 with title "JPEG 9 Lossless Coding", June/July 2012, Paris, |
||||
France. |
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file |
||||
format. For the omitted details we follow the "JFIF" conventions, version 2. |
||||
JFIF version 1 has been adopted as Recommendation ITU-T T.871 (05/2011) : |
||||
Information technology - Digital compression and coding of continuous-tone |
||||
still images: JPEG File Interchange Format (JFIF). It is available as a |
||||
free download in PDF file format from http://www.itu.int/rec/T-REC-T.871. |
||||
A PDF file of the older JFIF document is available at |
||||
http://www.w3.org/Graphics/JPEG/jfif3.pdf. |
||||
|
||||
The TIFF 6.0 file format specification can be obtained by FTP from |
||||
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme |
||||
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. |
||||
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). |
||||
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 |
||||
(Compression tag 7). Copies of this Note can be obtained from |
||||
http://www.ijg.org/files/. It is expected that the next revision |
||||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design. |
||||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library |
||||
uses our library to implement TIFF/JPEG per the Note. |
||||
|
||||
|
||||
ARCHIVE LOCATIONS |
||||
================= |
||||
|
||||
The "official" archive site for this software is www.ijg.org. |
||||
The most recent released version can always be found there in |
||||
directory "files". This particular version will be archived as |
||||
http://www.ijg.org/files/jpegsrc.v9d.tar.gz, and in Windows-compatible |
||||
"zip" archive format as http://www.ijg.org/files/jpegsr9d.zip. |
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a source of some |
||||
general information about JPEG. |
||||
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ |
||||
and other news.answers archive sites, including the official news.answers |
||||
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. |
||||
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu |
||||
with body |
||||
send usenet/news.answers/jpeg-faq/part1 |
||||
send usenet/news.answers/jpeg-faq/part2 |
||||
|
||||
|
||||
ACKNOWLEDGMENTS |
||||
=============== |
||||
|
||||
Thank to Juergen Bruder for providing me with a copy of the common DCT |
||||
algorithm article, only to find out that I had come to the same result |
||||
in a more direct and comprehensible way with a more generative approach. |
||||
|
||||
Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the |
||||
ITU JPEG (Study Group 16) meeting in Geneva, Switzerland. |
||||
|
||||
Thank to Thomas Wiegand and Gary Sullivan for inviting me to the |
||||
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland. |
||||
|
||||
Thank to Thomas Richter and Daniel Lee for inviting me to the |
||||
ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16) |
||||
meeting in Berlin, Germany. |
||||
|
||||
Thank to John Korejwa and Massimo Ballerini for inviting me to |
||||
fruitful consultations in Boston, MA and Milan, Italy. |
||||
|
||||
Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther |
||||
Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel |
||||
for corresponding business development. |
||||
|
||||
Thank to Nico Zschach and Dirk Stelling of the technical support team |
||||
at the Digital Images company in Halle for providing me with extra |
||||
equipment for configuration tests. |
||||
|
||||
Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful |
||||
communication about JPEG configuration in Sigma Photo Pro software. |
||||
|
||||
Thank to Andrew Finkenstadt for hosting the ijg.org site. |
||||
|
||||
Thank to Thomas G. Lane for the original design and development of |
||||
this singular software package. |
||||
|
||||
Thank to Lars Goehler, Andreas Heinecke, Sebastian Fuss, Yvonne Roebert, |
||||
Andrej Werner, and Ulf-Dietrich Braumann for support and public relations. |
||||
|
||||
|
||||
FILE FORMAT WARS |
||||
================ |
||||
|
||||
The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG, |
||||
together with ITU-T SG16) currently promotes different formats containing |
||||
the name "JPEG" which is misleading because these formats are incompatible |
||||
with original DCT-based JPEG and are based on faulty technologies. |
||||
IJG therefore does not and will not support such momentary mistakes |
||||
(see REFERENCES). |
||||
There exist also distributions under the name "OpenJPEG" promoting such |
||||
kind of formats which is misleading because they don't support original |
||||
JPEG images. |
||||
We have no sympathy for the promotion of inferior formats. Indeed, one of |
||||
the original reasons for developing this free software was to help force |
||||
convergence on common, interoperable format standards for JPEG files. |
||||
Don't use an incompatible file format! |
||||
(In any case, our decoder will remain capable of reading existing JPEG |
||||
image files indefinitely.) |
||||
|
||||
The ISO committee pretends to be "responsible for the popular JPEG" in their |
||||
public reports which is not true because they don't respond to actual |
||||
requirements for the maintenance of the original JPEG specification. |
||||
Furthermore, the ISO committee pretends to "ensure interoperability" with |
||||
their standards which is not true because their "standards" support only |
||||
application-specific and proprietary use cases and contain mathematically |
||||
incorrect code. |
||||
|
||||
There are currently different distributions in circulation containing the |
||||
name "libjpeg" which is misleading because they don't have the features and |
||||
are incompatible with formats supported by actual IJG libjpeg distributions. |
||||
One of those fakes is released by members of the ISO committee and just uses |
||||
the name of libjpeg for misdirection of people, similar to the abuse of the |
||||
name JPEG as described above, while having nothing in common with actual IJG |
||||
libjpeg distributions and containing mathematically incorrect code. |
||||
The other one claims to be a "derivative" or "fork" of the original libjpeg, |
||||
but violates the license conditions as described under LEGAL ISSUES above |
||||
and violates basic C programming properties. |
||||
We have no sympathy for the release of misleading, incorrect and illegal |
||||
distributions derived from obsolete code bases. |
||||
Don't use an obsolete code base! |
||||
|
||||
According to the UCC (Uniform Commercial Code) law, IJG has the lawful and |
||||
legal right to foreclose on certain standardization bodies and other |
||||
institutions or corporations that knowingly perform substantial and |
||||
systematic deceptive acts and practices, fraud, theft, and damaging of the |
||||
value of the people of this planet without their knowing, willing and |
||||
intentional consent. |
||||
The titles, ownership, and rights of these institutions and all their assets |
||||
are now duly secured and held in trust for the free people of this planet. |
||||
People of the planet, on every country, may have a financial interest in |
||||
the assets of these former principals, agents, and beneficiaries of the |
||||
foreclosed institutions and corporations. |
||||
IJG asserts what is: that each man, woman, and child has unalienable value |
||||
and rights granted and deposited in them by the Creator and not any one of |
||||
the people is subordinate to any artificial principality, corporate fiction |
||||
or the special interest of another without their appropriate knowing, |
||||
willing and intentional consent made by contract or accommodation agreement. |
||||
IJG expresses that which already was. |
||||
The people have already determined and demanded that public administration |
||||
entities, national governments, and their supporting judicial systems must |
||||
be fully transparent, accountable, and liable. |
||||
IJG has secured the value for all concerned free people of the planet. |
||||
|
||||
A partial list of foreclosed institutions and corporations ("Hall of Shame") |
||||
is currently prepared and will be published later. |
||||
|
||||
|
||||
TO DO |
||||
===== |
||||
|
||||
Version 9 is the second release of a new generation JPEG standard |
||||
to overcome the limitations of the original JPEG specification, |
||||
and is the first true source reference JPEG codec. |
||||
More features are being prepared for coming releases... |
||||
|
||||
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org. |
@ -1,502 +0,0 @@ |
||||
CHANGE LOG for Independent JPEG Group's JPEG software |
||||
|
||||
|
||||
Version 9d 12-Jan-2020 |
||||
----------------------- |
||||
|
||||
Optimize the optimal Huffman code table generation to produce |
||||
slightly smaller files. Thank to John Korejwa for suggestion. |
||||
Note: Requires rebuild of testimgp.jpg. |
||||
|
||||
Decoding Huffman: Use default tables if tables are not defined. |
||||
Thank to Simone Azzalin for report (Motion JPEG), |
||||
and to Martin Strunz for hint. |
||||
|
||||
Add sanity check in optimal Huffman code table generation. |
||||
Thank to Adam Farley for suggestion. |
||||
|
||||
rdtarga.c: use read_byte(), with EOF check, instead of getc() |
||||
in read_*_pixel(). |
||||
Thank to Chijin Zhou for cjpeg potential vulnerability report. |
||||
|
||||
jmemnobs.c: respect the max_memory_to_use setting in |
||||
jpeg_mem_available() computation. Thank to Sheng Shu and |
||||
Dongdong She for djpeg potential vulnerability report. |
||||
|
||||
jdarith.c, jdhuff.c: avoid left shift of negative value |
||||
compiler warning in decode_mcu_AC_refine(). |
||||
Thank to Indu Bhagat for suggestion. |
||||
|
||||
Add x64 (64-bit) platform support, avoid compiler warnings. |
||||
Thank to Jonathan Potter, Feiyun Wang, and Sheng Shu for suggestion. |
||||
|
||||
Adjust libjpeg version specification for pkg-config file. |
||||
Thank to Chen Chen for suggestion. |
||||
|
||||
Restore GIF read and write support from libjpeg version 6a. |
||||
Thank to Wolfgang Werner (W.W.) Heinz for suggestion. |
||||
|
||||
Improve consistency in raw (downsampled) image data processing mode. |
||||
Thank to Zhongyuan Zhou for hint. |
||||
|
||||
Avoid out of bounds array read (AC derived table pointers) |
||||
in start pass in jdhuff.c. Thank to Peng Li for report. |
||||
|
||||
Improve code sanity (jdhuff.c). |
||||
Thank to Reza Mirzazade farkhani for reports. |
||||
|
||||
Add jpegtran -drop option; add options to the crop extension and wipe |
||||
to fill the extra area with content from the source image region, |
||||
instead of gray out. |
||||
|
||||
|
||||
Version 9c 14-Jan-2018 |
||||
----------------------- |
||||
|
||||
jpegtran: add an option to the -wipe switch to fill the region |
||||
with the average of adjacent blocks, instead of gray out. |
||||
Thank to Caitlyn Feddock and Maddie Ziegler for inspiration. |
||||
|
||||
Make range extension bits adjustable (in jpegint.h). |
||||
Thank to Robin Watts for suggestion. |
||||
|
||||
Provide macros for fflush() and ferror() in jinclude.h in order |
||||
to facilitate adaption by applications using an own FILE class. |
||||
Thank to Gerhard Huber for suggestion. |
||||
|
||||
Add libjpeg pkg-config file. Thank to Mark Lavi, Vincent Torri, |
||||
Patrick McMunn, and Huw Davies for suggestion. |
||||
|
||||
Add sanity checks in cjpeg image reader modules. |
||||
Thank to Bingchang, Liu for reports. |
||||
|
||||
|
||||
Version 9b 17-Jan-2016 |
||||
----------------------- |
||||
|
||||
Improvements and optimizations in DCT and color calculations. |
||||
Normalize range limit array composition and access pattern. |
||||
Thank to Sia Furler and Maddie Ziegler for inspiration. |
||||
|
||||
Use merged upsample with scaled DCT sizes larger than 8. |
||||
Thank to Taylor Hatala for inspiration. |
||||
|
||||
Check for excessive comment lengths in argument parsing in wrjpgcom.c. |
||||
Thank to Julian Cohen for hint. |
||||
|
||||
Add makefile.b32 for use with Borland C++ 32-bit (bcc32). |
||||
Thank to Joe Slater for contribution. |
||||
|
||||
Document 'f' specifier for jpegtran -crop specification. |
||||
Thank to Michele Martone for suggestion. |
||||
|
||||
Use defined value from header instead of hardwired number in rdswitch.c. |
||||
Thank to Robert Sprowson for hint. |
||||
|
||||
|
||||
Version 9a 19-Jan-2014 |
||||
----------------------- |
||||
|
||||
Add support for wide gamut color spaces (JFIF version 2). |
||||
Improve clarity and accuracy in color conversion modules. |
||||
Note: Requires rebuild of test images. |
||||
|
||||
Extend the bit depth support to all values from 8 to 12 |
||||
(BITS_IN_JSAMPLE configuration option in jmorecfg.h). |
||||
jpegtran now supports N bits sample data precision with all N from 8 to 12 |
||||
in a single instance. Thank to Roland Fassauer for inspiration. |
||||
|
||||
Try to resolve issues with new boolean type definition. |
||||
Thank also to v4hn for suggestion. |
||||
|
||||
Enable option to use default Huffman tables for lossless compression |
||||
(for hardware solution), and in this case improve lossless RGB compression |
||||
with reversible color transform. Thank to Benny Alexandar for hint. |
||||
|
||||
Extend the entropy decoding structure, so that extraneous bytes between |
||||
compressed scan data and following marker can be reported correctly. |
||||
Thank to Nigel Tao for hint. |
||||
|
||||
Add jpegtran -wipe option and extension for -crop. |
||||
Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion. |
||||
|
||||
|
||||
Version 9 13-Jan-2013 |
||||
---------------------- |
||||
|
||||
Add cjpeg -rgb1 option to create an RGB JPEG file, and insert |
||||
a simple reversible color transform into the processing which |
||||
significantly improves the compression. |
||||
The recommended command for lossless coding of RGB images is now |
||||
cjpeg -rgb1 -block 1 -arithmetic. |
||||
As said, this option improves the compression significantly, but |
||||
the files are not compatible with JPEG decoders prior to IJG v9 |
||||
due to the included color transform. |
||||
The used color transform and marker signaling is compatible with |
||||
other JPEG standards (e.g., JPEG-LS part 2). |
||||
|
||||
Remove the automatic de-ANSI-fication support (Automake 1.12). |
||||
Thank also to Nitin A Kamble for suggestion. |
||||
|
||||
Add remark for jpeg_mem_dest() in jdatadst.c. |
||||
Thank to Elie-Gregoire Khoury for the hint. |
||||
|
||||
Support files with invalid component identifiers (created |
||||
by Adobe PDF). Thank to Robin Watts for the suggestion. |
||||
|
||||
Adapt full buffer case in jcmainct.c for use with scaled DCT. |
||||
Thank to Sergii Biloshytskyi for the suggestion. |
||||
|
||||
Add type identifier for declaration of noreturn functions. |
||||
Thank to Brett L. Moore for the suggestion. |
||||
|
||||
Correct argument type in format string, avoid compiler warnings. |
||||
Thank to Vincent Torri for hint. |
||||
|
||||
Add missing #include directives in configuration checks, avoid |
||||
configuration errors. Thank to John Spencer for the hint. |
||||
|
||||
|
||||
Version 8d 15-Jan-2012 |
||||
----------------------- |
||||
|
||||
Add cjpeg -rgb option to create RGB JPEG files. |
||||
Using this switch suppresses the conversion from RGB |
||||
colorspace input to the default YCbCr JPEG colorspace. |
||||
This feature allows true lossless JPEG coding of RGB color images. |
||||
The recommended command for this purpose is currently |
||||
cjpeg -rgb -block 1 -arithmetic. |
||||
SmartScale capable decoder (introduced with IJG JPEG 8) required. |
||||
Thank to Michael Koch for the initial suggestion. |
||||
|
||||
Add option to disable the region adjustment in the transupp crop code. |
||||
Thank to Jeffrey Friedl for the suggestion. |
||||
|
||||
Thank to Richard Jones and Edd Dawson for various minor corrections. |
||||
|
||||
Thank to Akim Demaille for configure.ac cleanup. |
||||
|
||||
|
||||
Version 8c 16-Jan-2011 |
||||
----------------------- |
||||
|
||||
Add option to compression library and cjpeg (-block N) to use |
||||
different DCT block size. |
||||
All N from 1 to 16 are possible. Default is 8 (baseline format). |
||||
Larger values produce higher compression, |
||||
smaller values produce higher quality. |
||||
SmartScale capable decoder (introduced with IJG JPEG 8) required. |
||||
|
||||
|
||||
Version 8b 16-May-2010 |
||||
----------------------- |
||||
|
||||
Repair problem in new memory source manager with corrupt JPEG data. |
||||
Thank to Ted Campbell and Samuel Chun for the report. |
||||
|
||||
Repair problem in Makefile.am test target. |
||||
Thank to anonymous user for the report. |
||||
|
||||
Support MinGW installation with automatic configure. |
||||
Thank to Volker Grabsch for the suggestion. |
||||
|
||||
|
||||
Version 8a 28-Feb-2010 |
||||
----------------------- |
||||
|
||||
Writing tables-only datastreams via jpeg_write_tables works again. |
||||
|
||||
Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg. |
||||
Thank to Brett Blackham for the suggestion. |
||||
|
||||
Improve accuracy in floating point IDCT calculation. |
||||
Thank to Robert Hooke for the hint. |
||||
|
||||
|
||||
Version 8 10-Jan-2010 |
||||
---------------------- |
||||
|
||||
jpegtran now supports the same -scale option as djpeg for "lossless" resize. |
||||
An implementation of the JPEG SmartScale extension is required for this |
||||
feature. A (draft) specification of the JPEG SmartScale extension is |
||||
available as a contributed document at ITU and ISO. Revision 2 or later |
||||
of the document is required (latest document version is Revision 3). |
||||
The SmartScale extension will enable more features beside lossless resize |
||||
in future implementations, as described in the document (new compression |
||||
options). |
||||
|
||||
Add sanity check in BMP reader module to avoid cjpeg crash for empty input |
||||
image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error). |
||||
|
||||
Add data source and destination managers for read from and write to |
||||
memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest. |
||||
Thank to Roberto Boni from Italy for the suggestion. |
||||
|
||||
|
||||
Version 7 27-Jun-2009 |
||||
---------------------- |
||||
|
||||
New scaled DCTs implemented. |
||||
djpeg now supports scalings N/8 with all N from 1 to 16. |
||||
cjpeg now supports scalings 8/N with all N from 1 to 16. |
||||
Scaled DCTs with size larger than 8 are now also used for resolving the |
||||
common 2x2 chroma subsampling case without additional spatial resampling. |
||||
Separate spatial resampling for those kind of files is now only necessary |
||||
for N>8 scaling cases. |
||||
Furthermore, separate scaled DCT functions are provided for direct resolving |
||||
of the common asymmetric subsampling cases (2x1 and 1x2) without additional |
||||
spatial resampling. |
||||
|
||||
cjpeg -quality option has been extended for support of separate quality |
||||
settings for luminance and chrominance (or in general, for every provided |
||||
quantization table slot). |
||||
New API function jpeg_default_qtables() and q_scale_factor array in library. |
||||
|
||||
Added -nosmooth option to cjpeg, complementary to djpeg. |
||||
New variable "do_fancy_downsampling" in library, complement to fancy |
||||
upsampling. Fancy upsampling now uses direct DCT scaling with sizes |
||||
larger than 8. The old method is not reversible and has been removed. |
||||
|
||||
Support arithmetic entropy encoding and decoding. |
||||
Added files jaricom.c, jcarith.c, jdarith.c. |
||||
|
||||
Straighten the file structure: |
||||
Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h. |
||||
|
||||
jpegtran has a new "lossless" cropping feature. |
||||
|
||||
Implement -perfect option in jpegtran, new API function |
||||
jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch) |
||||
|
||||
Better error messages for jpegtran fopen failure. |
||||
(DP 203_jpegtran_errmsg.dpatch) |
||||
|
||||
Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c: |
||||
according to Netpbm, the de facto standard implementation of the PNM formats, |
||||
the most significant byte is first. (DP 203_rdppm.dpatch) |
||||
|
||||
Add -raw option to rdjpgcom not to mangle the output. |
||||
(DP 205_rdjpgcom_raw.dpatch) |
||||
|
||||
Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch) |
||||
|
||||
Add extern "C" to jpeglib.h. |
||||
This avoids the need to put extern "C" { ... } around #include "jpeglib.h" |
||||
in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the |
||||
configuration prevents this. (DP 202_jpeglib.h_c++.dpatch) |
||||
|
||||
|
||||
Version 6b 27-Mar-1998 |
||||
----------------------- |
||||
|
||||
jpegtran has new features for lossless image transformations (rotation |
||||
and flipping) as well as "lossless" reduction to grayscale. |
||||
|
||||
jpegtran now copies comments by default; it has a -copy switch to enable |
||||
copying all APPn blocks as well, or to suppress comments. (Formerly it |
||||
always suppressed comments and APPn blocks.) jpegtran now also preserves |
||||
JFIF version and resolution information. |
||||
|
||||
New decompressor library feature: COM and APPn markers found in the input |
||||
file can be saved in memory for later use by the application. (Before, |
||||
you had to code this up yourself with a custom marker processor.) |
||||
|
||||
There is an unused field "void * client_data" now in compress and decompress |
||||
parameter structs; this may be useful in some applications. |
||||
|
||||
JFIF version number information is now saved by the decoder and accepted by |
||||
the encoder. jpegtran uses this to copy the source file's version number, |
||||
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX |
||||
extensions but claim to be version 1.01. Applications that generate their |
||||
own JFXX extension markers also (finally) have a supported way to cause the |
||||
encoder to emit JFIF version number 1.02. |
||||
|
||||
djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather |
||||
than as unknown APP0 markers. |
||||
|
||||
In -verbose mode, djpeg and rdjpgcom will try to print the contents of |
||||
APP12 markers as text. Some digital cameras store useful text information |
||||
in APP12 markers. |
||||
|
||||
Handling of truncated data streams is more robust: blocks beyond the one in |
||||
which the error occurs will be output as uniform gray, or left unchanged |
||||
if decoding a progressive JPEG. The appearance no longer depends on the |
||||
Huffman tables being used. |
||||
|
||||
Huffman tables are checked for validity much more carefully than before. |
||||
|
||||
To avoid the Unisys LZW patent, djpeg's GIF output capability has been |
||||
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability |
||||
has been removed altogether. We're not happy about it either, but there |
||||
seems to be no good alternative. |
||||
|
||||
The configure script now supports building libjpeg as a shared library |
||||
on many flavors of Unix (all the ones that GNU libtool knows how to |
||||
build shared libraries for). Use "./configure --enable-shared" to |
||||
try this out. |
||||
|
||||
New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio. |
||||
Also, a jconfig file and a build script for Metrowerks CodeWarrior |
||||
on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there |
||||
are miscellaneous other minor improvements in the makefiles. |
||||
|
||||
jmemmac.c now knows how to create temporary files following Mac System 7 |
||||
conventions. |
||||
|
||||
djpeg's -map switch is now able to read raw-format PPM files reliably. |
||||
|
||||
cjpeg -progressive -restart no longer generates any unnecessary DRI markers. |
||||
|
||||
Multiple calls to jpeg_simple_progression for a single JPEG object |
||||
no longer leak memory. |
||||
|
||||
|
||||
Version 6a 7-Feb-96 |
||||
-------------------- |
||||
|
||||
Library initialization sequence modified to detect version mismatches |
||||
and struct field packing mismatches between library and calling application. |
||||
This change requires applications to be recompiled, but does not require |
||||
any application source code change. |
||||
|
||||
All routine declarations changed to the style "GLOBAL(type) name ...", |
||||
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the |
||||
routine's return type as an argument. This makes it possible to add |
||||
Microsoft-style linkage keywords to all the routines by changing just |
||||
these macros. Note that any application code that was using these macros |
||||
will have to be changed. |
||||
|
||||
DCT coefficient quantization tables are now stored in normal array order |
||||
rather than zigzag order. Application code that calls jpeg_add_quant_table, |
||||
or otherwise manipulates quantization tables directly, will need to be |
||||
changed. If you need to make such code work with either older or newer |
||||
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is |
||||
recommended. |
||||
|
||||
djpeg's trace capability now dumps DQT tables in natural order, not zigzag |
||||
order. This allows the trace output to be made into a "-qtables" file |
||||
more easily. |
||||
|
||||
New system-dependent memory manager module for use on Apple Macintosh. |
||||
|
||||
Fix bug in cjpeg's -smooth option: last one or two scanlines would be |
||||
duplicates of the prior line unless the image height mod 16 was 1 or 2. |
||||
|
||||
Repair minor problems in VMS, BCC, MC6 makefiles. |
||||
|
||||
New configure script based on latest GNU Autoconf. |
||||
|
||||
Correct the list of include files needed by MetroWerks C for ccommand(). |
||||
|
||||
Numerous small documentation updates. |
||||
|
||||
|
||||
Version 6 2-Aug-95 |
||||
------------------- |
||||
|
||||
Progressive JPEG support: library can read and write full progressive JPEG |
||||
files. A "buffered image" mode supports incremental decoding for on-the-fly |
||||
display of progressive images. Simply recompiling an existing IJG-v5-based |
||||
decoder with v6 should allow it to read progressive files, though of course |
||||
without any special progressive display. |
||||
|
||||
New "jpegtran" application performs lossless transcoding between different |
||||
JPEG formats; primarily, it can be used to convert baseline to progressive |
||||
JPEG and vice versa. In support of jpegtran, the library now allows lossless |
||||
reading and writing of JPEG files as DCT coefficient arrays. This ability |
||||
may be of use in other applications. |
||||
|
||||
Notes for programmers: |
||||
* We changed jpeg_start_decompress() to be able to suspend; this makes all |
||||
decoding modes available to suspending-input applications. However, |
||||
existing applications that use suspending input will need to be changed |
||||
to check the return value from jpeg_start_decompress(). You don't need to |
||||
do anything if you don't use a suspending data source. |
||||
* We changed the interface to the virtual array routines: access_virt_array |
||||
routines now take a count of the number of rows to access this time. The |
||||
last parameter to request_virt_array routines is now interpreted as the |
||||
maximum number of rows that may be accessed at once, but not necessarily |
||||
the height of every access. |
||||
|
||||
|
||||
Version 5b 15-Mar-95 |
||||
--------------------- |
||||
|
||||
Correct bugs with grayscale images having v_samp_factor > 1. |
||||
|
||||
jpeg_write_raw_data() now supports output suspension. |
||||
|
||||
Correct bugs in "configure" script for case of compiling in |
||||
a directory other than the one containing the source files. |
||||
|
||||
Repair bug in jquant1.c: sometimes didn't use as many colors as it could. |
||||
|
||||
Borland C makefile and jconfig file work under either MS-DOS or OS/2. |
||||
|
||||
Miscellaneous improvements to documentation. |
||||
|
||||
|
||||
Version 5a 7-Dec-94 |
||||
-------------------- |
||||
|
||||
Changed color conversion roundoff behavior so that grayscale values are |
||||
represented exactly. (This causes test image files to change.) |
||||
|
||||
Make ordered dither use 16x16 instead of 4x4 pattern for a small quality |
||||
improvement. |
||||
|
||||
New configure script based on latest GNU Autoconf. |
||||
Fix configure script to handle CFLAGS correctly. |
||||
Rename *.auto files to *.cfg, so that configure script still works if |
||||
file names have been truncated for DOS. |
||||
|
||||
Fix bug in rdbmp.c: didn't allow for extra data between header and image. |
||||
|
||||
Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data. |
||||
|
||||
Fix several bugs in rdrle.c. |
||||
|
||||
NEED_SHORT_EXTERNAL_NAMES option was broken. |
||||
|
||||
Revise jerror.h/jerror.c for more flexibility in message table. |
||||
|
||||
Repair oversight in jmemname.c NO_MKTEMP case: file could be there |
||||
but unreadable. |
||||
|
||||
|
||||
Version 5 24-Sep-94 |
||||
-------------------- |
||||
|
||||
Version 5 represents a nearly complete redesign and rewrite of the IJG |
||||
software. Major user-visible changes include: |
||||
* Automatic configuration simplifies installation for most Unix systems. |
||||
* A range of speed vs. image quality tradeoffs are supported. |
||||
This includes resizing of an image during decompression: scaling down |
||||
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently. |
||||
* New programs rdjpgcom and wrjpgcom allow insertion and extraction |
||||
of text comments in a JPEG file. |
||||
|
||||
The application programmer's interface to the library has changed completely. |
||||
Notable improvements include: |
||||
* We have eliminated the use of callback routines for handling the |
||||
uncompressed image data. The application now sees the library as a |
||||
set of routines that it calls to read or write image data on a |
||||
scanline-by-scanline basis. |
||||
* The application image data is represented in a conventional interleaved- |
||||
pixel format, rather than as a separate array for each color channel. |
||||
This can save a copying step in many programs. |
||||
* The handling of compressed data has been cleaned up: the application can |
||||
supply routines to source or sink the compressed data. It is possible to |
||||
suspend processing on source/sink buffer overrun, although this is not |
||||
supported in all operating modes. |
||||
* All static state has been eliminated from the library, so that multiple |
||||
instances of compression or decompression can be active concurrently. |
||||
* JPEG abbreviated datastream formats are supported, ie, quantization and |
||||
Huffman tables can be stored separately from the image data. |
||||
* And not only that, but the documentation of the library has improved |
||||
considerably! |
||||
|
||||
|
||||
The last widely used release before the version 5 rewrite was version 4A of |
||||
18-Feb-93. Change logs before that point have been discarded, since they |
||||
are not of much interest after the rewrite. |
@ -1,153 +0,0 @@ |
||||
/*
|
||||
* jaricom.c |
||||
* |
||||
* Developed 1997-2011 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains probability estimation tables for common use in |
||||
* arithmetic entropy encoding and decoding routines. |
||||
* |
||||
* This data represents Table D.3 in the JPEG spec (D.2 in the draft), |
||||
* ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81, and Table 24 |
||||
* in the JBIG spec, ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
/* The following #define specifies the packing of the four components
|
||||
* into the compact INT32 representation. |
||||
* Note that this formula must match the actual arithmetic encoder |
||||
* and decoder implementation. The implementation has to be changed |
||||
* if this formula is changed. |
||||
* The current organization is leaned on Markus Kuhn's JBIG |
||||
* implementation (jbig_tab.c). |
||||
*/ |
||||
|
||||
#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b) |
||||
|
||||
const INT32 jpeg_aritab[113+1] = { |
||||
/*
|
||||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS |
||||
*/ |
||||
V( 0, 0x5a1d, 1, 1, 1 ), |
||||
V( 1, 0x2586, 14, 2, 0 ), |
||||
V( 2, 0x1114, 16, 3, 0 ), |
||||
V( 3, 0x080b, 18, 4, 0 ), |
||||
V( 4, 0x03d8, 20, 5, 0 ), |
||||
V( 5, 0x01da, 23, 6, 0 ), |
||||
V( 6, 0x00e5, 25, 7, 0 ), |
||||
V( 7, 0x006f, 28, 8, 0 ), |
||||
V( 8, 0x0036, 30, 9, 0 ), |
||||
V( 9, 0x001a, 33, 10, 0 ), |
||||
V( 10, 0x000d, 35, 11, 0 ), |
||||
V( 11, 0x0006, 9, 12, 0 ), |
||||
V( 12, 0x0003, 10, 13, 0 ), |
||||
V( 13, 0x0001, 12, 13, 0 ), |
||||
V( 14, 0x5a7f, 15, 15, 1 ), |
||||
V( 15, 0x3f25, 36, 16, 0 ), |
||||
V( 16, 0x2cf2, 38, 17, 0 ), |
||||
V( 17, 0x207c, 39, 18, 0 ), |
||||
V( 18, 0x17b9, 40, 19, 0 ), |
||||
V( 19, 0x1182, 42, 20, 0 ), |
||||
V( 20, 0x0cef, 43, 21, 0 ), |
||||
V( 21, 0x09a1, 45, 22, 0 ), |
||||
V( 22, 0x072f, 46, 23, 0 ), |
||||
V( 23, 0x055c, 48, 24, 0 ), |
||||
V( 24, 0x0406, 49, 25, 0 ), |
||||
V( 25, 0x0303, 51, 26, 0 ), |
||||
V( 26, 0x0240, 52, 27, 0 ), |
||||
V( 27, 0x01b1, 54, 28, 0 ), |
||||
V( 28, 0x0144, 56, 29, 0 ), |
||||
V( 29, 0x00f5, 57, 30, 0 ), |
||||
V( 30, 0x00b7, 59, 31, 0 ), |
||||
V( 31, 0x008a, 60, 32, 0 ), |
||||
V( 32, 0x0068, 62, 33, 0 ), |
||||
V( 33, 0x004e, 63, 34, 0 ), |
||||
V( 34, 0x003b, 32, 35, 0 ), |
||||
V( 35, 0x002c, 33, 9, 0 ), |
||||
V( 36, 0x5ae1, 37, 37, 1 ), |
||||
V( 37, 0x484c, 64, 38, 0 ), |
||||
V( 38, 0x3a0d, 65, 39, 0 ), |
||||
V( 39, 0x2ef1, 67, 40, 0 ), |
||||
V( 40, 0x261f, 68, 41, 0 ), |
||||
V( 41, 0x1f33, 69, 42, 0 ), |
||||
V( 42, 0x19a8, 70, 43, 0 ), |
||||
V( 43, 0x1518, 72, 44, 0 ), |
||||
V( 44, 0x1177, 73, 45, 0 ), |
||||
V( 45, 0x0e74, 74, 46, 0 ), |
||||
V( 46, 0x0bfb, 75, 47, 0 ), |
||||
V( 47, 0x09f8, 77, 48, 0 ), |
||||
V( 48, 0x0861, 78, 49, 0 ), |
||||
V( 49, 0x0706, 79, 50, 0 ), |
||||
V( 50, 0x05cd, 48, 51, 0 ), |
||||
V( 51, 0x04de, 50, 52, 0 ), |
||||
V( 52, 0x040f, 50, 53, 0 ), |
||||
V( 53, 0x0363, 51, 54, 0 ), |
||||
V( 54, 0x02d4, 52, 55, 0 ), |
||||
V( 55, 0x025c, 53, 56, 0 ), |
||||
V( 56, 0x01f8, 54, 57, 0 ), |
||||
V( 57, 0x01a4, 55, 58, 0 ), |
||||
V( 58, 0x0160, 56, 59, 0 ), |
||||
V( 59, 0x0125, 57, 60, 0 ), |
||||
V( 60, 0x00f6, 58, 61, 0 ), |
||||
V( 61, 0x00cb, 59, 62, 0 ), |
||||
V( 62, 0x00ab, 61, 63, 0 ), |
||||
V( 63, 0x008f, 61, 32, 0 ), |
||||
V( 64, 0x5b12, 65, 65, 1 ), |
||||
V( 65, 0x4d04, 80, 66, 0 ), |
||||
V( 66, 0x412c, 81, 67, 0 ), |
||||
V( 67, 0x37d8, 82, 68, 0 ), |
||||
V( 68, 0x2fe8, 83, 69, 0 ), |
||||
V( 69, 0x293c, 84, 70, 0 ), |
||||
V( 70, 0x2379, 86, 71, 0 ), |
||||
V( 71, 0x1edf, 87, 72, 0 ), |
||||
V( 72, 0x1aa9, 87, 73, 0 ), |
||||
V( 73, 0x174e, 72, 74, 0 ), |
||||
V( 74, 0x1424, 72, 75, 0 ), |
||||
V( 75, 0x119c, 74, 76, 0 ), |
||||
V( 76, 0x0f6b, 74, 77, 0 ), |
||||
V( 77, 0x0d51, 75, 78, 0 ), |
||||
V( 78, 0x0bb6, 77, 79, 0 ), |
||||
V( 79, 0x0a40, 77, 48, 0 ), |
||||
V( 80, 0x5832, 80, 81, 1 ), |
||||
V( 81, 0x4d1c, 88, 82, 0 ), |
||||
V( 82, 0x438e, 89, 83, 0 ), |
||||
V( 83, 0x3bdd, 90, 84, 0 ), |
||||
V( 84, 0x34ee, 91, 85, 0 ), |
||||
V( 85, 0x2eae, 92, 86, 0 ), |
||||
V( 86, 0x299a, 93, 87, 0 ), |
||||
V( 87, 0x2516, 86, 71, 0 ), |
||||
V( 88, 0x5570, 88, 89, 1 ), |
||||
V( 89, 0x4ca9, 95, 90, 0 ), |
||||
V( 90, 0x44d9, 96, 91, 0 ), |
||||
V( 91, 0x3e22, 97, 92, 0 ), |
||||
V( 92, 0x3824, 99, 93, 0 ), |
||||
V( 93, 0x32b4, 99, 94, 0 ), |
||||
V( 94, 0x2e17, 93, 86, 0 ), |
||||
V( 95, 0x56a8, 95, 96, 1 ), |
||||
V( 96, 0x4f46, 101, 97, 0 ), |
||||
V( 97, 0x47e5, 102, 98, 0 ), |
||||
V( 98, 0x41cf, 103, 99, 0 ), |
||||
V( 99, 0x3c3d, 104, 100, 0 ), |
||||
V( 100, 0x375e, 99, 93, 0 ), |
||||
V( 101, 0x5231, 105, 102, 0 ), |
||||
V( 102, 0x4c0f, 106, 103, 0 ), |
||||
V( 103, 0x4639, 107, 104, 0 ), |
||||
V( 104, 0x415e, 103, 99, 0 ), |
||||
V( 105, 0x5627, 105, 106, 1 ), |
||||
V( 106, 0x50e7, 108, 107, 0 ), |
||||
V( 107, 0x4b85, 109, 103, 0 ), |
||||
V( 108, 0x5597, 110, 109, 0 ), |
||||
V( 109, 0x504f, 111, 107, 0 ), |
||||
V( 110, 0x5a10, 110, 111, 1 ), |
||||
V( 111, 0x5522, 112, 109, 0 ), |
||||
V( 112, 0x59eb, 112, 111, 1 ), |
||||
/*
|
||||
* This last entry is used for fixed probability estimate of 0.5 |
||||
* as suggested in Section 10.3 Table 5 of ITU-T Rec. T.851. |
||||
*/ |
||||
V( 113, 0x5a1d, 113, 113, 0 ) |
||||
}; |
@ -1,288 +0,0 @@ |
||||
/*
|
||||
* jcapimin.c |
||||
* |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* Modified 2003-2010 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains application interface code for the compression half |
||||
* of the JPEG library. These are the "minimum" API routines that may be |
||||
* needed in either the normal full-compression case or the transcoding-only |
||||
* case. |
||||
* |
||||
* Most of the routines intended to be called directly by an application |
||||
* are in this file or in jcapistd.c. But also see jcparam.c for |
||||
* parameter-setup helper routines, jcomapi.c for routines shared by |
||||
* compression and decompression, and jctrans.c for the transcoding case. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object. |
||||
* The error manager must already be set up (in case memory manager fails). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) |
||||
{ |
||||
int i; |
||||
|
||||
/* Guard against version mismatches between library and caller. */ |
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ |
||||
if (version != JPEG_LIB_VERSION) |
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); |
||||
if (structsize != SIZEOF(struct jpeg_compress_struct)) |
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize); |
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set |
||||
* client_data, so we have to save and restore those fields. |
||||
* Note: if application hasn't set client_data, tools like Purify may |
||||
* complain here. |
||||
*/ |
||||
{ |
||||
struct jpeg_error_mgr * err = cinfo->err; |
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */ |
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct)); |
||||
cinfo->err = err; |
||||
cinfo->client_data = client_data; |
||||
} |
||||
cinfo->is_decompressor = FALSE; |
||||
|
||||
/* Initialize a memory manager instance for this object */ |
||||
jinit_memory_mgr((j_common_ptr) cinfo); |
||||
|
||||
/* Zero out pointers to permanent structures. */ |
||||
cinfo->progress = NULL; |
||||
cinfo->dest = NULL; |
||||
|
||||
cinfo->comp_info = NULL; |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
cinfo->quant_tbl_ptrs[i] = NULL; |
||||
cinfo->q_scale_factor[i] = 100; |
||||
} |
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL; |
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL; |
||||
} |
||||
|
||||
/* Must do it here for emit_dqt in case jpeg_write_tables is used */ |
||||
cinfo->block_size = DCTSIZE; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
|
||||
cinfo->script_space = NULL; |
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */ |
||||
|
||||
/* OK, I'm ready */ |
||||
cinfo->global_state = CSTATE_START; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_destroy_compress (j_compress_ptr cinfo) |
||||
{ |
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation, |
||||
* but don't destroy the object itself. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_abort_compress (j_compress_ptr cinfo) |
||||
{ |
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables. |
||||
* Marks all currently defined tables as already written (if suppress) |
||||
* or not written (if !suppress). This will control whether they get emitted |
||||
* by a subsequent jpeg_start_compress call. |
||||
* |
||||
* This routine is exported for use by applications that want to produce |
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but |
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise |
||||
* jcparam.o would be linked whether the application used it or not. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) |
||||
{ |
||||
int i; |
||||
JQUANT_TBL * qtbl; |
||||
JHUFF_TBL * htbl; |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) |
||||
qtbl->sent_table = suppress; |
||||
} |
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) |
||||
htbl->sent_table = suppress; |
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) |
||||
htbl->sent_table = suppress; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression. |
||||
* |
||||
* If a multipass operating mode was selected, this may do a great deal of |
||||
* work including most of the actual output. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_finish_compress (j_compress_ptr cinfo) |
||||
{ |
||||
JDIMENSION iMCU_row; |
||||
|
||||
if (cinfo->global_state == CSTATE_SCANNING || |
||||
cinfo->global_state == CSTATE_RAW_OK) { |
||||
/* Terminate first pass */ |
||||
if (cinfo->next_scanline < cinfo->image_height) |
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); |
||||
(*cinfo->master->finish_pass) (cinfo); |
||||
} else if (cinfo->global_state != CSTATE_WRCOEFS) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Perform any remaining passes */ |
||||
while (! cinfo->master->is_last_pass) { |
||||
(*cinfo->master->prepare_for_pass) (cinfo); |
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) iMCU_row; |
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer. |
||||
*/ |
||||
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
} |
||||
(*cinfo->master->finish_pass) (cinfo); |
||||
} |
||||
/* Write EOI, do final cleanup */ |
||||
(*cinfo->marker->write_file_trailer) (cinfo); |
||||
(*cinfo->dest->term_destination) (cinfo); |
||||
/* We can use jpeg_abort to release memory and reset global_state */ |
||||
jpeg_abort((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write a special marker. |
||||
* This is only recommended for writing COM or APPn markers. |
||||
* Must be called after jpeg_start_compress() and before |
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data(). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_marker (j_compress_ptr cinfo, int marker, |
||||
const JOCTET *dataptr, unsigned int datalen) |
||||
{ |
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val)); |
||||
|
||||
if (cinfo->next_scanline != 0 || |
||||
(cinfo->global_state != CSTATE_SCANNING && |
||||
cinfo->global_state != CSTATE_RAW_OK && |
||||
cinfo->global_state != CSTATE_WRCOEFS)) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen); |
||||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ |
||||
while (datalen--) { |
||||
(*write_marker_byte) (cinfo, *dataptr); |
||||
dataptr++; |
||||
} |
||||
} |
||||
|
||||
/* Same, but piecemeal. */ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) |
||||
{ |
||||
if (cinfo->next_scanline != 0 || |
||||
(cinfo->global_state != CSTATE_SCANNING && |
||||
cinfo->global_state != CSTATE_RAW_OK && |
||||
cinfo->global_state != CSTATE_WRCOEFS)) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_m_byte (j_compress_ptr cinfo, int val) |
||||
{ |
||||
(*cinfo->marker->write_marker_byte) (cinfo, val); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file. |
||||
* Before calling this, all parameters and a data destination must be set up. |
||||
* |
||||
* To produce a pair of files containing abbreviated tables and abbreviated |
||||
* image data, one would proceed as follows: |
||||
* |
||||
* initialize JPEG object |
||||
* set JPEG parameters |
||||
* set destination to table file |
||||
* jpeg_write_tables(cinfo); |
||||
* set destination to image file |
||||
* jpeg_start_compress(cinfo, FALSE); |
||||
* write data... |
||||
* jpeg_finish_compress(cinfo); |
||||
* |
||||
* jpeg_write_tables has the side effect of marking all tables written |
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress |
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_tables (j_compress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* (Re)initialize error mgr and destination modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->dest->init_destination) (cinfo); |
||||
/* Initialize the marker writer ... bit of a crock to do it here. */ |
||||
jinit_marker_writer(cinfo); |
||||
/* Write them tables! */ |
||||
(*cinfo->marker->write_tables_only) (cinfo); |
||||
/* And clean up. */ |
||||
(*cinfo->dest->term_destination) (cinfo); |
||||
/*
|
||||
* In library releases up through v6a, we called jpeg_abort() here to free |
||||
* any working memory allocated by the destination manager and marker |
||||
* writer. Some applications had a problem with that: they allocated space |
||||
* of their own from the library memory manager, and didn't want it to go |
||||
* away during write_tables. So now we do nothing. This will cause a |
||||
* memory leak if an app calls write_tables repeatedly without doing a full |
||||
* compression cycle or otherwise resetting the JPEG object. However, that |
||||
* seems less bad than unexpectedly freeing memory in the normal case. |
||||
* An app that prefers the old behavior can call jpeg_abort for itself after |
||||
* each call to jpeg_write_tables(). |
||||
*/ |
||||
} |
@ -1,162 +0,0 @@ |
||||
/*
|
||||
* jcapistd.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2013 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains application interface code for the compression half |
||||
* of the JPEG library. These are the "standard" API routines that are |
||||
* used in the normal full-compression case. They are not used by a |
||||
* transcoding-only application. Note that if an application links in |
||||
* jpeg_start_compress, it will end up linking in the entire compressor. |
||||
* We thus must separate this file from jcapimin.c to avoid linking the |
||||
* whole compression library into a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Compression initialization. |
||||
* Before calling this, all parameters and a data destination must be set up. |
||||
* |
||||
* We require a write_all_tables parameter as a failsafe check when writing |
||||
* multiple datastreams from the same compression object. Since prior runs |
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run |
||||
* would emit an abbreviated stream (no tables) by default. This may be what |
||||
* is wanted, but for safety's sake it should not be the default behavior: |
||||
* programmers should have to make a deliberate choice to emit abbreviated |
||||
* images. Therefore the documentation and examples should encourage people |
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the |
||||
* wrong thing. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) |
||||
{ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (write_all_tables) |
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ |
||||
|
||||
/* (Re)initialize error mgr and destination modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->dest->init_destination) (cinfo); |
||||
/* Perform master selection of active modules */ |
||||
jinit_compress_master(cinfo); |
||||
/* Set up for the first pass */ |
||||
(*cinfo->master->prepare_for_pass) (cinfo); |
||||
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||
* or jpeg_write_raw_data. |
||||
*/ |
||||
cinfo->next_scanline = 0; |
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor. |
||||
* |
||||
* The return value will be the number of lines actually written. |
||||
* This should be less than the supplied num_lines only in case that |
||||
* the data destination module has requested suspension of the compressor, |
||||
* or if more than image_height scanlines are passed in. |
||||
* |
||||
* Note: we warn about excess calls to jpeg_write_scanlines() since |
||||
* this likely signals an application programmer error. However, |
||||
* excess scanlines passed in the last valid call are *silently* ignored, |
||||
* so that the application need not adjust num_lines for end-of-image |
||||
* when using a multiple-scanline buffer. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, |
||||
JDIMENSION num_lines) |
||||
{ |
||||
JDIMENSION row_ctr, rows_left; |
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->next_scanline >= cinfo->image_height) |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->image_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_scanlines. This lets output of the frame/scan headers be |
||||
* delayed so that application can write COM, etc, markers between |
||||
* jpeg_start_compress and jpeg_write_scanlines. |
||||
*/ |
||||
if (cinfo->master->call_pass_startup) |
||||
(*cinfo->master->pass_startup) (cinfo); |
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */ |
||||
rows_left = cinfo->image_height - cinfo->next_scanline; |
||||
if (num_lines > rows_left) |
||||
num_lines = rows_left; |
||||
|
||||
row_ctr = 0; |
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); |
||||
cinfo->next_scanline += row_ctr; |
||||
return row_ctr; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data. |
||||
* Processes exactly one iMCU row per call, unless suspended. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, |
||||
JDIMENSION num_lines) |
||||
{ |
||||
JDIMENSION lines_per_iMCU_row; |
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->next_scanline >= cinfo->image_height) { |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
return 0; |
||||
} |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->image_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_raw_data. This lets output of the frame/scan headers be |
||||
* delayed so that application can write COM, etc, markers between |
||||
* jpeg_start_compress and jpeg_write_raw_data. |
||||
*/ |
||||
if (cinfo->master->call_pass_startup) |
||||
(*cinfo->master->pass_startup) (cinfo); |
||||
|
||||
/* Verify that at least one iMCU row has been passed. */ |
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; |
||||
if (num_lines < lines_per_iMCU_row) |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
|
||||
/* Directly compress the row. */ |
||||
if (! (*cinfo->coef->compress_data) (cinfo, data)) { |
||||
/* If compressor did not consume the whole row, suspend processing. */ |
||||
return 0; |
||||
} |
||||
|
||||
/* OK, we processed one iMCU row. */ |
||||
cinfo->next_scanline += lines_per_iMCU_row; |
||||
return lines_per_iMCU_row; |
||||
} |
@ -1,945 +0,0 @@ |
||||
/*
|
||||
* jcarith.c |
||||
* |
||||
* Developed 1997-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains portable arithmetic entropy encoding routines for JPEG |
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
||||
* |
||||
* Both sequential and progressive modes are supported in this single module. |
||||
* |
||||
* Suspension is not currently supported in this module. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Expanded entropy encoder object for arithmetic encoding. */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_encoder pub; /* public fields */ |
||||
|
||||
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
||||
INT32 a; /* A register, normalized size of coding interval */ |
||||
INT32 sc; /* counter for stacked 0xFF values which might overflow */ |
||||
INT32 zc; /* counter for pending 0x00 output values which might *
|
||||
* be discarded at the end ("Pacman" termination) */ |
||||
int ct; /* bit shift counter, determines when next byte will be written */ |
||||
int buffer; /* buffer for most recent output byte != 0xFF */ |
||||
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
int next_restart_num; /* next restart number to write (0-7) */ |
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */ |
||||
unsigned char * dc_stats[NUM_ARITH_TBLS]; |
||||
unsigned char * ac_stats[NUM_ARITH_TBLS]; |
||||
|
||||
/* Statistics bin for coding with fixed probability 0.5 */ |
||||
unsigned char fixed_bin[4]; |
||||
} arith_entropy_encoder; |
||||
|
||||
typedef arith_entropy_encoder * arith_entropy_ptr; |
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area. |
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding. |
||||
* |
||||
* We use a compact representation with 1 byte per statistics bin, |
||||
* thus the numbers directly represent byte sizes. |
||||
* This 1 byte per statistics bin contains the meaning of the MPS |
||||
* (more probable symbol) in the highest bit (mask 0x80), and the |
||||
* index into the probability estimation state machine table |
||||
* in the lower bits (mask 0x7F). |
||||
*/ |
||||
|
||||
#define DC_STAT_BINS 64 |
||||
#define AC_STAT_BINS 256 |
||||
|
||||
/* NOTE: Uncomment the following #define if you want to use the
|
||||
* given formula for calculating the AC conditioning parameter Kx |
||||
* for spectral selection progressive coding in section G.1.3.2 |
||||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
||||
* Although the spec and P&M authors claim that this "has proven |
||||
* to give good results for 8 bit precision samples", I'm not |
||||
* convinced yet that this is really beneficial. |
||||
* Early tests gave only very marginal compression enhancements |
||||
* (a few - around 5 or so - bytes even for very large files), |
||||
* which would turn out rather negative if we'd suppress the |
||||
* DAC (Define Arithmetic Conditioning) marker segments for |
||||
* the default parameters in the future. |
||||
* Note that currently the marker writing module emits 12-byte |
||||
* DAC segments for a full-component scan in a color image. |
||||
* This is not worth worrying about IMHO. However, since the |
||||
* spec defines the default values to be used if the tables |
||||
* are omitted (unlike Huffman tables, which are required |
||||
* anyway), one might optimize this behaviour in the future, |
||||
* and then it would be disadvantageous to use custom tables if |
||||
* they don't provide sufficient gain to exceed the DAC size. |
||||
* |
||||
* On the other hand, I'd consider it as a reasonable result |
||||
* that the conditioning has no significant influence on the |
||||
* compression performance. This means that the basic |
||||
* statistical model is already rather stable. |
||||
* |
||||
* Thus, at the moment, we use the default conditioning values |
||||
* anyway, and do not use the custom formula. |
||||
* |
||||
#define CALCULATE_SPECTRAL_CONDITIONING |
||||
*/ |
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is, |
||||
* which should be safe. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define ISHIFT_TEMPS int ishift_temp; |
||||
#define IRIGHT_SHIFT(x,shft) \ |
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft))) |
||||
#else |
||||
#define ISHIFT_TEMPS |
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_byte (int val, j_compress_ptr cinfo) |
||||
/* Write next output byte; we do not support suspension in this module. */ |
||||
{ |
||||
struct jpeg_destination_mgr * dest = cinfo->dest; |
||||
|
||||
*dest->next_output_byte++ = (JOCTET) val; |
||||
if (--dest->free_in_buffer == 0) |
||||
if (! (*dest->empty_output_buffer) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass (j_compress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
||||
INT32 temp; |
||||
|
||||
/* Section D.1.8: Termination of encoding */ |
||||
|
||||
/* Find the e->c in the coding interval with the largest
|
||||
* number of trailing zero bits */ |
||||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
||||
e->c = temp + 0x8000L; |
||||
else |
||||
e->c = temp; |
||||
/* Send remaining bytes to output */ |
||||
e->c <<= e->ct; |
||||
if (e->c & 0xF8000000L) { |
||||
/* One final overflow has to be handled */ |
||||
if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer + 1, cinfo); |
||||
if (e->buffer + 1 == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
} |
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
||||
e->sc = 0; |
||||
} else { |
||||
if (e->buffer == 0) |
||||
++e->zc; |
||||
else if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer, cinfo); |
||||
} |
||||
if (e->sc) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
do { |
||||
emit_byte(0xFF, cinfo); |
||||
emit_byte(0x00, cinfo); |
||||
} while (--e->sc); |
||||
} |
||||
} |
||||
/* Output final bytes only if they are not 0x00 */ |
||||
if (e->c & 0x7FFF800L) { |
||||
if (e->zc) /* output final pending zero bytes */ |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte((int) ((e->c >> 19) & 0xFF), cinfo); |
||||
if (((e->c >> 19) & 0xFF) == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
if (e->c & 0x7F800L) { |
||||
emit_byte((int) ((e->c >> 11) & 0xFF), cinfo); |
||||
if (((e->c >> 11) & 0xFF) == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic encoding routine (common in JPEG and JBIG). |
||||
* This needs to go as fast as possible. |
||||
* Machine-dependent optimization facilities |
||||
* are not utilized in this portable implementation. |
||||
* However, this code should be fairly efficient and |
||||
* may be a good base for further optimizations anyway. |
||||
* |
||||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
||||
* |
||||
* Note: I've added full "Pacman" termination support to the |
||||
* byte output routines, which is equivalent to the optional |
||||
* Discard_final_zeros procedure (Figure D.15) in the spec. |
||||
* Thus, we always produce the shortest possible output |
||||
* stream compliant to the spec (no trailing zero bytes, |
||||
* except for FF stuffing). |
||||
* |
||||
* I've also introduced a new scheme for accessing |
||||
* the probability estimation state machine table, |
||||
* derived from Markus Kuhn's JBIG implementation. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
||||
{ |
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
||||
register unsigned char nl, nm; |
||||
register INT32 qe, temp; |
||||
register int sv; |
||||
|
||||
/* Fetch values from our compact representation of Table D.3(D.2):
|
||||
* Qe values and probability estimation state machine |
||||
*/ |
||||
sv = *st; |
||||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
||||
|
||||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
||||
e->a -= qe; |
||||
if (val != (sv >> 7)) { |
||||
/* Encode the less probable symbol */ |
||||
if (e->a >= qe) { |
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange |
||||
* the two symbols for coding efficiency, otherwise code the LPS |
||||
* as usual: */ |
||||
e->c += e->a; |
||||
e->a = qe; |
||||
} |
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
||||
} else { |
||||
/* Encode the more probable symbol */ |
||||
if (e->a >= 0x8000L) |
||||
return; /* A >= 0x8000 -> ready, no renormalization required */ |
||||
if (e->a < qe) { |
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange |
||||
* the two symbols for coding efficiency: */ |
||||
e->c += e->a; |
||||
e->a = qe; |
||||
} |
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
||||
} |
||||
|
||||
/* Renormalization & data output per section D.1.6 */ |
||||
do { |
||||
e->a <<= 1; |
||||
e->c <<= 1; |
||||
if (--e->ct == 0) { |
||||
/* Another byte is ready for output */ |
||||
temp = e->c >> 19; |
||||
if (temp > 0xFF) { |
||||
/* Handle overflow over all stacked 0xFF bytes */ |
||||
if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer + 1, cinfo); |
||||
if (e->buffer + 1 == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
} |
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
||||
e->sc = 0; |
||||
/* Note: The 3 spacer bits in the C register guarantee
|
||||
* that the new buffer byte can't be 0xFF here |
||||
* (see page 160 in the P&M JPEG book). */ |
||||
/* New output byte, might overflow later */ |
||||
e->buffer = (int) (temp & 0xFF); |
||||
} else if (temp == 0xFF) { |
||||
++e->sc; /* stack 0xFF byte (which might overflow later) */ |
||||
} else { |
||||
/* Output all stacked 0xFF bytes, they will not overflow any more */ |
||||
if (e->buffer == 0) |
||||
++e->zc; |
||||
else if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer, cinfo); |
||||
} |
||||
if (e->sc) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
do { |
||||
emit_byte(0xFF, cinfo); |
||||
emit_byte(0x00, cinfo); |
||||
} while (--e->sc); |
||||
} |
||||
/* New output byte (can still overflow) */ |
||||
e->buffer = (int) (temp & 0xFF); |
||||
} |
||||
e->c &= 0x7FFFFL; |
||||
e->ct += 8; |
||||
} |
||||
} while (e->a < 0x8000L); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_restart (j_compress_ptr cinfo, int restart_num) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
|
||||
finish_pass(cinfo); |
||||
|
||||
emit_byte(0xFF, cinfo); |
||||
emit_byte(JPEG_RST0 + restart_num, cinfo); |
||||
|
||||
/* Re-initialize statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
||||
/* Reset DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->Se) { |
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
||||
} |
||||
} |
||||
|
||||
/* Reset arithmetic encoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0x10000L; |
||||
entropy->sc = 0; |
||||
entropy->zc = 0; |
||||
entropy->ct = 11; |
||||
entropy->buffer = -1; /* empty */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl; |
||||
int v, v2, m; |
||||
ISHIFT_TEMPS |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift. |
||||
*/ |
||||
m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); |
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */ |
||||
if ((v = m - entropy->last_dc_val[ci]) == 0) { |
||||
arith_encode(cinfo, st, 0); |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
} else { |
||||
entropy->last_dc_val[ci] = m; |
||||
arith_encode(cinfo, st, 1); |
||||
/* Figure F.6: Encoding nonzero value v */ |
||||
/* Figure F.7: Encoding the sign of v */ |
||||
if (v > 0) { |
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
||||
st += 2; /* Table F.4: SP = S0 + 2 */ |
||||
entropy->dc_context[ci] = 4; /* small positive diff category */ |
||||
} else { |
||||
v = -v; |
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
||||
st += 3; /* Table F.4: SN = S0 + 3 */ |
||||
entropy->dc_context[ci] = 8; /* small negative diff category */ |
||||
} |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] += 8; /* large diff category */ |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
const int * natural_order; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, k, ke; |
||||
int v, v2, m; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
natural_order = cinfo->natural_order; |
||||
|
||||
/* Encode the MCU data block */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
||||
|
||||
/* Establish EOB (end-of-block) index */ |
||||
ke = cinfo->Se; |
||||
do { |
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably |
||||
* in C, we shift after obtaining the absolute value. |
||||
*/ |
||||
if ((v = (*block)[natural_order[ke]]) >= 0) { |
||||
if (v >>= cinfo->Al) break; |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) break; |
||||
} |
||||
} while (--ke); |
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */ |
||||
for (k = cinfo->Ss - 1; k < ke;) { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
arith_encode(cinfo, st, 0); /* EOB decision */ |
||||
for (;;) { |
||||
if ((v = (*block)[natural_order[++k]]) >= 0) { |
||||
if (v >>= cinfo->Al) { |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 0); |
||||
break; |
||||
} |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) { |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 1); |
||||
break; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st + 1, 0); |
||||
st += 3; |
||||
} |
||||
st += 2; |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
if (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
/* Encode EOB decision only if k < cinfo->Se */ |
||||
if (k < cinfo->Se) { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
arith_encode(cinfo, st, 1); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan. |
||||
* Note: we assume such scans can be multi-component, |
||||
* although the spec is not very clear on the point. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
unsigned char *st; |
||||
int Al, blkn; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
st = entropy->fixed_bin; /* use fixed probability estimation */ |
||||
Al = cinfo->Al; |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
/* We simply emit the Al'th bit of the DC coefficient value. */ |
||||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
const int * natural_order; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, k, ke, kex; |
||||
int v; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
natural_order = cinfo->natural_order; |
||||
|
||||
/* Encode the MCU data block */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
/* Section G.1.3.3: Encoding of AC coefficients */ |
||||
|
||||
/* Establish EOB (end-of-block) index */ |
||||
ke = cinfo->Se; |
||||
do { |
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably |
||||
* in C, we shift after obtaining the absolute value. |
||||
*/ |
||||
if ((v = (*block)[natural_order[ke]]) >= 0) { |
||||
if (v >>= cinfo->Al) break; |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) break; |
||||
} |
||||
} while (--ke); |
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */ |
||||
for (kex = ke; kex > 0; kex--) |
||||
if ((v = (*block)[natural_order[kex]]) >= 0) { |
||||
if (v >>= cinfo->Ah) break; |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Ah) break; |
||||
} |
||||
|
||||
/* Figure G.10: Encode_AC_Coefficients_SA */ |
||||
for (k = cinfo->Ss - 1; k < ke;) { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
if (k >= kex) |
||||
arith_encode(cinfo, st, 0); /* EOB decision */ |
||||
for (;;) { |
||||
if ((v = (*block)[natural_order[++k]]) >= 0) { |
||||
if (v >>= cinfo->Al) { |
||||
if (v >> 1) /* previously nonzero coef */ |
||||
arith_encode(cinfo, st + 2, (v & 1)); |
||||
else { /* newly nonzero coef */ |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 0); |
||||
} |
||||
break; |
||||
} |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) { |
||||
if (v >> 1) /* previously nonzero coef */ |
||||
arith_encode(cinfo, st + 2, (v & 1)); |
||||
else { /* newly nonzero coef */ |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 1); |
||||
} |
||||
break; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st + 1, 0); |
||||
st += 3; |
||||
} |
||||
} |
||||
/* Encode EOB decision only if k < cinfo->Se */ |
||||
if (k < cinfo->Se) { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
arith_encode(cinfo, st, 1); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of arithmetic-compressed coefficients. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
const int * natural_order; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, k, ke; |
||||
int v, v2, m; |
||||
int blkn, ci; |
||||
jpeg_component_info * compptr; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
natural_order = cinfo->natural_order; |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
||||
|
||||
tbl = compptr->dc_tbl_no; |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */ |
||||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
||||
arith_encode(cinfo, st, 0); |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
} else { |
||||
entropy->last_dc_val[ci] = (*block)[0]; |
||||
arith_encode(cinfo, st, 1); |
||||
/* Figure F.6: Encoding nonzero value v */ |
||||
/* Figure F.7: Encoding the sign of v */ |
||||
if (v > 0) { |
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
||||
st += 2; /* Table F.4: SP = S0 + 2 */ |
||||
entropy->dc_context[ci] = 4; /* small positive diff category */ |
||||
} else { |
||||
v = -v; |
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
||||
st += 3; /* Table F.4: SN = S0 + 3 */ |
||||
entropy->dc_context[ci] = 8; /* small negative diff category */ |
||||
} |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] += 8; /* large diff category */ |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
||||
|
||||
if ((ke = cinfo->lim_Se) == 0) continue; |
||||
tbl = compptr->ac_tbl_no; |
||||
|
||||
/* Establish EOB (end-of-block) index */ |
||||
do { |
||||
if ((*block)[natural_order[ke]]) break; |
||||
} while (--ke); |
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */ |
||||
for (k = 0; k < ke;) { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
arith_encode(cinfo, st, 0); /* EOB decision */ |
||||
while ((v = (*block)[natural_order[++k]]) == 0) { |
||||
arith_encode(cinfo, st + 1, 0); |
||||
st += 3; |
||||
} |
||||
arith_encode(cinfo, st + 1, 1); |
||||
/* Figure F.6: Encoding nonzero value v */ |
||||
/* Figure F.7: Encoding the sign of v */ |
||||
if (v > 0) { |
||||
arith_encode(cinfo, entropy->fixed_bin, 0); |
||||
} else { |
||||
v = -v; |
||||
arith_encode(cinfo, entropy->fixed_bin, 1); |
||||
} |
||||
st += 2; |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
if (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
/* Encode EOB decision only if k < cinfo->lim_Se */ |
||||
if (k < cinfo->lim_Se) { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
arith_encode(cinfo, st, 1); |
||||
} |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci, tbl; |
||||
jpeg_component_info * compptr; |
||||
|
||||
if (gather_statistics) |
||||
/* Make sure to avoid that in the master control logic!
|
||||
* We are fully adaptive here and need no extra |
||||
* statistics gathering pass! |
||||
*/ |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
|
||||
/* We assume jcmaster.c already validated the progressive scan parameters. */ |
||||
|
||||
/* Select execution routines */ |
||||
if (cinfo->progressive_mode) { |
||||
if (cinfo->Ah == 0) { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.encode_mcu = encode_mcu_DC_first; |
||||
else |
||||
entropy->pub.encode_mcu = encode_mcu_AC_first; |
||||
} else { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine; |
||||
else |
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine; |
||||
} |
||||
} else |
||||
entropy->pub.encode_mcu = encode_mcu; |
||||
|
||||
/* Allocate & initialize requested statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
||||
tbl = compptr->dc_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->dc_stats[tbl] == NULL) |
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->Se) { |
||||
tbl = compptr->ac_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->ac_stats[tbl] == NULL) |
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
||||
#ifdef CALCULATE_SPECTRAL_CONDITIONING |
||||
if (cinfo->progressive_mode) |
||||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
||||
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
/* Initialize arithmetic encoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0x10000L; |
||||
entropy->sc = 0; |
||||
entropy->zc = 0; |
||||
entropy->ct = 11; |
||||
entropy->buffer = -1; /* empty */ |
||||
|
||||
/* Initialize restart stuff */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy encoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_arith_encoder (j_compress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy; |
||||
int i; |
||||
|
||||
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder)); |
||||
cinfo->entropy = &entropy->pub; |
||||
entropy->pub.start_pass = start_pass; |
||||
entropy->pub.finish_pass = finish_pass; |
||||
|
||||
/* Mark tables unallocated */ |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
entropy->dc_stats[i] = NULL; |
||||
entropy->ac_stats[i] = NULL; |
||||
} |
||||
|
||||
/* Initialize index for fixed probability estimation */ |
||||
entropy->fixed_bin[0] = 113; |
||||
} |
@ -1,456 +0,0 @@ |
||||
/*
|
||||
* jccoefct.c |
||||
* |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* Modified 2003-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the coefficient buffer controller for compression. |
||||
* This controller is the top level of the JPEG compressor proper. |
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT |
||||
* step is run during the first pass, and subsequent passes need only read |
||||
* the buffered coefficients. |
||||
*/ |
||||
#ifdef ENTROPY_OPT_SUPPORTED |
||||
#define FULL_COEF_BUFFER_SUPPORTED |
||||
#else |
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
#define FULL_COEF_BUFFER_SUPPORTED |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_coef_controller pub; /* public fields */ |
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). |
||||
* We append a workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, |
||||
* and reuse it for each MCU constructed and sent. |
||||
* In multi-pass modes, this array points to the current MCU's blocks |
||||
* within the virtual arrays. |
||||
*/ |
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */ |
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
||||
|
||||
/* Workspace for single-pass compression (omitted otherwise). */ |
||||
JBLOCK blk_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
} my_coef_controller; |
||||
|
||||
typedef my_coef_controller * my_coef_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(boolean) compress_data |
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
METHODDEF(boolean) compress_first_pass |
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
||||
METHODDEF(boolean) compress_output |
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
start_iMCU_row (j_compress_ptr cinfo) |
||||
/* Reset within-iMCU-row counters for a new row */ |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||||
* But at the bottom of the image, process only what's left. |
||||
*/ |
||||
if (cinfo->comps_in_scan > 1) { |
||||
coef->MCU_rows_per_iMCU_row = 1; |
||||
} else { |
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||||
else |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||||
} |
||||
|
||||
coef->MCU_ctr = 0; |
||||
coef->MCU_vert_offset = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
coef->iMCU_row_num = 0; |
||||
start_iMCU_row(cinfo); |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
if (coef->whole_image[0] != NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
coef->pub.compress_data = compress_data; |
||||
break; |
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
case JBUF_SAVE_AND_PASS: |
||||
if (coef->whole_image[0] == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
coef->pub.compress_data = compress_first_pass; |
||||
break; |
||||
case JBUF_CRANK_DEST: |
||||
if (coef->whole_image[0] == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
coef->pub.compress_data = compress_output; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the image. |
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||||
* |
||||
* NB: input_buf contains a plane for each component in image, |
||||
* which we index according to the component's SOF position. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
int ci, xindex, yindex, yoffset, blockcnt; |
||||
JBLOCKROW blkp; |
||||
JSAMPARRAY input_ptr; |
||||
JDIMENSION xpos; |
||||
jpeg_component_info *compptr; |
||||
forward_DCT_ptr forward_DCT; |
||||
|
||||
/* Loop to write as much as one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
||||
MCU_col_num++) { |
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks as |
||||
* wide as an MCU. Dummy blocks at the right or bottom edge are filled in |
||||
* specially. The data in them does not matter for image reconstruction, |
||||
* so we fill them with values that will encode to the smallest amount of |
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous |
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.) |
||||
*/ |
||||
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; |
||||
input_ptr = input_buf[compptr->component_index] + |
||||
yoffset * compptr->DCT_v_scaled_size; |
||||
/* ypos == (yoffset + yindex) * compptr->DCT_v_scaled_size */ |
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||||
: compptr->last_col_width; |
||||
xpos = MCU_col_num * compptr->MCU_sample_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
if (coef->iMCU_row_num < last_iMCU_row || |
||||
yoffset + yindex < compptr->last_row_height) { |
||||
(*forward_DCT) (cinfo, compptr, input_ptr, blkp, |
||||
xpos, (JDIMENSION) blockcnt); |
||||
input_ptr += compptr->DCT_v_scaled_size; |
||||
blkp += blockcnt; |
||||
/* Dummy blocks at right edge */ |
||||
if ((xindex = compptr->MCU_width - blockcnt) == 0) |
||||
continue; |
||||
} else { |
||||
/* At bottom of image, need a whole row of dummy blocks */ |
||||
xindex = compptr->MCU_width; |
||||
} |
||||
/* Fill in any dummy blocks needed in this row */ |
||||
MEMZERO(blkp, xindex * SIZEOF(JBLOCK)); |
||||
do { |
||||
blkp[0][0] = blkp[-1][0]; |
||||
blkp++; |
||||
} while (--xindex); |
||||
} |
||||
} |
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
||||
*/ |
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return FALSE; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
coef->iMCU_row_num++; |
||||
start_iMCU_row(cinfo); |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the image. |
||||
* This amount of data is read from the source buffer, DCT'd and quantized, |
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks |
||||
* as needed at the right and lower edges. (The dummy blocks are constructed |
||||
* in the virtual arrays, which have been padded appropriately.) This makes |
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks. |
||||
* |
||||
* We must also emit the data to the entropy encoder. This is conveniently |
||||
* done by calling compress_output() after we've loaded the current strip |
||||
* of the virtual arrays. |
||||
* |
||||
* NB: input_buf contains a plane for each component in image. All |
||||
* components are DCT'd and loaded into the virtual arrays in this pass. |
||||
* However, it may be that only a subset of the components are emitted to |
||||
* the entropy encoder during this first pass; be careful about looking |
||||
* at the scan-dependent variables (MCU dimensions, etc). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
JDIMENSION blocks_across, MCUs_across, MCUindex; |
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
||||
JCOEF lastDC; |
||||
jpeg_component_info *compptr; |
||||
JBLOCKARRAY buffer; |
||||
JBLOCKROW thisblockrow, lastblockrow; |
||||
JSAMPARRAY input_ptr; |
||||
forward_DCT_ptr forward_DCT; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Align the virtual buffer for this component. */ |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
coef->iMCU_row_num * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, TRUE); |
||||
/* Count non-dummy DCT block rows in this iMCU row. */ |
||||
if (coef->iMCU_row_num < last_iMCU_row) |
||||
block_rows = compptr->v_samp_factor; |
||||
else { |
||||
/* NB: can't use last_row_height here, since may not be set! */ |
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||||
} |
||||
blocks_across = compptr->width_in_blocks; |
||||
h_samp_factor = compptr->h_samp_factor; |
||||
/* Count number of dummy blocks to be added at the right margin. */ |
||||
ndummy = (int) (blocks_across % h_samp_factor); |
||||
if (ndummy > 0) |
||||
ndummy = h_samp_factor - ndummy; |
||||
forward_DCT = cinfo->fdct->forward_DCT[ci]; |
||||
input_ptr = input_buf[ci]; |
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks. |
||||
*/ |
||||
for (block_row = 0; block_row < block_rows; block_row++) { |
||||
thisblockrow = buffer[block_row]; |
||||
(*forward_DCT) (cinfo, compptr, input_ptr, thisblockrow, |
||||
(JDIMENSION) 0, blocks_across); |
||||
input_ptr += compptr->DCT_v_scaled_size; |
||||
if (ndummy > 0) { |
||||
/* Create dummy blocks at the right edge of the image. */ |
||||
thisblockrow += blocks_across; /* => first dummy block */ |
||||
FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
||||
lastDC = thisblockrow[-1][0]; |
||||
for (bi = 0; bi < ndummy; bi++) { |
||||
thisblockrow[bi][0] = lastDC; |
||||
} |
||||
} |
||||
} |
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values |
||||
* of the dummy blocks to match the last real block's DC value. |
||||
* This squeezes a few more bytes out of the resulting file... |
||||
*/ |
||||
if (block_row < compptr->v_samp_factor) { |
||||
blocks_across += ndummy; /* include lower right corner */ |
||||
MCUs_across = blocks_across / h_samp_factor; |
||||
do { |
||||
thisblockrow = buffer[block_row]; |
||||
lastblockrow = buffer[block_row-1]; |
||||
FMEMZERO((void FAR *) thisblockrow, |
||||
(size_t) blocks_across * SIZEOF(JBLOCK)); |
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
||||
lastDC = lastblockrow[h_samp_factor-1][0]; |
||||
for (bi = 0; bi < h_samp_factor; bi++) { |
||||
thisblockrow[bi][0] = lastDC; |
||||
} |
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
||||
lastblockrow += h_samp_factor; |
||||
} |
||||
} while (++block_row < compptr->v_samp_factor); |
||||
} |
||||
} |
||||
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||
* A suspension return will result in redoing all the work above next time. |
||||
*/ |
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */ |
||||
return compress_output(cinfo, input_buf); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the scan. |
||||
* The data is obtained from the virtual arrays and fed to the entropy coder. |
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||||
* |
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
int ci, xindex, yindex, yoffset; |
||||
JDIMENSION start_col; |
||||
JBLOCKARRAY blkp; |
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||||
JBLOCKROW buffer_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will |
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O. |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
buffer[ci] = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||||
coef->iMCU_row_num * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, FALSE); |
||||
} |
||||
|
||||
/* Loop to process one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
||||
MCU_col_num++) { |
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
||||
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
start_col = MCU_col_num * compptr->MCU_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
buffer_ptr = buffer[ci][yoffset + yindex] + start_col; |
||||
xindex = compptr->MCU_width; |
||||
do { |
||||
*blkp++ = buffer_ptr++; |
||||
} while (--xindex); |
||||
} |
||||
} |
||||
/* Try to write the MCU. */ |
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return FALSE; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
coef->iMCU_row_num++; |
||||
start_iMCU_row(cinfo); |
||||
return TRUE; |
||||
} |
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_coef_ptr coef; |
||||
|
||||
if (need_full_buffer) { |
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
/* Allocate a full-image virtual array for each component, */ |
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer)); |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
||||
(long) compptr->h_samp_factor), |
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
||||
(long) compptr->v_samp_factor), |
||||
(JDIMENSION) compptr->v_samp_factor); |
||||
} |
||||
#else |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
#endif |
||||
} else { |
||||
/* We only need a single-MCU buffer. */ |
||||
JBLOCKARRAY blkp; |
||||
JBLOCKROW buffer_ptr; |
||||
int bi; |
||||
|
||||
coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); |
||||
blkp = coef->MCU_buffer; |
||||
buffer_ptr = coef->blk_buffer; |
||||
bi = C_MAX_BLOCKS_IN_MCU; |
||||
do { |
||||
*blkp++ = buffer_ptr++; |
||||
} while (--bi); |
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
||||
} |
||||
|
||||
coef->pub.start_pass = start_pass_coef; |
||||
cinfo->coef = &coef->pub; |
||||
} |
@ -1,598 +0,0 @@ |
||||
/*
|
||||
* jccolor.c |
||||
* |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* Modified 2011-2023 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains input colorspace conversion routines. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_color_converter pub; /* public fields */ |
||||
|
||||
/* Private state for RGB->YCC conversion */ |
||||
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ |
||||
} my_color_converter; |
||||
|
||||
typedef my_color_converter * my_cconvert_ptr; |
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/ |
||||
|
||||
/*
|
||||
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), |
||||
* previously known as Recommendation CCIR 601-1, except that Cb and Cr |
||||
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. |
||||
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. |
||||
* sYCC (standard luma-chroma-chroma color space with extended gamut) |
||||
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. |
||||
* bg-sRGB and bg-sYCC (big gamut standard color spaces) |
||||
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. |
||||
* Note that the derived conversion coefficients given in some of these |
||||
* documents are imprecise. The general conversion equations are |
||||
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B |
||||
* Cb = (B - Y) / (1 - Kb) / K |
||||
* Cr = (R - Y) / (1 - Kr) / K |
||||
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 |
||||
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, |
||||
* the conversion equations to be implemented are therefore |
||||
* Y = 0.299 * R + 0.587 * G + 0.114 * B |
||||
* Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE |
||||
* Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE |
||||
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, |
||||
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and |
||||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) |
||||
* were not represented exactly. Now we sacrifice exact representation of |
||||
* maximum red and maximum blue in order to get exact grayscales. |
||||
* |
||||
* To avoid floating-point arithmetic, we represent the fractional constants |
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide |
||||
* the products by 2^16, with appropriate rounding, to get the correct answer. |
||||
* |
||||
* For even more speed, we avoid doing any multiplications in the inner loop |
||||
* by precalculating the constants times R,G,B for all possible values. |
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); |
||||
* for 9-bit to 12-bit samples it is still acceptable. It's not very |
||||
* reasonable for 16-bit samples, but if you want lossless storage |
||||
* you shouldn't be changing colorspace anyway. |
||||
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included |
||||
* in the tables to save adding them separately in the inner loop. |
||||
*/ |
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
||||
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS) |
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base |
||||
* address, which can be held in a register in the inner loops on many |
||||
* machines (more than can hold all eight addresses, anyway). |
||||
*/ |
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */ |
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ |
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ |
||||
#define R_CB_OFF (3*(MAXJSAMPLE+1)) |
||||
#define G_CB_OFF (4*(MAXJSAMPLE+1)) |
||||
#define B_CB_OFF (5*(MAXJSAMPLE+1)) |
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ |
||||
#define G_CR_OFF (6*(MAXJSAMPLE+1)) |
||||
#define B_CR_OFF (7*(MAXJSAMPLE+1)) |
||||
#define TABLE_SIZE (8*(MAXJSAMPLE+1)) |
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_ycc_start (j_compress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
INT32 * rgb_ycc_tab; |
||||
INT32 i; |
||||
|
||||
/* Allocate and fill in the conversion tables. */ |
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
TABLE_SIZE * SIZEOF(INT32)); |
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) { |
||||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i; |
||||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i; |
||||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF; |
||||
rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i; |
||||
rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i; |
||||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||
* This ensures that the maximum output will round to MAXJSAMPLE |
||||
* not MAXJSAMPLE+1, and thus that we don't have to range-limit. |
||||
*/ |
||||
rgb_ycc_tab[i+B_CB_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1; |
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i+R_CR_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1; |
||||
*/ |
||||
rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i; |
||||
rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* |
||||
* Note that we change from the application's interleaved-pixel format |
||||
* to our internal noninterleaved, one-plane-per-component format. The |
||||
* input buffer is therefore three times as wide as the output buffer. |
||||
* |
||||
* A starting row offset is provided only for the output buffer. The |
||||
* caller can easily adjust the passed input_buf value to accommodate |
||||
* any row offset required on that side. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_ycc_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register INT32 * ctab = cconvert->rgb_ycc_tab; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr[RGB_RED]); |
||||
g = GETJSAMPLE(inptr[RGB_GREEN]); |
||||
b = GETJSAMPLE(inptr[RGB_BLUE]); |
||||
inptr += RGB_PIXELSIZE; |
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation. |
||||
* Hence the value being shifted is never negative, and we don't |
||||
* need the general RIGHT_SHIFT macro. |
||||
*/ |
||||
/* Y */ |
||||
outptr0[col] = (JSAMPLE) |
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cb */ |
||||
outptr1[col] = (JSAMPLE) |
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cr */ |
||||
outptr2[col] = (JSAMPLE) |
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) |
||||
>> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/ |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles RGB->grayscale conversion, |
||||
* which is the same as the RGB->Y portion of RGB->YCbCr. |
||||
* We assume rgb_ycc_start has been called (we only use the Y tables). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_gray_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register INT32 y; |
||||
register INT32 * ctab = cconvert->rgb_ycc_tab; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr = output_buf[0][output_row++]; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = ctab[R_Y_OFF + GETJSAMPLE(inptr[RGB_RED])]; |
||||
y += ctab[G_Y_OFF + GETJSAMPLE(inptr[RGB_GREEN])]; |
||||
y += ctab[B_Y_OFF + GETJSAMPLE(inptr[RGB_BLUE])]; |
||||
inptr += RGB_PIXELSIZE; |
||||
outptr[col] = (JSAMPLE) (y >> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles Adobe-style CMYK->YCCK conversion, |
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the |
||||
* same conversion as above, while passing K (black) unchanged. |
||||
* We assume rgb_ycc_start has been called. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
cmyk_ycck_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register INT32 * ctab = cconvert->rgb_ycc_tab; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2, outptr3; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
outptr3 = output_buf[3][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); |
||||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); |
||||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); |
||||
/* K passes through as-is */ |
||||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ |
||||
inptr += 4; |
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation. |
||||
* Hence the value being shifted is never negative, and we don't |
||||
* need the general RIGHT_SHIFT macro. |
||||
*/ |
||||
/* Y */ |
||||
outptr0[col] = (JSAMPLE) |
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cb */ |
||||
outptr1[col] = (JSAMPLE) |
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cr */ |
||||
outptr2[col] = (JSAMPLE) |
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) |
||||
>> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* [R,G,B] to [R-G,G,B-G] conversion with modulo calculation |
||||
* (forward reversible color transform). |
||||
* This can be seen as an adaption of the general RGB->YCbCr |
||||
* conversion equation with Kr = Kb = 0, while replacing the |
||||
* normalization by modulo calculation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_rgb1_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register int r, g, b; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr[RGB_RED]); |
||||
g = GETJSAMPLE(inptr[RGB_GREEN]); |
||||
b = GETJSAMPLE(inptr[RGB_BLUE]); |
||||
inptr += RGB_PIXELSIZE; |
||||
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
|
||||
* (modulo) operator is equivalent to the bitmask operator AND. |
||||
*/ |
||||
outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE); |
||||
outptr1[col] = (JSAMPLE) g; |
||||
outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles grayscale output with no conversion. |
||||
* The source can be either plain grayscale or YCC (since Y == gray). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
grayscale_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr; |
||||
register JDIMENSION count; |
||||
register int instride = cinfo->input_components; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr = output_buf[0][output_row++]; |
||||
for (count = num_cols; count > 0; count--) { |
||||
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */ |
||||
inptr += instride; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* No colorspace conversion, but change from interleaved |
||||
* to separate-planes representation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
/* We can dispense with GETJSAMPLE() here */ |
||||
outptr0[col] = inptr[RGB_RED]; |
||||
outptr1[col] = inptr[RGB_GREEN]; |
||||
outptr2[col] = inptr[RGB_BLUE]; |
||||
inptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles multi-component colorspaces without conversion. |
||||
* We assume input_components == num_components. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
null_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr; |
||||
register JDIMENSION count; |
||||
register int num_comps = cinfo->num_components; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
int ci; |
||||
|
||||
while (--num_rows >= 0) { |
||||
/* It seems fastest to make a separate pass for each component. */ |
||||
for (ci = 0; ci < num_comps; ci++) { |
||||
inptr = input_buf[0] + ci; |
||||
outptr = output_buf[ci][output_row]; |
||||
for (count = num_cols; count > 0; count--) { |
||||
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */ |
||||
inptr += num_comps; |
||||
} |
||||
} |
||||
input_buf++; |
||||
output_row++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
null_method (j_compress_ptr cinfo) |
||||
{ |
||||
/* no work needed */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for input colorspace conversion. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_color_converter (j_compress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert; |
||||
|
||||
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter)); |
||||
cinfo->cconvert = &cconvert->pub; |
||||
/* set start_pass to null method until we find out differently */ |
||||
cconvert->pub.start_pass = null_method; |
||||
|
||||
/* Make sure input_components agrees with in_color_space */ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
if (cinfo->input_components != 1) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
case JCS_BG_RGB: |
||||
#if RGB_PIXELSIZE != 3 |
||||
if (cinfo->input_components != RGB_PIXELSIZE) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
#endif /* else share code with YCbCr */ |
||||
|
||||
case JCS_YCbCr: |
||||
case JCS_BG_YCC: |
||||
if (cinfo->input_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
case JCS_YCCK: |
||||
if (cinfo->input_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
default: /* JCS_UNKNOWN can be anything */ |
||||
if (cinfo->input_components < 1) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
} |
||||
|
||||
/* Support color transform only for RGB colorspaces */ |
||||
if (cinfo->color_transform && |
||||
cinfo->jpeg_color_space != JCS_RGB && |
||||
cinfo->jpeg_color_space != JCS_BG_RGB) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
|
||||
/* Check num_components, set conversion method based on requested space */ |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
if (cinfo->num_components != 1) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
case JCS_YCbCr: |
||||
case JCS_BG_YCC: |
||||
cconvert->pub.color_convert = grayscale_convert; |
||||
break; |
||||
case JCS_RGB: |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = rgb_gray_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
case JCS_BG_RGB: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (cinfo->in_color_space != cinfo->jpeg_color_space) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
switch (cinfo->color_transform) { |
||||
case JCT_NONE: |
||||
cconvert->pub.color_convert = rgb_convert; |
||||
break; |
||||
case JCT_SUBTRACT_GREEN: |
||||
cconvert->pub.color_convert = rgb_rgb1_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_YCbCr: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_RGB: |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = rgb_ycc_convert; |
||||
break; |
||||
case JCS_YCbCr: |
||||
cconvert->pub.color_convert = null_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_BG_YCC: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_RGB: |
||||
/* For conversion from normal RGB input to BG_YCC representation,
|
||||
* the Cb/Cr values are first computed as usual, and then |
||||
* quantized further after DCT processing by a factor of |
||||
* 2 in reference to the nominal quantization factor. |
||||
*/ |
||||
/* need quantization scale by factor of 2 after DCT */ |
||||
cinfo->comp_info[1].component_needed = TRUE; |
||||
cinfo->comp_info[2].component_needed = TRUE; |
||||
/* compute normal YCC first */ |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = rgb_ycc_convert; |
||||
break; |
||||
case JCS_YCbCr: |
||||
/* need quantization scale by factor of 2 after DCT */ |
||||
cinfo->comp_info[1].component_needed = TRUE; |
||||
cinfo->comp_info[2].component_needed = TRUE; |
||||
/*FALLTHROUGH*/ |
||||
case JCS_BG_YCC: |
||||
/* Pass through for BG_YCC input */ |
||||
cconvert->pub.color_convert = null_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
if (cinfo->num_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (cinfo->in_color_space != JCS_CMYK) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
cconvert->pub.color_convert = null_convert; |
||||
break; |
||||
|
||||
case JCS_YCCK: |
||||
if (cinfo->num_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_CMYK: |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = cmyk_ycck_convert; |
||||
break; |
||||
case JCS_YCCK: |
||||
cconvert->pub.color_convert = null_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */ |
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space || |
||||
cinfo->num_components != cinfo->input_components) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
cconvert->pub.color_convert = null_convert; |
||||
} |
||||
} |
@ -1,466 +0,0 @@ |
||||
/*
|
||||
* jcdctmgr.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2003-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the forward-DCT management logic. |
||||
* This code selects a particular DCT implementation to be used, |
||||
* and it performs related housekeeping chores including coefficient |
||||
* quantization. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
|
||||
/* Private subobject for this module */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_forward_dct pub; /* public fields */ |
||||
|
||||
/* Pointer to the DCT routine actually in use */ |
||||
forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; |
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
/* Same as above for the floating-point case. */ |
||||
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; |
||||
#endif |
||||
} my_fdct_controller; |
||||
|
||||
typedef my_fdct_controller * my_fdct_ptr; |
||||
|
||||
|
||||
/* The allocated post-DCT divisor tables -- big enough for any
|
||||
* supported variant and not identical to the quant table entries, |
||||
* because of scaling (especially for an unnormalized DCT) -- |
||||
* are pointed to by dct_table in the per-component comp_info |
||||
* structures. Each table is given in normal array order. |
||||
*/ |
||||
|
||||
typedef union { |
||||
DCTELEM int_array[DCTSIZE2]; |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
FAST_FLOAT float_array[DCTSIZE2]; |
||||
#endif |
||||
} divisor_table; |
||||
|
||||
|
||||
/* The current scaled-DCT routines require ISLOW-style divisor tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested. |
||||
*/ |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
#define PROVIDE_ISLOW_TABLES |
||||
#else |
||||
#ifdef DCT_SCALING_SUPPORTED |
||||
#define PROVIDE_ISLOW_TABLES |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component. |
||||
* |
||||
* The input samples are taken from the sample_data[] array starting at |
||||
* position start_col, and moving to the right for any additional blocks. |
||||
* The quantized coefficients are returned in coef_blocks[]. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
||||
JDIMENSION start_col, JDIMENSION num_blocks) |
||||
/* This version is used for integer DCT implementations. */ |
||||
{ |
||||
/* This routine is heavily used, so it's worth coding it tightly. */ |
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
||||
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; |
||||
DCTELEM * divisors = (DCTELEM *) compptr->dct_table; |
||||
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
||||
JDIMENSION bi; |
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
||||
/* Perform the DCT */ |
||||
(*do_dct) (workspace, sample_data, start_col); |
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
||||
{ register DCTELEM temp, qval; |
||||
register int i; |
||||
register JCOEFPTR output_ptr = coef_blocks[bi]; |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
qval = divisors[i]; |
||||
temp = workspace[i]; |
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative |
||||
* quotients, we have to force the dividend positive for portability. |
||||
* |
||||
* In most files, at least half of the output values will be zero |
||||
* (at default quantization settings, more like three-quarters...) |
||||
* so we should ensure that this case is fast. On many machines, |
||||
* a comparison is enough cheaper than a divide to make a special test |
||||
* a win. Since both inputs will be nonnegative, we need only test |
||||
* for a < b to discover whether a/b is 0. |
||||
* If your machine's division is fast enough, define FAST_DIVIDE. |
||||
*/ |
||||
#ifdef FAST_DIVIDE |
||||
#define DIVIDE_BY(a,b) a /= b |
||||
#else |
||||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
||||
#endif |
||||
if (temp < 0) { |
||||
temp = -temp; |
||||
temp += qval>>1; /* for rounding */ |
||||
DIVIDE_BY(temp, qval); |
||||
temp = -temp; |
||||
} else { |
||||
temp += qval>>1; /* for rounding */ |
||||
DIVIDE_BY(temp, qval); |
||||
} |
||||
output_ptr[i] = (JCOEF) temp; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
|
||||
METHODDEF(void) |
||||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
||||
JDIMENSION start_col, JDIMENSION num_blocks) |
||||
/* This version is used for floating-point DCT implementations. */ |
||||
{ |
||||
/* This routine is heavily used, so it's worth coding it tightly. */ |
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
||||
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; |
||||
FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table; |
||||
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
||||
JDIMENSION bi; |
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
||||
/* Perform the DCT */ |
||||
(*do_dct) (workspace, sample_data, start_col); |
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
||||
{ register FAST_FLOAT temp; |
||||
register int i; |
||||
register JCOEFPTR output_ptr = coef_blocks[bi]; |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
/* Apply the quantization and scaling factor */ |
||||
temp = workspace[i] * divisors[i]; |
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative |
||||
* quotients, we have to force the dividend positive for portability. |
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this |
||||
* code should work for either 16-bit or 32-bit ints. |
||||
*/ |
||||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
* Verify that all referenced Q-tables are present, and set up |
||||
* the divisor table for each one. |
||||
* In the current implementation, DCT of all components is done during |
||||
* the first pass, even if only some components will be output in the |
||||
* first scan. Hence all components should be examined here. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_fdctmgr (j_compress_ptr cinfo) |
||||
{ |
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
||||
int ci, qtblno, i; |
||||
jpeg_component_info *compptr; |
||||
int method = 0; |
||||
JQUANT_TBL * qtbl; |
||||
DCTELEM * dtbl; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Select the proper DCT routine for this component's scaling */ |
||||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { |
||||
#ifdef DCT_SCALING_SUPPORTED |
||||
case ((1 << 8) + 1): |
||||
fdct->do_dct[ci] = jpeg_fdct_1x1; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((2 << 8) + 2): |
||||
fdct->do_dct[ci] = jpeg_fdct_2x2; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((3 << 8) + 3): |
||||
fdct->do_dct[ci] = jpeg_fdct_3x3; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((4 << 8) + 4): |
||||
fdct->do_dct[ci] = jpeg_fdct_4x4; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((5 << 8) + 5): |
||||
fdct->do_dct[ci] = jpeg_fdct_5x5; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((6 << 8) + 6): |
||||
fdct->do_dct[ci] = jpeg_fdct_6x6; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((7 << 8) + 7): |
||||
fdct->do_dct[ci] = jpeg_fdct_7x7; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((9 << 8) + 9): |
||||
fdct->do_dct[ci] = jpeg_fdct_9x9; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((10 << 8) + 10): |
||||
fdct->do_dct[ci] = jpeg_fdct_10x10; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((11 << 8) + 11): |
||||
fdct->do_dct[ci] = jpeg_fdct_11x11; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((12 << 8) + 12): |
||||
fdct->do_dct[ci] = jpeg_fdct_12x12; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((13 << 8) + 13): |
||||
fdct->do_dct[ci] = jpeg_fdct_13x13; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((14 << 8) + 14): |
||||
fdct->do_dct[ci] = jpeg_fdct_14x14; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((15 << 8) + 15): |
||||
fdct->do_dct[ci] = jpeg_fdct_15x15; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((16 << 8) + 16): |
||||
fdct->do_dct[ci] = jpeg_fdct_16x16; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((16 << 8) + 8): |
||||
fdct->do_dct[ci] = jpeg_fdct_16x8; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((14 << 8) + 7): |
||||
fdct->do_dct[ci] = jpeg_fdct_14x7; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((12 << 8) + 6): |
||||
fdct->do_dct[ci] = jpeg_fdct_12x6; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((10 << 8) + 5): |
||||
fdct->do_dct[ci] = jpeg_fdct_10x5; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((8 << 8) + 4): |
||||
fdct->do_dct[ci] = jpeg_fdct_8x4; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((6 << 8) + 3): |
||||
fdct->do_dct[ci] = jpeg_fdct_6x3; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((4 << 8) + 2): |
||||
fdct->do_dct[ci] = jpeg_fdct_4x2; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((2 << 8) + 1): |
||||
fdct->do_dct[ci] = jpeg_fdct_2x1; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((8 << 8) + 16): |
||||
fdct->do_dct[ci] = jpeg_fdct_8x16; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((7 << 8) + 14): |
||||
fdct->do_dct[ci] = jpeg_fdct_7x14; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((6 << 8) + 12): |
||||
fdct->do_dct[ci] = jpeg_fdct_6x12; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((5 << 8) + 10): |
||||
fdct->do_dct[ci] = jpeg_fdct_5x10; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((4 << 8) + 8): |
||||
fdct->do_dct[ci] = jpeg_fdct_4x8; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((3 << 8) + 6): |
||||
fdct->do_dct[ci] = jpeg_fdct_3x6; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((2 << 8) + 4): |
||||
fdct->do_dct[ci] = jpeg_fdct_2x4; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
case ((1 << 8) + 2): |
||||
fdct->do_dct[ci] = jpeg_fdct_1x2; |
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
||||
break; |
||||
#endif |
||||
case ((DCTSIZE << 8) + DCTSIZE): |
||||
switch (cinfo->dct_method) { |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
case JDCT_ISLOW: |
||||
fdct->do_dct[ci] = jpeg_fdct_islow; |
||||
method = JDCT_ISLOW; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
fdct->do_dct[ci] = jpeg_fdct_ifast; |
||||
method = JDCT_IFAST; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
fdct->do_float_dct[ci] = jpeg_fdct_float; |
||||
method = JDCT_FLOAT; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
} |
||||
break; |
||||
default: |
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, |
||||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); |
||||
} |
||||
qtblno = compptr->quant_tbl_no; |
||||
/* Make sure specified quantization table is present */ |
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
||||
/* Create divisor table from quant table */ |
||||
switch (method) { |
||||
#ifdef PROVIDE_ISLOW_TABLES |
||||
case JDCT_ISLOW: |
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling). |
||||
*/ |
||||
dtbl = (DCTELEM *) compptr->dct_table; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
dtbl[i] = |
||||
((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3); |
||||
} |
||||
fdct->pub.forward_DCT[ci] = forward_DCT; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
{ |
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* We apply a further scale factor of 8. |
||||
*/ |
||||
#define CONST_BITS 14 |
||||
static const INT16 aanscales[DCTSIZE2] = { |
||||
/* precomputed values scaled up by 14 bits */ |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
||||
}; |
||||
SHIFT_TEMPS |
||||
|
||||
dtbl = (DCTELEM *) compptr->dct_table; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
dtbl[i] = (DCTELEM) |
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
||||
(INT32) aanscales[i]), |
||||
compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3); |
||||
} |
||||
} |
||||
fdct->pub.forward_DCT[ci] = forward_DCT; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
{ |
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* We apply a further scale factor of 8. |
||||
* What's actually stored is 1/divisor so that the inner loop can |
||||
* use a multiplication rather than a division. |
||||
*/ |
||||
FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table; |
||||
int row, col; |
||||
static const double aanscalefactor[DCTSIZE] = { |
||||
1.0, 1.387039845, 1.306562965, 1.175875602, |
||||
1.0, 0.785694958, 0.541196100, 0.275899379 |
||||
}; |
||||
|
||||
i = 0; |
||||
for (row = 0; row < DCTSIZE; row++) { |
||||
for (col = 0; col < DCTSIZE; col++) { |
||||
fdtbl[i] = (FAST_FLOAT) |
||||
(1.0 / ((double) qtbl->quantval[i] * |
||||
aanscalefactor[row] * aanscalefactor[col] * |
||||
(compptr->component_needed ? 16.0 : 8.0))); |
||||
i++; |
||||
} |
||||
} |
||||
} |
||||
fdct->pub.forward_DCT[ci] = forward_DCT_float; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_forward_dct (j_compress_ptr cinfo) |
||||
{ |
||||
my_fdct_ptr fdct; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller)); |
||||
cinfo->fdct = &fdct->pub; |
||||
fdct->pub.start_pass = start_pass_fdctmgr; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Allocate a divisor table for each component */ |
||||
compptr->dct_table = (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(divisor_table)); |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -1,249 +0,0 @@ |
||||
/*
|
||||
* jcinit.c |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2003-2017 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains initialization logic for the JPEG compressor. |
||||
* This routine is in charge of selecting the modules to be executed and |
||||
* making an initialization call to each one. |
||||
* |
||||
* Logically, this code belongs in jcmaster.c. It's split out because |
||||
* linking this routine implies linking the entire compression library. |
||||
* For a transcoding-only application, we want to be able to use jcmaster.c |
||||
* without linking in the whole library. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Compute JPEG image dimensions and related values. |
||||
* NOTE: this is exported for possible use by application. |
||||
* Hence it mustn't do anything that can't be done twice. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase */ |
||||
{ |
||||
/* Sanity check on input image dimensions to prevent overflow in
|
||||
* following calculations. |
||||
* We do check jpeg_width and jpeg_height in initial_setup in jcmaster.c, |
||||
* but image_width and image_height can come from arbitrary data, |
||||
* and we need some space for multiplication by block_size. |
||||
*/ |
||||
if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24)) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
||||
|
||||
#ifdef DCT_SCALING_SUPPORTED |
||||
|
||||
/* Compute actual JPEG image dimensions and DCT scaling choices. */ |
||||
if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/1 scaling */ |
||||
cinfo->jpeg_width = cinfo->image_width * cinfo->block_size; |
||||
cinfo->jpeg_height = cinfo->image_height * cinfo->block_size; |
||||
cinfo->min_DCT_h_scaled_size = 1; |
||||
cinfo->min_DCT_v_scaled_size = 1; |
||||
} else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/2 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L); |
||||
cinfo->min_DCT_h_scaled_size = 2; |
||||
cinfo->min_DCT_v_scaled_size = 2; |
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/3 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L); |
||||
cinfo->min_DCT_h_scaled_size = 3; |
||||
cinfo->min_DCT_v_scaled_size = 3; |
||||
} else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/4 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L); |
||||
cinfo->min_DCT_h_scaled_size = 4; |
||||
cinfo->min_DCT_v_scaled_size = 4; |
||||
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/5 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L); |
||||
cinfo->min_DCT_h_scaled_size = 5; |
||||
cinfo->min_DCT_v_scaled_size = 5; |
||||
} else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/6 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L); |
||||
cinfo->min_DCT_h_scaled_size = 6; |
||||
cinfo->min_DCT_v_scaled_size = 6; |
||||
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/7 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L); |
||||
cinfo->min_DCT_h_scaled_size = 7; |
||||
cinfo->min_DCT_v_scaled_size = 7; |
||||
} else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/8 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L); |
||||
cinfo->min_DCT_h_scaled_size = 8; |
||||
cinfo->min_DCT_v_scaled_size = 8; |
||||
} else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/9 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L); |
||||
cinfo->min_DCT_h_scaled_size = 9; |
||||
cinfo->min_DCT_v_scaled_size = 9; |
||||
} else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/10 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L); |
||||
cinfo->min_DCT_h_scaled_size = 10; |
||||
cinfo->min_DCT_v_scaled_size = 10; |
||||
} else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/11 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L); |
||||
cinfo->min_DCT_h_scaled_size = 11; |
||||
cinfo->min_DCT_v_scaled_size = 11; |
||||
} else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/12 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L); |
||||
cinfo->min_DCT_h_scaled_size = 12; |
||||
cinfo->min_DCT_v_scaled_size = 12; |
||||
} else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/13 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L); |
||||
cinfo->min_DCT_h_scaled_size = 13; |
||||
cinfo->min_DCT_v_scaled_size = 13; |
||||
} else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/14 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L); |
||||
cinfo->min_DCT_h_scaled_size = 14; |
||||
cinfo->min_DCT_v_scaled_size = 14; |
||||
} else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) { |
||||
/* Provide block_size/15 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L); |
||||
cinfo->min_DCT_h_scaled_size = 15; |
||||
cinfo->min_DCT_v_scaled_size = 15; |
||||
} else { |
||||
/* Provide block_size/16 scaling */ |
||||
cinfo->jpeg_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L); |
||||
cinfo->jpeg_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L); |
||||
cinfo->min_DCT_h_scaled_size = 16; |
||||
cinfo->min_DCT_v_scaled_size = 16; |
||||
} |
||||
|
||||
#else /* !DCT_SCALING_SUPPORTED */ |
||||
|
||||
/* Hardwire it to "no scaling" */ |
||||
cinfo->jpeg_width = cinfo->image_width; |
||||
cinfo->jpeg_height = cinfo->image_height; |
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE; |
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE; |
||||
|
||||
#endif /* DCT_SCALING_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules. |
||||
* This is done once at the start of processing an image. We determine |
||||
* which modules will be used and give them appropriate initialization calls. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_compress_master (j_compress_ptr cinfo) |
||||
{ |
||||
long samplesperrow; |
||||
JDIMENSION jd_samplesperrow; |
||||
|
||||
/* For now, precision must match compiled-in value... */ |
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE) |
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
||||
|
||||
/* Sanity check on input image dimensions */ |
||||
if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || |
||||
cinfo->input_components <= 0) |
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */ |
||||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; |
||||
jd_samplesperrow = (JDIMENSION) samplesperrow; |
||||
if ((long) jd_samplesperrow != samplesperrow) |
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
||||
|
||||
/* Compute JPEG image dimensions and related values. */ |
||||
jpeg_calc_jpeg_dimensions(cinfo); |
||||
|
||||
/* Initialize master control (includes parameter checking/processing) */ |
||||
jinit_c_master_control(cinfo, FALSE /* full compression */); |
||||
|
||||
/* Preprocessing */ |
||||
if (! cinfo->raw_data_in) { |
||||
jinit_color_converter(cinfo); |
||||
jinit_downsampler(cinfo); |
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); |
||||
} |
||||
/* Forward DCT */ |
||||
jinit_forward_dct(cinfo); |
||||
/* Entropy encoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) |
||||
jinit_arith_encoder(cinfo); |
||||
else { |
||||
jinit_huff_encoder(cinfo); |
||||
} |
||||
|
||||
/* Need a full-image coefficient buffer in any multi-pass mode. */ |
||||
jinit_c_coef_controller(cinfo, |
||||
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); |
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); |
||||
|
||||
jinit_marker_writer(cinfo); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later. |
||||
* This lets application insert special markers after the SOI. |
||||
*/ |
||||
(*cinfo->marker->write_file_header) (cinfo); |
||||
} |
@ -1,297 +0,0 @@ |
||||
/*
|
||||
* jcmainct.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2003-2012 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the main buffer controller for compression. |
||||
* The main buffer lies between the pre-processor and the JPEG |
||||
* compressor proper; it holds downsampled data in the JPEG colorspace. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Note: currently, there is no operating mode in which a full-image buffer
|
||||
* is needed at this step. If there were, that mode could not be used with |
||||
* "raw data" input, since this module is bypassed in that case. However, |
||||
* we've left the code here for possible use in special applications. |
||||
*/ |
||||
#undef FULL_MAIN_BUFFER_SUPPORTED |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_main_controller pub; /* public fields */ |
||||
|
||||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */ |
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ |
||||
boolean suspended; /* remember if we suspended output */ |
||||
J_BUF_MODE pass_mode; /* current operating mode */ |
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this |
||||
* points to the currently accessible strips of the virtual arrays. |
||||
*/ |
||||
JSAMPARRAY buffer[MAX_COMPONENTS]; |
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
/* If using full-image storage, this array holds pointers to virtual-array
|
||||
* control blocks for each component. Unused if not full-image storage. |
||||
*/ |
||||
jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; |
||||
#endif |
||||
} my_main_controller; |
||||
|
||||
typedef my_main_controller * my_main_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(void) process_data_simple_main |
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); |
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
METHODDEF(void) process_data_buffer_main |
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
|
||||
/* Do nothing in raw-data mode. */ |
||||
if (cinfo->raw_data_in) |
||||
return; |
||||
|
||||
mainp->cur_iMCU_row = 0; /* initialize counters */ |
||||
mainp->rowgroup_ctr = 0; |
||||
mainp->suspended = FALSE; |
||||
mainp->pass_mode = pass_mode; /* save mode for use by process_data */ |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
if (mainp->whole_image[0] != NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
#endif |
||||
mainp->pub.process_data = process_data_simple_main; |
||||
break; |
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
case JBUF_SAVE_SOURCE: |
||||
case JBUF_CRANK_DEST: |
||||
case JBUF_SAVE_AND_PASS: |
||||
if (mainp->whole_image[0] == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
mainp->pub.process_data = process_data_buffer_main; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This routine handles the simple pass-through mode, |
||||
* where we have only a strip buffer. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_simple_main (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail) |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
|
||||
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) { |
||||
/* Read input data if we haven't filled the main buffer yet */ |
||||
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) |
||||
(*cinfo->prep->pre_process_data) (cinfo, |
||||
input_buf, in_row_ctr, in_rows_avail, |
||||
mainp->buffer, &mainp->rowgroup_ctr, |
||||
(JDIMENSION) cinfo->min_DCT_v_scaled_size); |
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row |
||||
* at the bottom of the image. |
||||
*/ |
||||
if (mainp->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size) |
||||
return; |
||||
|
||||
/* Send the completed row to the compressor */ |
||||
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) { |
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation |
||||
* we pretend we didn't yet consume the last input row; otherwise, if |
||||
* it happened to be the last row of the image, the application would |
||||
* think we were done. |
||||
*/ |
||||
if (! mainp->suspended) { |
||||
(*in_row_ctr)--; |
||||
mainp->suspended = TRUE; |
||||
} |
||||
return; |
||||
} |
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty. |
||||
*/ |
||||
if (mainp->suspended) { |
||||
(*in_row_ctr)++; |
||||
mainp->suspended = FALSE; |
||||
} |
||||
mainp->rowgroup_ctr = 0; |
||||
mainp->cur_iMCU_row++; |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This routine handles all of the modes that use a full-size buffer. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_buffer_main (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail) |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
boolean writing = (mainp->pass_mode != JBUF_CRANK_DEST); |
||||
|
||||
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) { |
||||
/* Realign the virtual buffers if at the start of an iMCU row. */ |
||||
if (mainp->rowgroup_ctr == 0) { |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
mainp->buffer[ci] = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, mainp->whole_image[ci], mainp->cur_iMCU_row * |
||||
((JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size)), |
||||
(JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size), |
||||
writing); |
||||
} |
||||
/* In a read pass, pretend we just read some source data. */ |
||||
if (! writing) { |
||||
*in_row_ctr += (JDIMENSION) |
||||
(cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size); |
||||
mainp->rowgroup_ctr = (JDIMENSION) cinfo->min_DCT_v_scaled_size; |
||||
} |
||||
} |
||||
|
||||
/* If a write pass, read input data until the current iMCU row is full. */ |
||||
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */ |
||||
if (writing) { |
||||
(*cinfo->prep->pre_process_data) (cinfo, |
||||
input_buf, in_row_ctr, in_rows_avail, |
||||
mainp->buffer, &mainp->rowgroup_ctr, |
||||
(JDIMENSION) cinfo->min_DCT_v_scaled_size); |
||||
/* Return to application if we need more data to fill the iMCU row. */ |
||||
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) |
||||
return; |
||||
} |
||||
|
||||
/* Emit data, unless this is a sink-only pass. */ |
||||
if (mainp->pass_mode != JBUF_SAVE_SOURCE) { |
||||
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) { |
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation |
||||
* we pretend we didn't yet consume the last input row; otherwise, if |
||||
* it happened to be the last row of the image, the application would |
||||
* think we were done. |
||||
*/ |
||||
if (! mainp->suspended) { |
||||
(*in_row_ctr)--; |
||||
mainp->suspended = TRUE; |
||||
} |
||||
return; |
||||
} |
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty. |
||||
*/ |
||||
if (mainp->suspended) { |
||||
(*in_row_ctr)++; |
||||
mainp->suspended = FALSE; |
||||
} |
||||
} |
||||
|
||||
/* If get here, we are done with this iMCU row. Mark buffer empty. */ |
||||
mainp->rowgroup_ctr = 0; |
||||
mainp->cur_iMCU_row++; |
||||
} |
||||
} |
||||
|
||||
#endif /* FULL_MAIN_BUFFER_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_main_ptr mainp; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
mainp = (my_main_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
SIZEOF(my_main_controller)); |
||||
cinfo->main = &mainp->pub; |
||||
mainp->pub.start_pass = start_pass_main; |
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */ |
||||
if (cinfo->raw_data_in) |
||||
return; |
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size. |
||||
*/ |
||||
if (need_full_buffer) { |
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
/* Allocate a full-image virtual array for each component */ |
||||
/* Note we pad the bottom to a multiple of the iMCU height */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
mainp->whole_image[ci] = (*cinfo->mem->request_virt_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
||||
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), |
||||
((JDIMENSION) jround_up((long) compptr->height_in_blocks, |
||||
(long) compptr->v_samp_factor)) * |
||||
((JDIMENSION) cinfo->min_DCT_v_scaled_size), |
||||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); |
||||
} |
||||
#else |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
#endif |
||||
} else { |
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED |
||||
mainp->whole_image[0] = NULL; /* flag for no virtual arrays */ |
||||
#endif |
||||
/* Allocate a strip buffer for each component */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), |
||||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); |
||||
} |
||||
} |
||||
} |
@ -1,717 +0,0 @@ |
||||
/*
|
||||
* jcmarker.c |
||||
* |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* Modified 2003-2019 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains routines to write JPEG datastream markers. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */ |
||||
M_SOF0 = 0xc0, |
||||
M_SOF1 = 0xc1, |
||||
M_SOF2 = 0xc2, |
||||
M_SOF3 = 0xc3, |
||||
|
||||
M_SOF5 = 0xc5, |
||||
M_SOF6 = 0xc6, |
||||
M_SOF7 = 0xc7, |
||||
|
||||
M_JPG = 0xc8, |
||||
M_SOF9 = 0xc9, |
||||
M_SOF10 = 0xca, |
||||
M_SOF11 = 0xcb, |
||||
|
||||
M_SOF13 = 0xcd, |
||||
M_SOF14 = 0xce, |
||||
M_SOF15 = 0xcf, |
||||
|
||||
M_DHT = 0xc4, |
||||
|
||||
M_DAC = 0xcc, |
||||
|
||||
M_RST0 = 0xd0, |
||||
M_RST1 = 0xd1, |
||||
M_RST2 = 0xd2, |
||||
M_RST3 = 0xd3, |
||||
M_RST4 = 0xd4, |
||||
M_RST5 = 0xd5, |
||||
M_RST6 = 0xd6, |
||||
M_RST7 = 0xd7, |
||||
|
||||
M_SOI = 0xd8, |
||||
M_EOI = 0xd9, |
||||
M_SOS = 0xda, |
||||
M_DQT = 0xdb, |
||||
M_DNL = 0xdc, |
||||
M_DRI = 0xdd, |
||||
M_DHP = 0xde, |
||||
M_EXP = 0xdf, |
||||
|
||||
M_APP0 = 0xe0, |
||||
M_APP1 = 0xe1, |
||||
M_APP2 = 0xe2, |
||||
M_APP3 = 0xe3, |
||||
M_APP4 = 0xe4, |
||||
M_APP5 = 0xe5, |
||||
M_APP6 = 0xe6, |
||||
M_APP7 = 0xe7, |
||||
M_APP8 = 0xe8, |
||||
M_APP9 = 0xe9, |
||||
M_APP10 = 0xea, |
||||
M_APP11 = 0xeb, |
||||
M_APP12 = 0xec, |
||||
M_APP13 = 0xed, |
||||
M_APP14 = 0xee, |
||||
M_APP15 = 0xef, |
||||
|
||||
M_JPG0 = 0xf0, |
||||
M_JPG8 = 0xf8, |
||||
M_JPG13 = 0xfd, |
||||
M_COM = 0xfe, |
||||
|
||||
M_TEM = 0x01, |
||||
|
||||
M_ERROR = 0x100 |
||||
} JPEG_MARKER; |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_marker_writer pub; /* public fields */ |
||||
|
||||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ |
||||
} my_marker_writer; |
||||
|
||||
typedef my_marker_writer * my_marker_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Basic output routines. |
||||
* |
||||
* Note that we do not support suspension while writing a marker. |
||||
* Therefore, an application using suspension must ensure that there is |
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before |
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI |
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression |
||||
* modes are not supported at all with suspension, so those two are the only |
||||
* points where markers will be written. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_byte (j_compress_ptr cinfo, int val) |
||||
/* Emit a byte */ |
||||
{ |
||||
struct jpeg_destination_mgr * dest = cinfo->dest; |
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET) val; |
||||
if (--dest->free_in_buffer == 0) { |
||||
if (! (*dest->empty_output_buffer) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) |
||||
/* Emit a marker code */ |
||||
{ |
||||
emit_byte(cinfo, 0xFF); |
||||
emit_byte(cinfo, (int) mark); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_2bytes (j_compress_ptr cinfo, int value) |
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */ |
||||
{ |
||||
emit_byte(cinfo, (value >> 8) & 0xFF); |
||||
emit_byte(cinfo, value & 0xFF); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types. |
||||
*/ |
||||
|
||||
LOCAL(int) |
||||
emit_dqt (j_compress_ptr cinfo, int index) |
||||
/* Emit a DQT marker */ |
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ |
||||
{ |
||||
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; |
||||
int prec; |
||||
int i; |
||||
|
||||
if (qtbl == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); |
||||
|
||||
prec = 0; |
||||
for (i = 0; i <= cinfo->lim_Se; i++) { |
||||
if (qtbl->quantval[cinfo->natural_order[i]] > 255) |
||||
prec = 1; |
||||
} |
||||
|
||||
if (! qtbl->sent_table) { |
||||
emit_marker(cinfo, M_DQT); |
||||
|
||||
emit_2bytes(cinfo, |
||||
prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2); |
||||
|
||||
emit_byte(cinfo, index + (prec<<4)); |
||||
|
||||
for (i = 0; i <= cinfo->lim_Se; i++) { |
||||
/* The table entries must be emitted in zigzag order. */ |
||||
unsigned int qval = qtbl->quantval[cinfo->natural_order[i]]; |
||||
if (prec) |
||||
emit_byte(cinfo, (int) (qval >> 8)); |
||||
emit_byte(cinfo, (int) (qval & 0xFF)); |
||||
} |
||||
|
||||
qtbl->sent_table = TRUE; |
||||
} |
||||
|
||||
return prec; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) |
||||
/* Emit a DHT marker */ |
||||
{ |
||||
JHUFF_TBL * htbl; |
||||
int length, i; |
||||
|
||||
if (is_ac) { |
||||
htbl = cinfo->ac_huff_tbl_ptrs[index]; |
||||
index += 0x10; /* output index has AC bit set */ |
||||
} else { |
||||
htbl = cinfo->dc_huff_tbl_ptrs[index]; |
||||
} |
||||
|
||||
if (htbl == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); |
||||
|
||||
if (! htbl->sent_table) { |
||||
emit_marker(cinfo, M_DHT); |
||||
|
||||
length = 0; |
||||
for (i = 1; i <= 16; i++) |
||||
length += htbl->bits[i]; |
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16); |
||||
emit_byte(cinfo, index); |
||||
|
||||
for (i = 1; i <= 16; i++) |
||||
emit_byte(cinfo, htbl->bits[i]); |
||||
|
||||
for (i = 0; i < length; i++) |
||||
emit_byte(cinfo, htbl->huffval[i]); |
||||
|
||||
htbl->sent_table = TRUE; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_dac (j_compress_ptr cinfo) |
||||
/* Emit a DAC marker */ |
||||
/* Since the useful info is so small, we want to emit all the tables in */ |
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */ |
||||
{ |
||||
#ifdef C_ARITH_CODING_SUPPORTED |
||||
char dc_in_use[NUM_ARITH_TBLS]; |
||||
char ac_in_use[NUM_ARITH_TBLS]; |
||||
int length, i; |
||||
jpeg_component_info *compptr; |
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) |
||||
dc_in_use[i] = ac_in_use[i] = 0; |
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) { |
||||
compptr = cinfo->cur_comp_info[i]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0) |
||||
dc_in_use[compptr->dc_tbl_no] = 1; |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->Se) |
||||
ac_in_use[compptr->ac_tbl_no] = 1; |
||||
} |
||||
|
||||
length = 0; |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) |
||||
length += dc_in_use[i] + ac_in_use[i]; |
||||
|
||||
if (length) { |
||||
emit_marker(cinfo, M_DAC); |
||||
|
||||
emit_2bytes(cinfo, length*2 + 2); |
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
if (dc_in_use[i]) { |
||||
emit_byte(cinfo, i); |
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); |
||||
} |
||||
if (ac_in_use[i]) { |
||||
emit_byte(cinfo, i + 0x10); |
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]); |
||||
} |
||||
} |
||||
} |
||||
#endif /* C_ARITH_CODING_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_dri (j_compress_ptr cinfo) |
||||
/* Emit a DRI marker */ |
||||
{ |
||||
emit_marker(cinfo, M_DRI); |
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */ |
||||
|
||||
emit_2bytes(cinfo, (int) cinfo->restart_interval); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_lse_ict (j_compress_ptr cinfo) |
||||
/* Emit an LSE inverse color transform specification marker */ |
||||
{ |
||||
/* Support only 1 transform */ |
||||
if (cinfo->color_transform != JCT_SUBTRACT_GREEN || |
||||
cinfo->num_components < 3) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
|
||||
emit_marker(cinfo, M_JPG8); |
||||
|
||||
emit_2bytes(cinfo, 24); /* fixed length */ |
||||
|
||||
emit_byte(cinfo, 0x0D); /* ID inverse transform specification */ |
||||
emit_2bytes(cinfo, MAXJSAMPLE); /* MAXTRANS */ |
||||
emit_byte(cinfo, 3); /* Nt=3 */ |
||||
emit_byte(cinfo, cinfo->comp_info[1].component_id); |
||||
emit_byte(cinfo, cinfo->comp_info[0].component_id); |
||||
emit_byte(cinfo, cinfo->comp_info[2].component_id); |
||||
emit_byte(cinfo, 0x80); /* F1: CENTER1=1, NORM1=0 */ |
||||
emit_2bytes(cinfo, 0); /* A(1,1)=0 */ |
||||
emit_2bytes(cinfo, 0); /* A(1,2)=0 */ |
||||
emit_byte(cinfo, 0); /* F2: CENTER2=0, NORM2=0 */ |
||||
emit_2bytes(cinfo, 1); /* A(2,1)=1 */ |
||||
emit_2bytes(cinfo, 0); /* A(2,2)=0 */ |
||||
emit_byte(cinfo, 0); /* F3: CENTER3=0, NORM3=0 */ |
||||
emit_2bytes(cinfo, 1); /* A(3,1)=1 */ |
||||
emit_2bytes(cinfo, 0); /* A(3,2)=0 */ |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) |
||||
/* Emit a SOF marker */ |
||||
{ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
emit_marker(cinfo, code); |
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ |
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */ |
||||
if ((long) cinfo->jpeg_height > 65535L || |
||||
(long) cinfo->jpeg_width > 65535L) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); |
||||
|
||||
emit_byte(cinfo, cinfo->data_precision); |
||||
emit_2bytes(cinfo, (int) cinfo->jpeg_height); |
||||
emit_2bytes(cinfo, (int) cinfo->jpeg_width); |
||||
|
||||
emit_byte(cinfo, cinfo->num_components); |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
emit_byte(cinfo, compptr->component_id); |
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); |
||||
emit_byte(cinfo, compptr->quant_tbl_no); |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_sos (j_compress_ptr cinfo) |
||||
/* Emit a SOS marker */ |
||||
{ |
||||
int i, td, ta; |
||||
jpeg_component_info *compptr; |
||||
|
||||
emit_marker(cinfo, M_SOS); |
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ |
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan); |
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) { |
||||
compptr = cinfo->cur_comp_info[i]; |
||||
emit_byte(cinfo, compptr->component_id); |
||||
|
||||
/* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||
* but does not seem to be specified in the standard. |
||||
*/ |
||||
|
||||
/* DC needs no table for refinement scan */ |
||||
td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; |
||||
/* AC needs no table when not present */ |
||||
ta = cinfo->Se ? compptr->ac_tbl_no : 0; |
||||
|
||||
emit_byte(cinfo, (td << 4) + ta); |
||||
} |
||||
|
||||
emit_byte(cinfo, cinfo->Ss); |
||||
emit_byte(cinfo, cinfo->Se); |
||||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_pseudo_sos (j_compress_ptr cinfo) |
||||
/* Emit a pseudo SOS marker */ |
||||
{ |
||||
emit_marker(cinfo, M_SOS); |
||||
|
||||
emit_2bytes(cinfo, 2 + 1 + 3); /* length */ |
||||
|
||||
emit_byte(cinfo, 0); /* Ns */ |
||||
|
||||
emit_byte(cinfo, 0); /* Ss */ |
||||
emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */ |
||||
emit_byte(cinfo, 0); /* Ah/Al */ |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_jfif_app0 (j_compress_ptr cinfo) |
||||
/* Emit a JFIF-compliant APP0 marker */ |
||||
{ |
||||
/*
|
||||
* Length of APP0 block (2 bytes) |
||||
* Block ID (4 bytes - ASCII "JFIF") |
||||
* Zero byte (1 byte to terminate the ID string) |
||||
* Version Major, Minor (2 bytes - major first) |
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) |
||||
* Xdpu (2 bytes - dots per unit horizontal) |
||||
* Ydpu (2 bytes - dots per unit vertical) |
||||
* Thumbnail X size (1 byte) |
||||
* Thumbnail Y size (1 byte) |
||||
*/ |
||||
|
||||
emit_marker(cinfo, M_APP0); |
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ |
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ |
||||
emit_byte(cinfo, 0x46); |
||||
emit_byte(cinfo, 0x49); |
||||
emit_byte(cinfo, 0x46); |
||||
emit_byte(cinfo, 0); |
||||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ |
||||
emit_byte(cinfo, cinfo->JFIF_minor_version); |
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ |
||||
emit_2bytes(cinfo, (int) cinfo->X_density); |
||||
emit_2bytes(cinfo, (int) cinfo->Y_density); |
||||
emit_byte(cinfo, 0); /* No thumbnail image */ |
||||
emit_byte(cinfo, 0); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_adobe_app14 (j_compress_ptr cinfo) |
||||
/* Emit an Adobe APP14 marker */ |
||||
{ |
||||
/*
|
||||
* Length of APP14 block (2 bytes) |
||||
* Block ID (5 bytes - ASCII "Adobe") |
||||
* Version Number (2 bytes - currently 100) |
||||
* Flags0 (2 bytes - currently 0) |
||||
* Flags1 (2 bytes - currently 0) |
||||
* Color transform (1 byte) |
||||
* |
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files |
||||
* now in circulation seem to use Version = 100, so that's what we write. |
||||
* |
||||
* We write the color transform byte as 1 if the JPEG color space is |
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with |
||||
* whether the encoder performed a transformation, which is pretty useless. |
||||
*/ |
||||
|
||||
emit_marker(cinfo, M_APP14); |
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ |
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ |
||||
emit_byte(cinfo, 0x64); |
||||
emit_byte(cinfo, 0x6F); |
||||
emit_byte(cinfo, 0x62); |
||||
emit_byte(cinfo, 0x65); |
||||
emit_2bytes(cinfo, 100); /* Version */ |
||||
emit_2bytes(cinfo, 0); /* Flags0 */ |
||||
emit_2bytes(cinfo, 0); /* Flags1 */ |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_YCbCr: |
||||
emit_byte(cinfo, 1); /* Color transform = 1 */ |
||||
break; |
||||
case JCS_YCCK: |
||||
emit_byte(cinfo, 2); /* Color transform = 2 */ |
||||
break; |
||||
default: |
||||
emit_byte(cinfo, 0); /* Color transform = 0 */ |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These routines allow writing an arbitrary marker with parameters. |
||||
* The only intended use is to emit COM or APPn markers after calling |
||||
* write_file_header and before calling write_frame_header. |
||||
* Other uses are not guaranteed to produce desirable results. |
||||
* Counting the parameter bytes properly is the caller's responsibility. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) |
||||
/* Emit an arbitrary marker header */ |
||||
{ |
||||
if (datalen > (unsigned int) 65533) /* safety check */ |
||||
ERREXIT(cinfo, JERR_BAD_LENGTH); |
||||
|
||||
emit_marker(cinfo, (JPEG_MARKER) marker); |
||||
|
||||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ |
||||
} |
||||
|
||||
METHODDEF(void) |
||||
write_marker_byte (j_compress_ptr cinfo, int val) |
||||
/* Emit one byte of marker parameters following write_marker_header */ |
||||
{ |
||||
emit_byte(cinfo, val); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write datastream header. |
||||
* This consists of an SOI and optional APPn markers. |
||||
* We recommend use of the JFIF marker, but not the Adobe marker, |
||||
* when using YCbCr or grayscale data. The JFIF marker is also used |
||||
* for other standard JPEG colorspaces. The Adobe marker is helpful |
||||
* to distinguish RGB, CMYK, and YCCK colorspaces. |
||||
* Note that an application can write additional header markers after |
||||
* jpeg_start_compress returns. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_file_header (j_compress_ptr cinfo) |
||||
{ |
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker; |
||||
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */ |
||||
|
||||
/* SOI is defined to reset restart interval to 0 */ |
||||
marker->last_restart_interval = 0; |
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ |
||||
emit_jfif_app0(cinfo); |
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ |
||||
emit_adobe_app14(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write frame header. |
||||
* This consists of DQT and SOFn markers, |
||||
* a conditional LSE marker and a conditional pseudo SOS marker. |
||||
* Note that we do not emit the SOF until we have emitted the DQT(s). |
||||
* This avoids compatibility problems with incorrect implementations that |
||||
* try to error-check the quant table numbers as soon as they see the SOF. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_frame_header (j_compress_ptr cinfo) |
||||
{ |
||||
int ci, prec; |
||||
boolean is_baseline; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables. |
||||
*/ |
||||
prec = 0; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no); |
||||
} |
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */ |
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later. |
||||
*/ |
||||
if (cinfo->arith_code || cinfo->progressive_mode || |
||||
cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) { |
||||
is_baseline = FALSE; |
||||
} else { |
||||
is_baseline = TRUE; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) |
||||
is_baseline = FALSE; |
||||
} |
||||
if (prec && is_baseline) { |
||||
is_baseline = FALSE; |
||||
/* If it's baseline except for quantizer size, warn the user */ |
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); |
||||
} |
||||
} |
||||
|
||||
/* Emit the proper SOF marker */ |
||||
if (cinfo->arith_code) { |
||||
if (cinfo->progressive_mode) |
||||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ |
||||
else |
||||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */ |
||||
} else { |
||||
if (cinfo->progressive_mode) |
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ |
||||
else if (is_baseline) |
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ |
||||
else |
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ |
||||
} |
||||
|
||||
/* Check to emit LSE inverse color transform specification marker */ |
||||
if (cinfo->color_transform) |
||||
emit_lse_ict(cinfo); |
||||
|
||||
/* Check to emit pseudo SOS marker */ |
||||
if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE) |
||||
emit_pseudo_sos(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write scan header. |
||||
* This consists of DHT or DAC markers, optional DRI, and SOS. |
||||
* Compressed data will be written following the SOS. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_scan_header (j_compress_ptr cinfo) |
||||
{ |
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker; |
||||
int i; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->arith_code) { |
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly |
||||
* worth worrying about. |
||||
*/ |
||||
emit_dac(cinfo); |
||||
} else { |
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables. |
||||
*/ |
||||
for (i = 0; i < cinfo->comps_in_scan; i++) { |
||||
compptr = cinfo->cur_comp_info[i]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0) |
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE); |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->Se) |
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE); |
||||
} |
||||
} |
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* We avoid wasting space with unnecessary DRIs, however. |
||||
*/ |
||||
if (cinfo->restart_interval != marker->last_restart_interval) { |
||||
emit_dri(cinfo); |
||||
marker->last_restart_interval = cinfo->restart_interval; |
||||
} |
||||
|
||||
emit_sos(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_file_trailer (j_compress_ptr cinfo) |
||||
{ |
||||
emit_marker(cinfo, M_EOI); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream. |
||||
* This consists of SOI, DQT and DHT tables, and EOI. |
||||
* Any table that is defined and not marked sent_table = TRUE will be |
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_tables_only (j_compress_ptr cinfo) |
||||
{ |
||||
int i; |
||||
|
||||
emit_marker(cinfo, M_SOI); |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
if (cinfo->quant_tbl_ptrs[i] != NULL) |
||||
(void) emit_dqt(cinfo, i); |
||||
} |
||||
|
||||
if (! cinfo->arith_code) { |
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL) |
||||
emit_dht(cinfo, i, FALSE); |
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL) |
||||
emit_dht(cinfo, i, TRUE); |
||||
} |
||||
} |
||||
|
||||
emit_marker(cinfo, M_EOI); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_marker_writer (j_compress_ptr cinfo) |
||||
{ |
||||
my_marker_ptr marker; |
||||
|
||||
/* Create the subobject */ |
||||
marker = (my_marker_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_marker_writer)); |
||||
cinfo->marker = &marker->pub; |
||||
/* Initialize method pointers */ |
||||
marker->pub.write_file_header = write_file_header; |
||||
marker->pub.write_frame_header = write_frame_header; |
||||
marker->pub.write_scan_header = write_scan_header; |
||||
marker->pub.write_file_trailer = write_file_trailer; |
||||
marker->pub.write_tables_only = write_tables_only; |
||||
marker->pub.write_marker_header = write_marker_header; |
||||
marker->pub.write_marker_byte = write_marker_byte; |
||||
/* Initialize private state */ |
||||
marker->last_restart_interval = 0; |
||||
} |
@ -1,675 +0,0 @@ |
||||
/*
|
||||
* jcmaster.c |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2003-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains master control logic for the JPEG compressor. |
||||
* These routines are concerned with parameter validation, initial setup, |
||||
* and inter-pass control (determining the number of passes and the work
|
||||
* to be done in each pass). |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef enum { |
||||
main_pass, /* input data, also do first output step */ |
||||
huff_opt_pass, /* Huffman code optimization pass */ |
||||
output_pass /* data output pass */ |
||||
} c_pass_type; |
||||
|
||||
typedef struct { |
||||
struct jpeg_comp_master pub; /* public fields */ |
||||
|
||||
c_pass_type pass_type; /* the type of the current pass */ |
||||
|
||||
int pass_number; /* # of passes completed */ |
||||
int total_passes; /* total # of passes needed */ |
||||
|
||||
int scan_number; /* current index in scan_info[] */ |
||||
} my_comp_master; |
||||
|
||||
typedef my_comp_master * my_master_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
initial_setup (j_compress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase */ |
||||
{ |
||||
int ci, ssize; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Sanity check on block_size */ |
||||
if (cinfo->block_size < 1 || cinfo->block_size > 16) |
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size); |
||||
|
||||
/* Derive natural_order from block_size */ |
||||
switch (cinfo->block_size) { |
||||
case 2: cinfo->natural_order = jpeg_natural_order2; break; |
||||
case 3: cinfo->natural_order = jpeg_natural_order3; break; |
||||
case 4: cinfo->natural_order = jpeg_natural_order4; break; |
||||
case 5: cinfo->natural_order = jpeg_natural_order5; break; |
||||
case 6: cinfo->natural_order = jpeg_natural_order6; break; |
||||
case 7: cinfo->natural_order = jpeg_natural_order7; break; |
||||
default: cinfo->natural_order = jpeg_natural_order; |
||||
} |
||||
|
||||
/* Derive lim_Se from block_size */ |
||||
cinfo->lim_Se = cinfo->block_size < DCTSIZE ? |
||||
cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1; |
||||
|
||||
/* Sanity check on image dimensions */ |
||||
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || |
||||
cinfo->num_components <= 0) |
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
||||
|
||||
/* Make sure image isn't bigger than I can handle */ |
||||
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || |
||||
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
||||
|
||||
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */ |
||||
if (cinfo->data_precision < 8 || cinfo->data_precision > 12) |
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
||||
|
||||
/* Check that number of components won't exceed internal array sizes */ |
||||
if (cinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
|
||||
/* Compute maximum sampling factors; check factor validity */ |
||||
cinfo->max_h_samp_factor = 1; |
||||
cinfo->max_v_samp_factor = 1; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || |
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) |
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING); |
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, |
||||
compptr->h_samp_factor); |
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, |
||||
compptr->v_samp_factor); |
||||
} |
||||
|
||||
/* Compute dimensions of components */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Fill in the correct component_index value; don't rely on application */ |
||||
compptr->component_index = ci; |
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale down the chroma components via DCT scaling rather than downsampling. |
||||
* This saves time if the downsampler gets to use 1:1 scaling. |
||||
* Note this code adapts subsampling ratios which are powers of 2. |
||||
*/ |
||||
ssize = 1; |
||||
#ifdef DCT_SCALING_SUPPORTED |
||||
if (! cinfo->raw_data_in) |
||||
while (cinfo->min_DCT_h_scaled_size * ssize <= |
||||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && |
||||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == |
||||
0) { |
||||
ssize = ssize * 2; |
||||
} |
||||
#endif |
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; |
||||
ssize = 1; |
||||
#ifdef DCT_SCALING_SUPPORTED |
||||
if (! cinfo->raw_data_in) |
||||
while (cinfo->min_DCT_v_scaled_size * ssize <= |
||||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && |
||||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == |
||||
0) { |
||||
ssize = ssize * 2; |
||||
} |
||||
#endif |
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; |
||||
|
||||
/* We don't support DCT ratios larger than 2. */ |
||||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) |
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; |
||||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) |
||||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; |
||||
|
||||
/* Size in DCT blocks */ |
||||
compptr->width_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, |
||||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
||||
compptr->height_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, |
||||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
||||
/* Size in samples */ |
||||
compptr->downsampled_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->jpeg_width * |
||||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), |
||||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
||||
compptr->downsampled_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->jpeg_height * |
||||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), |
||||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
||||
/* Don't need quantization scale after DCT,
|
||||
* until color conversion says otherwise. |
||||
*/ |
||||
compptr->component_needed = FALSE; |
||||
} |
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller). |
||||
*/ |
||||
cinfo->total_iMCU_rows = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->jpeg_height, |
||||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
||||
} |
||||
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
LOCAL(void) |
||||
validate_script (j_compress_ptr cinfo) |
||||
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode. |
||||
*/ |
||||
{ |
||||
const jpeg_scan_info * scanptr; |
||||
int scanno, ncomps, ci, coefi, thisi; |
||||
int Ss, Se, Ah, Al; |
||||
boolean component_sent[MAX_COMPONENTS]; |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
int * last_bitpos_ptr; |
||||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; |
||||
/* -1 until that coefficient has been seen; then last Al for it */ |
||||
#endif |
||||
|
||||
if (cinfo->num_scans <= 0) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); |
||||
|
||||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||
* for progressive JPEG, no scan can have this. |
||||
*/ |
||||
scanptr = cinfo->scan_info; |
||||
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
cinfo->progressive_mode = TRUE; |
||||
last_bitpos_ptr = & last_bitpos[0][0]; |
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) |
||||
*last_bitpos_ptr++ = -1; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
cinfo->progressive_mode = FALSE; |
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
component_sent[ci] = FALSE; |
||||
} |
||||
|
||||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { |
||||
/* Validate component indexes */ |
||||
ncomps = scanptr->comps_in_scan; |
||||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); |
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
thisi = scanptr->component_index[ci]; |
||||
if (thisi < 0 || thisi >= cinfo->num_components) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
||||
/* Components must appear in SOF order within each scan */ |
||||
if (ci > 0 && thisi <= scanptr->component_index[ci-1]) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
||||
} |
||||
/* Validate progression parameters */ |
||||
Ss = scanptr->Ss; |
||||
Se = scanptr->Se; |
||||
Ah = scanptr->Ah; |
||||
Al = scanptr->Al; |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
|
||||
* seems wrong: the upper bound ought to depend on data precision. |
||||
* Perhaps they really meant 0..N+1 for N-bit precision. |
||||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in |
||||
* out-of-range reconstructed DC values during the first DC scan, |
||||
* which might cause problems for some decoders. |
||||
*/ |
||||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || |
||||
Ah < 0 || Ah > (cinfo->data_precision > 8 ? 13 : 10) || |
||||
Al < 0 || Al > (cinfo->data_precision > 8 ? 13 : 10)) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
if (Ss == 0) { |
||||
if (Se != 0) /* DC and AC together not OK */ |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} else { |
||||
if (ncomps != 1) /* AC scans must be for only one component */ |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} |
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; |
||||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
for (coefi = Ss; coefi <= Se; coefi++) { |
||||
if (last_bitpos_ptr[coefi] < 0) { |
||||
/* first scan of this coefficient */ |
||||
if (Ah != 0) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} else { |
||||
/* not first scan */ |
||||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} |
||||
last_bitpos_ptr[coefi] = Al; |
||||
} |
||||
} |
||||
#endif |
||||
} else { |
||||
/* For sequential JPEG, all progression parameters must be these: */ |
||||
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
/* Make sure components are not sent twice */ |
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
thisi = scanptr->component_index[ci]; |
||||
if (component_sent[thisi]) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
||||
component_sent[thisi] = TRUE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* Now verify that everything got sent. */ |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
/* For progressive mode, we only check that at least some DC data
|
||||
* got sent for each component; the spec does not require that all bits |
||||
* of all coefficients be transmitted. Would it be wiser to enforce |
||||
* transmission of all coefficient bits?? |
||||
*/ |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
if (last_bitpos[ci][0] < 0) |
||||
ERREXIT(cinfo, JERR_MISSING_DATA); |
||||
} |
||||
#endif |
||||
} else { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
if (! component_sent[ci]) |
||||
ERREXIT(cinfo, JERR_MISSING_DATA); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
reduce_script (j_compress_ptr cinfo) |
||||
/* Adapt scan script for use with reduced block size;
|
||||
* assume that script has been validated before. |
||||
*/ |
||||
{ |
||||
jpeg_scan_info * scanptr; |
||||
int idxout, idxin; |
||||
|
||||
/* Circumvent const declaration for this function */ |
||||
scanptr = (jpeg_scan_info *) cinfo->scan_info; |
||||
idxout = 0; |
||||
|
||||
for (idxin = 0; idxin < cinfo->num_scans; idxin++) { |
||||
/* After skipping, idxout becomes smaller than idxin */ |
||||
if (idxin != idxout) |
||||
/* Copy rest of data;
|
||||
* note we stay in given chunk of allocated memory. |
||||
*/ |
||||
scanptr[idxout] = scanptr[idxin]; |
||||
if (scanptr[idxout].Ss > cinfo->lim_Se) |
||||
/* Entire scan out of range - skip this entry */ |
||||
continue; |
||||
if (scanptr[idxout].Se > cinfo->lim_Se) |
||||
/* Limit scan to end of block */ |
||||
scanptr[idxout].Se = cinfo->lim_Se; |
||||
idxout++; |
||||
} |
||||
|
||||
cinfo->num_scans = idxout; |
||||
} |
||||
|
||||
#endif /* C_MULTISCAN_FILES_SUPPORTED */ |
||||
|
||||
|
||||
LOCAL(void) |
||||
select_scan_parameters (j_compress_ptr cinfo) |
||||
/* Set up the scan parameters for the current scan */ |
||||
{ |
||||
int ci; |
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
if (cinfo->scan_info != NULL) { |
||||
/* Prepare for current scan --- the script is already validated */ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; |
||||
|
||||
cinfo->comps_in_scan = scanptr->comps_in_scan; |
||||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) { |
||||
cinfo->cur_comp_info[ci] = |
||||
&cinfo->comp_info[scanptr->component_index[ci]]; |
||||
} |
||||
if (cinfo->progressive_mode) { |
||||
cinfo->Ss = scanptr->Ss; |
||||
cinfo->Se = scanptr->Se; |
||||
cinfo->Ah = scanptr->Ah; |
||||
cinfo->Al = scanptr->Al; |
||||
return; |
||||
} |
||||
} |
||||
else |
||||
#endif |
||||
{ |
||||
/* Prepare for single sequential-JPEG scan containing all components */ |
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPS_IN_SCAN); |
||||
cinfo->comps_in_scan = cinfo->num_components; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; |
||||
} |
||||
} |
||||
cinfo->Ss = 0; |
||||
cinfo->Se = cinfo->block_size * cinfo->block_size - 1; |
||||
cinfo->Ah = 0; |
||||
cinfo->Al = 0; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
per_scan_setup (j_compress_ptr cinfo) |
||||
/* Do computations that are needed before processing a JPEG scan */ |
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ |
||||
{ |
||||
int ci, mcublks, tmp; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->comps_in_scan == 1) { |
||||
|
||||
/* Noninterleaved (single-component) scan */ |
||||
compptr = cinfo->cur_comp_info[0]; |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = compptr->width_in_blocks; |
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; |
||||
|
||||
/* For noninterleaved scan, always one block per MCU */ |
||||
compptr->MCU_width = 1; |
||||
compptr->MCU_height = 1; |
||||
compptr->MCU_blocks = 1; |
||||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size; |
||||
compptr->last_col_width = 1; |
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row. |
||||
*/ |
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (tmp == 0) tmp = compptr->v_samp_factor; |
||||
compptr->last_row_height = tmp; |
||||
|
||||
/* Prepare array describing MCU composition */ |
||||
cinfo->blocks_in_MCU = 1; |
||||
cinfo->MCU_membership[0] = 0; |
||||
|
||||
} else { |
||||
|
||||
/* Interleaved (multi-component) scan */ |
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, |
||||
MAX_COMPS_IN_SCAN); |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->jpeg_width, |
||||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
||||
cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows; |
||||
|
||||
cinfo->blocks_in_MCU = 0; |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Sampling factors give # of blocks of component in each MCU */ |
||||
compptr->MCU_width = compptr->h_samp_factor; |
||||
compptr->MCU_height = compptr->v_samp_factor; |
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; |
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; |
||||
/* Figure number of non-dummy blocks in last MCU column & row */ |
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); |
||||
if (tmp == 0) tmp = compptr->MCU_width; |
||||
compptr->last_col_width = tmp; |
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); |
||||
if (tmp == 0) tmp = compptr->MCU_height; |
||||
compptr->last_row_height = tmp; |
||||
/* Prepare array describing MCU composition */ |
||||
mcublks = compptr->MCU_blocks; |
||||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) |
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); |
||||
while (mcublks-- > 0) { |
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
/* Convert restart specified in rows to actual MCU count. */ |
||||
/* Note that count must fit in 16 bits, so we provide limiting. */ |
||||
if (cinfo->restart_in_rows > 0) { |
||||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; |
||||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup. |
||||
* This is called at the beginning of each pass. We determine which modules |
||||
* will be active during this pass and give them appropriate start_pass calls. |
||||
* We also set is_last_pass to indicate whether any more passes will be |
||||
* required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
prepare_for_pass (j_compress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
switch (master->pass_type) { |
||||
case main_pass: |
||||
/* Initial pass: will collect input data, and do either Huffman
|
||||
* optimization or data output for the first scan. |
||||
*/ |
||||
select_scan_parameters(cinfo); |
||||
per_scan_setup(cinfo); |
||||
if (! cinfo->raw_data_in) { |
||||
(*cinfo->cconvert->start_pass) (cinfo); |
||||
(*cinfo->downsample->start_pass) (cinfo); |
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); |
||||
} |
||||
(*cinfo->fdct->start_pass) (cinfo); |
||||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); |
||||
(*cinfo->coef->start_pass) (cinfo, |
||||
(master->total_passes > 1 ? |
||||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
||||
if (cinfo->optimize_coding) { |
||||
/* No immediate data output; postpone writing frame/scan headers */ |
||||
master->pub.call_pass_startup = FALSE; |
||||
} else { |
||||
/* Will write frame/scan headers at first jpeg_write_scanlines call */ |
||||
master->pub.call_pass_startup = TRUE; |
||||
} |
||||
break; |
||||
#ifdef ENTROPY_OPT_SUPPORTED |
||||
case huff_opt_pass: |
||||
/* Do Huffman optimization for a scan after the first one. */ |
||||
select_scan_parameters(cinfo); |
||||
per_scan_setup(cinfo); |
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0) { |
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE); |
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
master->pub.call_pass_startup = FALSE; |
||||
break; |
||||
} |
||||
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||
* and therefore we can skip the optimization pass for them. |
||||
*/ |
||||
master->pass_type = output_pass; |
||||
master->pass_number++; |
||||
/*FALLTHROUGH*/ |
||||
#endif |
||||
case output_pass: |
||||
/* Do a data-output pass. */ |
||||
/* We need not repeat per-scan setup if prior optimization pass did it. */ |
||||
if (! cinfo->optimize_coding) { |
||||
select_scan_parameters(cinfo); |
||||
per_scan_setup(cinfo); |
||||
} |
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE); |
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
/* We emit frame/scan headers now */ |
||||
if (master->scan_number == 0) |
||||
(*cinfo->marker->write_frame_header) (cinfo); |
||||
(*cinfo->marker->write_scan_header) (cinfo); |
||||
master->pub.call_pass_startup = FALSE; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
} |
||||
|
||||
master->pub.is_last_pass = (master->pass_number == master->total_passes-1); |
||||
|
||||
/* Set up progress monitor's pass info if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->completed_passes = master->pass_number; |
||||
cinfo->progress->total_passes = master->total_passes; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook. |
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE. |
||||
* In single-pass processing, we need this hook because we don't want to |
||||
* write frame/scan headers during jpeg_start_compress; we want to let the |
||||
* application write COM markers etc. between jpeg_start_compress and the |
||||
* jpeg_write_scanlines loop. |
||||
* In multi-pass processing, this routine is not used. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
pass_startup (j_compress_ptr cinfo) |
||||
{ |
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ |
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo); |
||||
(*cinfo->marker->write_scan_header) (cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass_master (j_compress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
/* The entropy coder always needs an end-of-pass call,
|
||||
* either to analyze statistics or to flush its output buffer. |
||||
*/ |
||||
(*cinfo->entropy->finish_pass) (cinfo); |
||||
|
||||
/* Update state for next pass */ |
||||
switch (master->pass_type) { |
||||
case main_pass: |
||||
/* next pass is either output of scan 0 (after optimization)
|
||||
* or output of scan 1 (if no optimization). |
||||
*/ |
||||
master->pass_type = output_pass; |
||||
if (! cinfo->optimize_coding) |
||||
master->scan_number++; |
||||
break; |
||||
case huff_opt_pass: |
||||
/* next pass is always output of current scan */ |
||||
master->pass_type = output_pass; |
||||
break; |
||||
case output_pass: |
||||
/* next pass is either optimization or output of next scan */ |
||||
if (cinfo->optimize_coding) |
||||
master->pass_type = huff_opt_pass; |
||||
master->scan_number++; |
||||
break; |
||||
} |
||||
|
||||
master->pass_number++; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) |
||||
{ |
||||
my_master_ptr master; |
||||
|
||||
master = (my_master_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master)); |
||||
cinfo->master = &master->pub; |
||||
master->pub.prepare_for_pass = prepare_for_pass; |
||||
master->pub.pass_startup = pass_startup; |
||||
master->pub.finish_pass = finish_pass_master; |
||||
master->pub.is_last_pass = FALSE; |
||||
|
||||
/* Validate parameters, determine derived values */ |
||||
initial_setup(cinfo); |
||||
|
||||
if (cinfo->scan_info != NULL) { |
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
validate_script(cinfo); |
||||
if (cinfo->block_size < DCTSIZE) |
||||
reduce_script(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
cinfo->progressive_mode = FALSE; |
||||
cinfo->num_scans = 1; |
||||
} |
||||
|
||||
if (cinfo->optimize_coding) |
||||
cinfo->arith_code = FALSE; /* disable arithmetic coding */ |
||||
else if (! cinfo->arith_code && |
||||
(cinfo->progressive_mode || |
||||
(cinfo->block_size > 1 && cinfo->block_size < DCTSIZE))) |
||||
/* TEMPORARY HACK ??? */ |
||||
/* assume default tables no good for progressive or reduced AC mode */ |
||||
cinfo->optimize_coding = TRUE; /* force Huffman optimization */ |
||||
|
||||
/* Initialize my private state */ |
||||
if (transcode_only) { |
||||
/* no main pass in transcoding */ |
||||
if (cinfo->optimize_coding) |
||||
master->pass_type = huff_opt_pass; |
||||
else |
||||
master->pass_type = output_pass; |
||||
} else { |
||||
/* for normal compression, first pass is always this type: */ |
||||
master->pass_type = main_pass; |
||||
} |
||||
master->scan_number = 0; |
||||
master->pass_number = 0; |
||||
if (cinfo->optimize_coding) |
||||
master->total_passes = cinfo->num_scans * 2; |
||||
else |
||||
master->total_passes = cinfo->num_scans; |
||||
} |
@ -1,244 +0,0 @@ |
||||
/*
|
||||
* jcomapi.c |
||||
* |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* Modified 2019 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains application interface routines that are used for both |
||||
* compression and decompression. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation, |
||||
* but don't destroy the object itself. |
||||
* |
||||
* For this, we merely clean up all the nonpermanent memory pools. |
||||
* Note that temp files (virtual arrays) are not allowed to belong to |
||||
* the permanent pool, so we will be able to close all temp files here. |
||||
* Closing a data source or destination, if necessary, is the application's |
||||
* responsibility. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_abort (j_common_ptr cinfo) |
||||
{ |
||||
int pool; |
||||
|
||||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */ |
||||
if (cinfo->mem == NULL) |
||||
return; |
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries. |
||||
*/ |
||||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { |
||||
(*cinfo->mem->free_pool) (cinfo, pool); |
||||
} |
||||
|
||||
/* Reset overall state for possible reuse of object */ |
||||
if (cinfo->is_decompressor) { |
||||
cinfo->global_state = DSTATE_START; |
||||
/* Try to keep application from accessing now-deleted marker list.
|
||||
* A bit kludgy to do it here, but this is the most central place. |
||||
*/ |
||||
((j_decompress_ptr) cinfo)->marker_list = NULL; |
||||
} else { |
||||
cinfo->global_state = CSTATE_START; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object. |
||||
* |
||||
* Everything gets deallocated except the master jpeg_compress_struct itself |
||||
* and the error manager struct. Both of these are supplied by the application |
||||
* and must be freed, if necessary, by the application. (Often they are on |
||||
* the stack and so don't need to be freed anyway.) |
||||
* Closing a data source or destination, if necessary, is the application's |
||||
* responsibility. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_destroy (j_common_ptr cinfo) |
||||
{ |
||||
/* We need only tell the memory manager to release everything. */ |
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */ |
||||
if (cinfo->mem != NULL) |
||||
(*cinfo->mem->self_destruct) (cinfo); |
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ |
||||
cinfo->global_state = 0; /* mark it destroyed */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables. |
||||
* (Would jutils.c be a more reasonable place to put these?) |
||||
*/ |
||||
|
||||
GLOBAL(JQUANT_TBL *) |
||||
jpeg_alloc_quant_table (j_common_ptr cinfo) |
||||
{ |
||||
JQUANT_TBL *tbl; |
||||
|
||||
tbl = (JQUANT_TBL *) |
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL)); |
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */ |
||||
return tbl; |
||||
} |
||||
|
||||
|
||||
GLOBAL(JHUFF_TBL *) |
||||
jpeg_alloc_huff_table (j_common_ptr cinfo) |
||||
{ |
||||
JHUFF_TBL *tbl; |
||||
|
||||
tbl = (JHUFF_TBL *) |
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL)); |
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */ |
||||
return tbl; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set up the standard Huffman tables (cf. JPEG standard section K.3). |
||||
* IMPORTANT: these are only valid for 8-bit data precision! |
||||
* (Would jutils.c be a more reasonable place to put this?) |
||||
*/ |
||||
|
||||
GLOBAL(JHUFF_TBL *) |
||||
jpeg_std_huff_table (j_common_ptr cinfo, boolean isDC, int tblno) |
||||
{ |
||||
JHUFF_TBL **htblptr, *htbl; |
||||
const UINT8 *bits, *val; |
||||
int nsymbols, len; |
||||
|
||||
static const UINT8 bits_dc_luminance[17] = |
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; |
||||
static const UINT8 val_dc_luminance[] = |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
||||
|
||||
static const UINT8 bits_dc_chrominance[17] = |
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; |
||||
static const UINT8 val_dc_chrominance[] = |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
||||
|
||||
static const UINT8 bits_ac_luminance[17] = |
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; |
||||
static const UINT8 val_ac_luminance[] = |
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, |
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, |
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, |
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, |
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, |
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, |
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, |
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, |
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, |
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, |
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, |
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, |
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, |
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, |
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, |
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, |
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, |
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, |
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, |
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, |
||||
0xf9, 0xfa }; |
||||
|
||||
static const UINT8 bits_ac_chrominance[17] = |
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; |
||||
static const UINT8 val_ac_chrominance[] = |
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, |
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, |
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, |
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, |
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, |
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, |
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, |
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, |
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, |
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, |
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, |
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, |
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, |
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, |
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, |
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, |
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, |
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, |
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, |
||||
0xf9, 0xfa }; |
||||
|
||||
if (cinfo->is_decompressor) { |
||||
if (isDC) |
||||
htblptr = ((j_decompress_ptr) cinfo)->dc_huff_tbl_ptrs; |
||||
else |
||||
htblptr = ((j_decompress_ptr) cinfo)->ac_huff_tbl_ptrs; |
||||
} else { |
||||
if (isDC) |
||||
htblptr = ((j_compress_ptr) cinfo)->dc_huff_tbl_ptrs; |
||||
else |
||||
htblptr = ((j_compress_ptr) cinfo)->ac_huff_tbl_ptrs; |
||||
} |
||||
|
||||
switch (tblno) { |
||||
case 0: |
||||
if (isDC) { |
||||
bits = bits_dc_luminance; |
||||
val = val_dc_luminance; |
||||
} else { |
||||
bits = bits_ac_luminance; |
||||
val = val_ac_luminance; |
||||
} |
||||
break; |
||||
case 1: |
||||
if (isDC) { |
||||
bits = bits_dc_chrominance; |
||||
val = val_dc_chrominance; |
||||
} else { |
||||
bits = bits_ac_chrominance; |
||||
val = val_ac_chrominance; |
||||
} |
||||
break; |
||||
default: |
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
||||
return NULL; /* avoid compiler warnings for uninitialized variables */ |
||||
} |
||||
|
||||
if (htblptr[tblno] == NULL) |
||||
htblptr[tblno] = jpeg_alloc_huff_table(cinfo); |
||||
|
||||
htbl = htblptr[tblno]; |
||||
|
||||
/* Copy the number-of-symbols-of-each-code-length counts */ |
||||
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
||||
|
||||
/* Validate the counts. We do this here mainly so we can copy the right
|
||||
* number of symbols from the val[] array, without risking marching off |
||||
* the end of memory. jxhuff.c will do a more thorough test later. |
||||
*/ |
||||
nsymbols = 0; |
||||
for (len = 1; len <= 16; len++) |
||||
nsymbols += bits[len]; |
||||
if (nsymbols > 256) |
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
||||
|
||||
if (nsymbols > 0) |
||||
MEMCOPY(htbl->huffval, val, nsymbols * SIZEOF(UINT8)); |
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */ |
||||
htbl->sent_table = FALSE; |
||||
|
||||
return htbl; |
||||
} |
@ -1,64 +0,0 @@ |
||||
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 9x or NT.
|
||||
* This file also works for Borland/Embarcadero C++ for Win32 or Win64 |
||||
* (CLI: bcc32, bcc32c, bcc32x, bcc64; GUI IDE: C++Builder/RAD Studio). |
||||
* See jconfig.txt for explanations. |
||||
*/ |
||||
|
||||
#define HAVE_PROTOTYPES |
||||
#define HAVE_UNSIGNED_CHAR |
||||
#define HAVE_UNSIGNED_SHORT |
||||
/* #define void char */ |
||||
/* #define const */ |
||||
#undef CHAR_IS_UNSIGNED |
||||
#define HAVE_STDDEF_H |
||||
#define HAVE_STDLIB_H |
||||
#undef NEED_BSD_STRINGS |
||||
#undef NEED_SYS_TYPES_H |
||||
#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */ |
||||
#undef NEED_SHORT_EXTERNAL_NAMES |
||||
#undef INCOMPLETE_TYPES_BROKEN |
||||
|
||||
/* Define "boolean" as unsigned char, not enum, per Windows custom */ |
||||
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ |
||||
typedef unsigned char boolean; |
||||
#endif |
||||
#ifndef FALSE /* in case these macros already exist */ |
||||
#define FALSE 0 /* values of boolean */ |
||||
#endif |
||||
#ifndef TRUE |
||||
#define TRUE 1 |
||||
#endif |
||||
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ |
||||
|
||||
/* Define custom RGB color order, prevent jmorecfg.h from redefinition */ |
||||
#undef JPEG_HAVE_RGB_CUSTOM |
||||
/* Use Windows custom BGR color order defined in jmorecfg.h */ |
||||
#undef JPEG_USE_RGB_CUSTOM |
||||
|
||||
/* Define custom file I/O functions, prevent jinclude.h from redefinition */ |
||||
#undef JPEG_HAVE_FILE_IO_CUSTOM |
||||
/* Use Delphi custom file I/O functions defined in jinclude.h */ |
||||
#undef JPEG_USE_FILE_IO_CUSTOM |
||||
|
||||
|
||||
#ifdef JPEG_INTERNALS |
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED |
||||
|
||||
#endif /* JPEG_INTERNALS */ |
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG |
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */ |
||||
#define GIF_SUPPORTED /* GIF image file format */ |
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ |
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */ |
||||
#define TARGA_SUPPORTED /* Targa image file format */ |
||||
|
||||
#define TWO_FILE_COMMANDLINE /* optional */ |
||||
#define USE_SETMODE /* Microsoft/Borland/Embarcadero have setmode() */ |
||||
#undef NEED_SIGNAL_CATCHER |
||||
#undef DONT_USE_B_MODE |
||||
#undef PROGRESS_REPORT /* optional */ |
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */ |
@ -1,591 +0,0 @@ |
||||
/*
|
||||
* jcparam.c |
||||
* |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* Modified 2003-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains optional default-setting code for the JPEG compressor. |
||||
* Applications do not have to use this file, but those that don't use it |
||||
* must know a lot more about the innards of the JPEG code. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, |
||||
const unsigned int *basic_table, |
||||
int scale_factor, boolean force_baseline) |
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage). |
||||
* If force_baseline is TRUE, the computed quantization table entries |
||||
* are limited to 1..255 for JPEG baseline compatibility. |
||||
*/ |
||||
{ |
||||
JQUANT_TBL ** qtblptr; |
||||
int i; |
||||
long temp; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) |
||||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); |
||||
|
||||
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; |
||||
|
||||
if (*qtblptr == NULL) |
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; |
||||
/* limit the values to the valid range */ |
||||
if (temp <= 0L) temp = 1L; |
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ |
||||
if (force_baseline && temp > 255L) |
||||
temp = 255L; /* limit to baseline range if requested */ |
||||
(*qtblptr)->quantval[i] = (UINT16) temp; |
||||
} |
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */ |
||||
(*qtblptr)->sent_table = FALSE; |
||||
} |
||||
|
||||
|
||||
/* These are the sample quantization tables given in JPEG spec section K.1.
|
||||
* NOTE: chrominance DC value is changed from 17 to 16 for lossless support. |
||||
* The spec says that the values given produce "good" quality, |
||||
* and when divided by 2, "very good" quality. |
||||
*/ |
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { |
||||
16, 11, 10, 16, 24, 40, 51, 61, |
||||
12, 12, 14, 19, 26, 58, 60, 55, |
||||
14, 13, 16, 24, 40, 57, 69, 56, |
||||
14, 17, 22, 29, 51, 87, 80, 62, |
||||
18, 22, 37, 56, 68, 109, 103, 77, |
||||
24, 35, 55, 64, 81, 104, 113, 92, |
||||
49, 64, 78, 87, 103, 121, 120, 101, |
||||
72, 92, 95, 98, 112, 100, 103, 99 |
||||
}; |
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { |
||||
16, 18, 24, 47, 99, 99, 99, 99, |
||||
18, 21, 26, 66, 99, 99, 99, 99, |
||||
24, 26, 56, 99, 99, 99, 99, 99, |
||||
47, 66, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99 |
||||
}; |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) |
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and straight percentage-scaling quality scales. |
||||
* This entry point allows different scalings for luminance and chrominance. |
||||
*/ |
||||
{ |
||||
/* Set up two quantization tables using the specified scaling */ |
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, |
||||
cinfo->q_scale_factor[0], force_baseline); |
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, |
||||
cinfo->q_scale_factor[1], force_baseline); |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, |
||||
boolean force_baseline) |
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better |
||||
* to use jpeg_set_quality (below); this entry point is provided for |
||||
* applications that insist on a linear percentage scaling. |
||||
*/ |
||||
{ |
||||
/* Set up two quantization tables using the specified scaling */ |
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, |
||||
scale_factor, force_baseline); |
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, |
||||
scale_factor, force_baseline); |
||||
} |
||||
|
||||
|
||||
GLOBAL(int) |
||||
jpeg_quality_scaling (int quality) |
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve. |
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good). |
||||
*/ |
||||
{ |
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ |
||||
if (quality <= 0) quality = 1; |
||||
if (quality > 100) quality = 100; |
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q; |
||||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table |
||||
* to make all the table entries 1 (hence, minimum quantization loss). |
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q. |
||||
*/ |
||||
if (quality < 50) |
||||
quality = 5000 / quality; |
||||
else |
||||
quality = 200 - quality*2; |
||||
|
||||
return quality; |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) |
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user |
||||
* interfaces; only those who want detailed control over quantization tables |
||||
* would use the preceding routines directly. |
||||
*/ |
||||
{ |
||||
/* Convert user 0-100 rating to percentage scaling */ |
||||
quality = jpeg_quality_scaling(quality); |
||||
|
||||
/* Set up standard quality tables */ |
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Reset standard Huffman tables |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
std_huff_tables (j_compress_ptr cinfo) |
||||
{ |
||||
if (cinfo->dc_huff_tbl_ptrs[0] != NULL) |
||||
(void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 0); |
||||
|
||||
if (cinfo->ac_huff_tbl_ptrs[0] != NULL) |
||||
(void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 0); |
||||
|
||||
if (cinfo->dc_huff_tbl_ptrs[1] != NULL) |
||||
(void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 1); |
||||
|
||||
if (cinfo->ac_huff_tbl_ptrs[1] != NULL) |
||||
(void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 1); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression. |
||||
* |
||||
* Applications that don't choose to use this routine must do their |
||||
* own setup of all these parameters. Alternately, you can call this |
||||
* to establish defaults and then alter parameters selectively. This |
||||
* is the recommended approach since, if we add any new parameters, |
||||
* your code will still work (they'll be set to reasonable defaults). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_defaults (j_compress_ptr cinfo) |
||||
{ |
||||
int i; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress |
||||
* multiple images at same param settings. |
||||
*/ |
||||
if (cinfo->comp_info == NULL) |
||||
cinfo->comp_info = (jpeg_component_info *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
MAX_COMPONENTS * SIZEOF(jpeg_component_info)); |
||||
|
||||
/* Initialize everything not dependent on the color space */ |
||||
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */ |
||||
cinfo->scale_denom = 1; |
||||
cinfo->data_precision = BITS_IN_JSAMPLE; |
||||
/* Set up two quantization tables using default quality of 75 */ |
||||
jpeg_set_quality(cinfo, 75, TRUE); |
||||
/* Reset standard Huffman tables */ |
||||
std_huff_tables(cinfo); |
||||
|
||||
/* Initialize default arithmetic coding conditioning */ |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
cinfo->arith_dc_L[i] = 0; |
||||
cinfo->arith_dc_U[i] = 1; |
||||
cinfo->arith_ac_K[i] = 5; |
||||
} |
||||
|
||||
/* Default is no multiple-scan output */ |
||||
cinfo->scan_info = NULL; |
||||
cinfo->num_scans = 0; |
||||
|
||||
/* Expect normal source image, not raw downsampled data */ |
||||
cinfo->raw_data_in = FALSE; |
||||
|
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, use arithmetic coding. |
||||
* (Alternatively, using Huffman coding would be possible with forcing |
||||
* optimization on so that usable tables will be computed, or by |
||||
* supplying default tables that are valid for the desired precision.) |
||||
* Otherwise, use Huffman coding by default. |
||||
*/ |
||||
cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE; |
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */ |
||||
cinfo->optimize_coding = FALSE; |
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */ |
||||
cinfo->CCIR601_sampling = FALSE; |
||||
|
||||
/* By default, apply fancy downsampling */ |
||||
cinfo->do_fancy_downsampling = TRUE; |
||||
|
||||
/* No input smoothing */ |
||||
cinfo->smoothing_factor = 0; |
||||
|
||||
/* DCT algorithm preference */ |
||||
cinfo->dct_method = JDCT_DEFAULT; |
||||
|
||||
/* No restart markers */ |
||||
cinfo->restart_interval = 0; |
||||
cinfo->restart_in_rows = 0; |
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace. |
||||
* |
||||
* By default, the library emits JFIF version code 1.01. |
||||
* An application that wants to emit JFIF 1.02 extension markers should set |
||||
* JFIF_minor_version to 2. We could probably get away with just defaulting |
||||
* to 1.02, but there may still be some decoders in use that will complain |
||||
* about that; saying 1.01 should minimize compatibility problems. |
||||
* |
||||
* For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be |
||||
* overridden by jpeg_set_colorspace and set to 2. |
||||
*/ |
||||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ |
||||
cinfo->JFIF_minor_version = 1; |
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */ |
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ |
||||
cinfo->Y_density = 1; |
||||
|
||||
/* No color transform */ |
||||
cinfo->color_transform = JCT_NONE; |
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */ |
||||
|
||||
jpeg_default_colorspace(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_default_colorspace (j_compress_ptr cinfo) |
||||
{ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_UNKNOWN: |
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN); |
||||
break; |
||||
case JCS_GRAYSCALE: |
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); |
||||
break; |
||||
case JCS_RGB: |
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr); |
||||
break; |
||||
case JCS_YCbCr: |
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr); |
||||
break; |
||||
case JCS_CMYK: |
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ |
||||
break; |
||||
case JCS_YCCK: |
||||
jpeg_set_colorspace(cinfo, JCS_YCCK); |
||||
break; |
||||
case JCS_BG_RGB: |
||||
/* No translation for now -- conversion to BG_YCC not yet supportet */ |
||||
jpeg_set_colorspace(cinfo, JCS_BG_RGB); |
||||
break; |
||||
case JCS_BG_YCC: |
||||
jpeg_set_colorspace(cinfo, JCS_BG_YCC); |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) |
||||
{ |
||||
jpeg_component_info * compptr; |
||||
int ci; |
||||
|
||||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ |
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) ) |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components. |
||||
*/ |
||||
|
||||
cinfo->jpeg_color_space = colorspace; |
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ |
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ |
||||
|
||||
switch (colorspace) { |
||||
case JCS_UNKNOWN: |
||||
cinfo->num_components = cinfo->input_components; |
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
SET_COMP(ci, ci, 1,1, 0, 0,0); |
||||
} |
||||
break; |
||||
case JCS_GRAYSCALE: |
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
||||
cinfo->num_components = 1; |
||||
/* JFIF specifies component ID 1 */ |
||||
SET_COMP(0, 0x01, 1,1, 0, 0,0); |
||||
break; |
||||
case JCS_RGB: |
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ |
||||
cinfo->num_components = 3; |
||||
SET_COMP(0, 0x52 /* 'R' */, 1,1, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); |
||||
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); |
||||
SET_COMP(2, 0x42 /* 'B' */, 1,1, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); |
||||
break; |
||||
case JCS_YCbCr: |
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
||||
cinfo->num_components = 3; |
||||
/* JFIF specifies component IDs 1,2,3 */ |
||||
/* We default to 2x2 subsamples of chrominance */ |
||||
SET_COMP(0, 0x01, 2,2, 0, 0,0); |
||||
SET_COMP(1, 0x02, 1,1, 1, 1,1); |
||||
SET_COMP(2, 0x03, 1,1, 1, 1,1); |
||||
break; |
||||
case JCS_CMYK: |
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ |
||||
cinfo->num_components = 4; |
||||
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); |
||||
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); |
||||
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); |
||||
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); |
||||
break; |
||||
case JCS_YCCK: |
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ |
||||
cinfo->num_components = 4; |
||||
SET_COMP(0, 0x01, 2,2, 0, 0,0); |
||||
SET_COMP(1, 0x02, 1,1, 1, 1,1); |
||||
SET_COMP(2, 0x03, 1,1, 1, 1,1); |
||||
SET_COMP(3, 0x04, 2,2, 0, 0,0); |
||||
break; |
||||
case JCS_BG_RGB: |
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
||||
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */ |
||||
cinfo->num_components = 3; |
||||
/* Add offset 0x20 to the normal R/G/B component IDs */ |
||||
SET_COMP(0, 0x72 /* 'r' */, 1,1, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); |
||||
SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0); |
||||
SET_COMP(2, 0x62 /* 'b' */, 1,1, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, |
||||
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); |
||||
break; |
||||
case JCS_BG_YCC: |
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
||||
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */ |
||||
cinfo->num_components = 3; |
||||
/* Add offset 0x20 to the normal Cb/Cr component IDs */ |
||||
/* We default to 2x2 subsamples of chrominance */ |
||||
SET_COMP(0, 0x01, 2,2, 0, 0,0); |
||||
SET_COMP(1, 0x22, 1,1, 1, 1,1); |
||||
SET_COMP(2, 0x23, 1,1, 1, 1,1); |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
|
||||
LOCAL(jpeg_scan_info *) |
||||
fill_a_scan (jpeg_scan_info * scanptr, int ci, |
||||
int Ss, int Se, int Ah, int Al) |
||||
/* Support routine: generate one scan for specified component */ |
||||
{ |
||||
scanptr->comps_in_scan = 1; |
||||
scanptr->component_index[0] = ci; |
||||
scanptr->Ss = Ss; |
||||
scanptr->Se = Se; |
||||
scanptr->Ah = Ah; |
||||
scanptr->Al = Al; |
||||
scanptr++; |
||||
return scanptr; |
||||
} |
||||
|
||||
LOCAL(jpeg_scan_info *) |
||||
fill_scans (jpeg_scan_info * scanptr, int ncomps, |
||||
int Ss, int Se, int Ah, int Al) |
||||
/* Support routine: generate one scan for each component */ |
||||
{ |
||||
int ci; |
||||
|
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
scanptr->comps_in_scan = 1; |
||||
scanptr->component_index[0] = ci; |
||||
scanptr->Ss = Ss; |
||||
scanptr->Se = Se; |
||||
scanptr->Ah = Ah; |
||||
scanptr->Al = Al; |
||||
scanptr++; |
||||
} |
||||
return scanptr; |
||||
} |
||||
|
||||
LOCAL(jpeg_scan_info *) |
||||
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) |
||||
/* Support routine: generate interleaved DC scan if possible, else N scans */ |
||||
{ |
||||
int ci; |
||||
|
||||
if (ncomps <= MAX_COMPS_IN_SCAN) { |
||||
/* Single interleaved DC scan */ |
||||
scanptr->comps_in_scan = ncomps; |
||||
for (ci = 0; ci < ncomps; ci++) |
||||
scanptr->component_index[ci] = ci; |
||||
scanptr->Ss = scanptr->Se = 0; |
||||
scanptr->Ah = Ah; |
||||
scanptr->Al = Al; |
||||
scanptr++; |
||||
} else { |
||||
/* Noninterleaved DC scan for each component */ |
||||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); |
||||
} |
||||
return scanptr; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create a recommended progressive-JPEG script. |
||||
* cinfo->num_components and cinfo->jpeg_color_space must be correct. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_simple_progression (j_compress_ptr cinfo) |
||||
{ |
||||
int ncomps = cinfo->num_components; |
||||
int nscans; |
||||
jpeg_scan_info * scanptr; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Figure space needed for script. Calculation must match code below! */ |
||||
if (ncomps == 3 && |
||||
(cinfo->jpeg_color_space == JCS_YCbCr || |
||||
cinfo->jpeg_color_space == JCS_BG_YCC)) { |
||||
/* Custom script for YCC color images. */ |
||||
nscans = 10; |
||||
} else { |
||||
/* All-purpose script for other color spaces. */ |
||||
if (ncomps > MAX_COMPS_IN_SCAN) |
||||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ |
||||
else |
||||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ |
||||
} |
||||
|
||||
/* Allocate space for script.
|
||||
* We need to put it in the permanent pool in case the application performs |
||||
* multiple compressions without changing the settings. To avoid a memory |
||||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG |
||||
* object, we try to re-use previously allocated space, and we allocate |
||||
* enough space to handle YCC even if initially asked for grayscale. |
||||
*/ |
||||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { |
||||
cinfo->script_space_size = MAX(nscans, 10); |
||||
cinfo->script_space = (jpeg_scan_info *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
cinfo->script_space_size * SIZEOF(jpeg_scan_info)); |
||||
} |
||||
scanptr = cinfo->script_space; |
||||
cinfo->scan_info = scanptr; |
||||
cinfo->num_scans = nscans; |
||||
|
||||
if (ncomps == 3 && |
||||
(cinfo->jpeg_color_space == JCS_YCbCr || |
||||
cinfo->jpeg_color_space == JCS_BG_YCC)) { |
||||
/* Custom script for YCC color images. */ |
||||
/* Initial DC scan */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); |
||||
/* Initial AC scan: get some luma data out in a hurry */ |
||||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); |
||||
/* Chroma data is too small to be worth expending many scans on */ |
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); |
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); |
||||
/* Complete spectral selection for luma AC */ |
||||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); |
||||
/* Refine next bit of luma AC */ |
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); |
||||
/* Finish DC successive approximation */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); |
||||
/* Finish AC successive approximation */ |
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); |
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); |
||||
/* Luma bottom bit comes last since it's usually largest scan */ |
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); |
||||
} else { |
||||
/* All-purpose script for other color spaces. */ |
||||
/* Successive approximation first pass */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); |
||||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); |
||||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); |
||||
/* Successive approximation second pass */ |
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); |
||||
/* Successive approximation final pass */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); |
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); |
||||
} |
||||
} |
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */ |
@ -1,358 +0,0 @@ |
||||
/*
|
||||
* jcprepct.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2003-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the compression preprocessing controller. |
||||
* This controller manages the color conversion, downsampling, |
||||
* and edge expansion steps. |
||||
* |
||||
* Most of the complexity here is associated with buffering input rows |
||||
* as required by the downsampler. See the comments at the head of |
||||
* jcsample.c for the downsampler's needs. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling |
||||
* or other more-complex downsampling procedures. The code to support |
||||
* context rows should be compiled only if needed. |
||||
*/ |
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
#define CONTEXT_ROWS_SUPPORTED |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one |
||||
* row group's worth of pixels for the downsampling step. At the bottom of |
||||
* the image, we pad to a full row group by replicating the last pixel row. |
||||
* The downsampler's last output row is then replicated if needed to pad |
||||
* out to a full iMCU row. |
||||
* |
||||
* When providing context rows, we must buffer three row groups' worth of |
||||
* pixels. Three row groups are physically allocated, but the row pointer |
||||
* arrays are made five row groups high, with the extra pointers above and |
||||
* below "wrapping around" to point to the last and first real row groups. |
||||
* This allows the downsampler to access the proper context rows. |
||||
* At the top and bottom of the image, we create dummy context rows by |
||||
* copying the first or last real pixel row. This copying could be avoided |
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the |
||||
* trouble on the compression side. |
||||
*/ |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_prep_controller pub; /* public fields */ |
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step. |
||||
*/ |
||||
JSAMPARRAY color_buf[MAX_COMPONENTS]; |
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */ |
||||
int next_buf_row; /* index of next row to store in color_buf */ |
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ |
||||
int this_row_group; /* starting row index of group to process */ |
||||
int next_buf_stop; /* downsample when we reach this index */ |
||||
#endif |
||||
} my_prep_controller; |
||||
|
||||
typedef my_prep_controller * my_prep_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
|
||||
if (pass_mode != JBUF_PASS_THRU) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */ |
||||
prep->rows_to_go = cinfo->image_height; |
||||
/* Mark the conversion buffer empty */ |
||||
prep->next_buf_row = 0; |
||||
#ifdef CONTEXT_ROWS_SUPPORTED |
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode. |
||||
*/ |
||||
prep->this_row_group = 0; |
||||
/* Set next_buf_stop to stop after two row groups have been read in. */ |
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows, |
||||
* by duplicating the bottom row. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, |
||||
int input_rows, int output_rows) |
||||
{ |
||||
register int row; |
||||
|
||||
for (row = input_rows; row < output_rows; row++) { |
||||
jcopy_sample_rows(image_data + input_rows - 1, |
||||
image_data + row, |
||||
1, num_cols); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case. |
||||
* |
||||
* Preprocessor output data is counted in "row groups". A row group |
||||
* is defined to be v_samp_factor sample rows of each component. |
||||
* Downsampling will produce this much data from each max_v_samp_factor |
||||
* input rows. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
pre_process_data (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail, |
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, |
||||
JDIMENSION out_row_groups_avail) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
int numrows, ci; |
||||
JDIMENSION inrows; |
||||
jpeg_component_info * compptr; |
||||
|
||||
while (*in_row_ctr < in_rows_avail && |
||||
*out_row_group_ctr < out_row_groups_avail) { |
||||
/* Do color conversion to fill the conversion buffer. */ |
||||
inrows = in_rows_avail - *in_row_ctr; |
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row; |
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows); |
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, |
||||
prep->color_buf, |
||||
(JDIMENSION) prep->next_buf_row, |
||||
numrows); |
||||
*in_row_ctr += numrows; |
||||
prep->next_buf_row += numrows; |
||||
prep->rows_to_go -= numrows; |
||||
/* If at bottom of image, pad to fill the conversion buffer. */ |
||||
if (prep->rows_to_go == 0 && |
||||
prep->next_buf_row < cinfo->max_v_samp_factor) { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, |
||||
prep->next_buf_row, cinfo->max_v_samp_factor); |
||||
} |
||||
prep->next_buf_row = cinfo->max_v_samp_factor; |
||||
} |
||||
/* If we've filled the conversion buffer, empty it. */ |
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) { |
||||
(*cinfo->downsample->downsample) (cinfo, |
||||
prep->color_buf, (JDIMENSION) 0, |
||||
output_buf, *out_row_group_ctr); |
||||
prep->next_buf_row = 0; |
||||
(*out_row_group_ctr)++; |
||||
} |
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer! |
||||
*/ |
||||
if (prep->rows_to_go == 0 && |
||||
*out_row_group_ctr < out_row_groups_avail) { |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; |
||||
expand_bottom_edge(output_buf[ci], |
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size, |
||||
(int) (*out_row_group_ctr * numrows), |
||||
(int) (out_row_groups_avail * numrows)); |
||||
} |
||||
*out_row_group_ctr = out_row_groups_avail; |
||||
break; /* can exit outer loop without test */ |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data in the context case. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
pre_process_context (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail, |
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, |
||||
JDIMENSION out_row_groups_avail) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
int numrows, ci; |
||||
int buf_height = cinfo->max_v_samp_factor * 3; |
||||
JDIMENSION inrows; |
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) { |
||||
if (*in_row_ctr < in_rows_avail) { |
||||
/* Do color conversion to fill the conversion buffer. */ |
||||
inrows = in_rows_avail - *in_row_ctr; |
||||
numrows = prep->next_buf_stop - prep->next_buf_row; |
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows); |
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, |
||||
prep->color_buf, |
||||
(JDIMENSION) prep->next_buf_row, |
||||
numrows); |
||||
/* Pad at top of image, if first time through */ |
||||
if (prep->rows_to_go == cinfo->image_height) { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
int row; |
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) { |
||||
jcopy_sample_rows(prep->color_buf[ci], |
||||
prep->color_buf[ci] - row, |
||||
1, cinfo->image_width); |
||||
} |
||||
} |
||||
} |
||||
*in_row_ctr += numrows; |
||||
prep->next_buf_row += numrows; |
||||
prep->rows_to_go -= numrows; |
||||
} else { |
||||
/* Return for more data, unless we are at the bottom of the image. */ |
||||
if (prep->rows_to_go != 0) |
||||
break; |
||||
/* When at bottom of image, pad to fill the conversion buffer. */ |
||||
if (prep->next_buf_row < prep->next_buf_stop) { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, |
||||
prep->next_buf_row, prep->next_buf_stop); |
||||
} |
||||
prep->next_buf_row = prep->next_buf_stop; |
||||
} |
||||
} |
||||
/* If we've gotten enough data, downsample a row group. */ |
||||
if (prep->next_buf_row == prep->next_buf_stop) { |
||||
(*cinfo->downsample->downsample) (cinfo, |
||||
prep->color_buf, |
||||
(JDIMENSION) prep->this_row_group, |
||||
output_buf, *out_row_group_ctr); |
||||
(*out_row_group_ctr)++; |
||||
/* Advance pointers with wraparound as necessary. */ |
||||
prep->this_row_group += cinfo->max_v_samp_factor; |
||||
if (prep->this_row_group >= buf_height) |
||||
prep->this_row_group = 0; |
||||
if (prep->next_buf_row >= buf_height) |
||||
prep->next_buf_row = 0; |
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_context_buffer (j_compress_ptr cinfo) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
int rgroup_height = cinfo->max_v_samp_factor; |
||||
int ci, i; |
||||
jpeg_component_info * compptr; |
||||
JSAMPARRAY true_buffer, fake_buffer; |
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component. |
||||
*/ |
||||
fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(cinfo->num_components * 5 * rgroup_height) * SIZEOF(JSAMPROW)); |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand |
||||
* horizontally within the buffer, if it so chooses. |
||||
*/ |
||||
true_buffer = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) (((long) compptr->width_in_blocks * |
||||
cinfo->min_DCT_h_scaled_size * |
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor), |
||||
(JDIMENSION) (3 * rgroup_height)); |
||||
/* Copy true buffer row pointers into the middle of the fake row array */ |
||||
MEMCOPY(fake_buffer + rgroup_height, true_buffer, |
||||
3 * rgroup_height * SIZEOF(JSAMPROW)); |
||||
/* Fill in the above and below wraparound pointers */ |
||||
for (i = 0; i < rgroup_height; i++) { |
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i]; |
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i]; |
||||
} |
||||
prep->color_buf[ci] = fake_buffer + rgroup_height; |
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */ |
||||
} |
||||
} |
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_prep_ptr prep; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
|
||||
if (need_full_buffer) /* safety check */ |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
prep = (my_prep_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_prep_controller)); |
||||
cinfo->prep = &prep->pub; |
||||
prep->pub.start_pass = start_pass_prep; |
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand |
||||
* horizontally within the buffer, if it so chooses. |
||||
*/ |
||||
if (cinfo->downsample->need_context_rows) { |
||||
/* Set up to provide context rows */ |
||||
#ifdef CONTEXT_ROWS_SUPPORTED |
||||
prep->pub.pre_process_data = pre_process_context; |
||||
create_context_buffer(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
/* No context, just make it tall enough for one row group */ |
||||
prep->pub.pre_process_data = pre_process_data; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) (((long) compptr->width_in_blocks * |
||||
cinfo->min_DCT_h_scaled_size * |
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor), |
||||
(JDIMENSION) cinfo->max_v_samp_factor); |
||||
} |
||||
} |
||||
} |
@ -1,545 +0,0 @@ |
||||
/*
|
||||
* jcsample.c |
||||
* |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* Modified 2003-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains downsampling routines. |
||||
* |
||||
* Downsampling input data is counted in "row groups". A row group |
||||
* is defined to be max_v_samp_factor pixel rows of each component, |
||||
* from which the downsampler produces v_samp_factor sample rows. |
||||
* A single row group is processed in each call to the downsampler module. |
||||
* |
||||
* The downsampler is responsible for edge-expansion of its output data |
||||
* to fill an integral number of DCT blocks horizontally. The source buffer |
||||
* may be modified if it is helpful for this purpose (the source buffer is |
||||
* allocated wide enough to correspond to the desired output width). |
||||
* The caller (the prep controller) is responsible for vertical padding. |
||||
* |
||||
* The downsampler may request "context rows" by setting need_context_rows |
||||
* during startup. In this case, the input arrays will contain at least |
||||
* one row group's worth of pixels above and below the passed-in data; |
||||
* the caller will create dummy rows at image top and bottom by replicating |
||||
* the first or last real pixel row. |
||||
* |
||||
* An excellent reference for image resampling is |
||||
* Digital Image Warping, George Wolberg, 1990. |
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
||||
* |
||||
* The downsampling algorithm used here is a simple average of the source |
||||
* pixels covered by the output pixel. The hi-falutin sampling literature |
||||
* refers to this as a "box filter". In general the characteristics of a box |
||||
* filter are not very good, but for the specific cases we normally use (1:1 |
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well |
||||
* advised to improve this code. |
||||
* |
||||
* A simple input-smoothing capability is provided. This is mainly intended |
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate, |
||||
* we suggest using an external filtering program such as pnmconvol). When |
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its |
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
||||
* where SF = (smoothing_factor / 1024). |
||||
* Currently, smoothing is only supported for 2h2v sampling factors. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Pointer to routine to downsample a single component */ |
||||
typedef JMETHOD(void, downsample1_ptr, |
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)); |
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_downsampler pub; /* public fields */ |
||||
|
||||
/* Downsampling method pointers, one per component */ |
||||
downsample1_ptr methods[MAX_COMPONENTS]; |
||||
|
||||
/* Height of an output row group for each component. */ |
||||
int rowgroup_height[MAX_COMPONENTS]; |
||||
|
||||
/* These arrays save pixel expansion factors so that int_downsample need not
|
||||
* recompute them each time. They are unused for other downsampling methods. |
||||
*/ |
||||
UINT8 h_expand[MAX_COMPONENTS]; |
||||
UINT8 v_expand[MAX_COMPONENTS]; |
||||
} my_downsampler; |
||||
|
||||
typedef my_downsampler * my_downsample_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a downsampling pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_downsample (j_compress_ptr cinfo) |
||||
{ |
||||
/* no work for now */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Expand a component horizontally from width input_cols to width output_cols, |
||||
* by duplicating the rightmost samples. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
expand_right_edge (JSAMPARRAY image_data, int num_rows, |
||||
JDIMENSION input_cols, JDIMENSION output_cols) |
||||
{ |
||||
register JSAMPROW ptr; |
||||
register JSAMPLE pixval; |
||||
register int count; |
||||
int row; |
||||
int numcols = (int) (output_cols - input_cols); |
||||
|
||||
if (numcols > 0) { |
||||
for (row = 0; row < num_rows; row++) { |
||||
ptr = image_data[row] + input_cols; |
||||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
||||
for (count = numcols; count > 0; count--) |
||||
*ptr++ = pixval; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components). |
||||
* |
||||
* In this version we simply downsample each component independently. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
sep_downsample (j_compress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
||||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
||||
{ |
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
JSAMPARRAY in_ptr, out_ptr; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
in_ptr = input_buf[ci] + in_row_index; |
||||
out_ptr = output_buf[ci] + |
||||
(out_row_group_index * downsample->rowgroup_height[ci]); |
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* One row group is processed per call. |
||||
* This version handles arbitrary integral sampling ratios, without smoothing. |
||||
* Note that this version is not actually used for customary sampling ratios. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
||||
JSAMPROW inptr, outptr; |
||||
INT32 outvalue; |
||||
|
||||
h_expand = downsample->h_expand[compptr->component_index]; |
||||
v_expand = downsample->v_expand[compptr->component_index]; |
||||
numpix = h_expand * v_expand; |
||||
numpix2 = numpix/2; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, output_cols * h_expand); |
||||
|
||||
inrow = outrow = 0; |
||||
while (inrow < cinfo->max_v_samp_factor) { |
||||
outptr = output_data[outrow]; |
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols; |
||||
outcol++, outcol_h += h_expand) { |
||||
outvalue = 0; |
||||
for (v = 0; v < v_expand; v++) { |
||||
inptr = input_data[inrow+v] + outcol_h; |
||||
for (h = 0; h < h_expand; h++) { |
||||
outvalue += (INT32) GETJSAMPLE(*inptr++); |
||||
} |
||||
} |
||||
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
||||
} |
||||
inrow += v_expand; |
||||
outrow++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the special case of a full-size component, |
||||
* without smoothing. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
/* Copy the data */ |
||||
jcopy_sample_rows(input_data, output_data, |
||||
cinfo->max_v_samp_factor, cinfo->image_width); |
||||
/* Edge-expand */ |
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, |
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical, |
||||
* without smoothing. |
||||
* |
||||
* A note about the "bias" calculations: when rounding fractional values to |
||||
* integer, we do not want to always round 0.5 up to the next integer. |
||||
* If we did that, we'd introduce a noticeable bias towards larger values. |
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at |
||||
* alternate pixel locations (a simple ordered dither pattern). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow; |
||||
JDIMENSION outcol; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
||||
register JSAMPROW inptr, outptr; |
||||
register int bias; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, output_cols * 2); |
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
||||
outptr = output_data[inrow]; |
||||
inptr = input_data[inrow]; |
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
||||
for (outcol = 0; outcol < output_cols; outcol++) { |
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
||||
+ bias) >> 1); |
||||
bias ^= 1; /* 0=>1, 1=>0 */ |
||||
inptr += 2; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
||||
* without smoothing. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow, outrow; |
||||
JDIMENSION outcol; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
||||
register JSAMPROW inptr0, inptr1, outptr; |
||||
register int bias; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, output_cols * 2); |
||||
|
||||
inrow = outrow = 0; |
||||
while (inrow < cinfo->max_v_samp_factor) { |
||||
outptr = output_data[outrow]; |
||||
inptr0 = input_data[inrow]; |
||||
inptr1 = input_data[inrow+1]; |
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
||||
for (outcol = 0; outcol < output_cols; outcol++) { |
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
||||
+ bias) >> 2); |
||||
bias ^= 3; /* 1=>2, 2=>1 */ |
||||
inptr0 += 2; inptr1 += 2; |
||||
} |
||||
inrow += 2; |
||||
outrow++; |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
||||
* with smoothing. One row of context is required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow, outrow; |
||||
JDIMENSION colctr; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
||||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
||||
INT32 membersum, neighsum, memberscale, neighscale; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
||||
cinfo->image_width, output_cols * 2); |
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four |
||||
* smoothed values. Each of the four member pixels contributes a fraction |
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction |
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the |
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed |
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these |
||||
* factors are scaled by 2^16 = 65536. |
||||
* Also recall that SF = smoothing_factor / 1024. |
||||
*/ |
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
||||
|
||||
inrow = outrow = 0; |
||||
while (inrow < cinfo->max_v_samp_factor) { |
||||
outptr = output_data[outrow]; |
||||
inptr0 = input_data[inrow]; |
||||
inptr1 = input_data[inrow+1]; |
||||
above_ptr = input_data[inrow-1]; |
||||
below_ptr = input_data[inrow+2]; |
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */ |
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
||||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
||||
neighsum += neighsum; |
||||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
||||
/* sum of pixels directly mapped to this output element */ |
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
||||
/* sum of edge-neighbor pixels */ |
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
||||
/* The edge-neighbors count twice as much as corner-neighbors */ |
||||
neighsum += neighsum; |
||||
/* Add in the corner-neighbors */ |
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
||||
/* form final output scaled up by 2^16 */ |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
/* round, descale and output it */ |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
||||
} |
||||
|
||||
/* Special case for last column */ |
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
||||
neighsum += neighsum; |
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
|
||||
inrow += 2; |
||||
outrow++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the special case of a full-size component, |
||||
* with smoothing. One row of context is required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow; |
||||
JDIMENSION colctr; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
||||
register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
||||
INT32 membersum, neighsum, memberscale, neighscale; |
||||
int colsum, lastcolsum, nextcolsum; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
||||
cinfo->image_width, output_cols); |
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order |
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
||||
* Also recall that SF = smoothing_factor / 1024. |
||||
*/ |
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
||||
outptr = output_data[inrow]; |
||||
inptr = input_data[inrow]; |
||||
above_ptr = input_data[inrow-1]; |
||||
below_ptr = input_data[inrow+1]; |
||||
|
||||
/* Special case for first column */ |
||||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
||||
GETJSAMPLE(*inptr); |
||||
membersum = GETJSAMPLE(*inptr++); |
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
||||
GETJSAMPLE(*inptr); |
||||
neighsum = colsum + (colsum - membersum) + nextcolsum; |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
lastcolsum = colsum; colsum = nextcolsum; |
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
||||
membersum = GETJSAMPLE(*inptr++); |
||||
above_ptr++; below_ptr++; |
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
||||
GETJSAMPLE(*inptr); |
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
lastcolsum = colsum; colsum = nextcolsum; |
||||
} |
||||
|
||||
/* Special case for last column */ |
||||
membersum = GETJSAMPLE(*inptr); |
||||
neighsum = lastcolsum + (colsum - membersum) + colsum; |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
|
||||
} |
||||
} |
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling. |
||||
* Note that we must select a routine for each component. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_downsampler (j_compress_ptr cinfo) |
||||
{ |
||||
my_downsample_ptr downsample; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
boolean smoothok = TRUE; |
||||
int h_in_group, v_in_group, h_out_group, v_out_group; |
||||
|
||||
downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler)); |
||||
cinfo->downsample = &downsample->pub; |
||||
downsample->pub.start_pass = start_pass_downsample; |
||||
downsample->pub.downsample = sep_downsample; |
||||
downsample->pub.need_context_rows = FALSE; |
||||
|
||||
if (cinfo->CCIR601_sampling) |
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
||||
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Compute size of an "output group" for DCT scaling. This many samples
|
||||
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels. |
||||
*/ |
||||
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / |
||||
cinfo->min_DCT_h_scaled_size; |
||||
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; |
||||
h_in_group = cinfo->max_h_samp_factor; |
||||
v_in_group = cinfo->max_v_samp_factor; |
||||
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ |
||||
if (h_in_group == h_out_group && v_in_group == v_out_group) { |
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
if (cinfo->smoothing_factor) { |
||||
downsample->methods[ci] = fullsize_smooth_downsample; |
||||
downsample->pub.need_context_rows = TRUE; |
||||
} else |
||||
#endif |
||||
downsample->methods[ci] = fullsize_downsample; |
||||
} else if (h_in_group == h_out_group * 2 && |
||||
v_in_group == v_out_group) { |
||||
smoothok = FALSE; |
||||
downsample->methods[ci] = h2v1_downsample; |
||||
} else if (h_in_group == h_out_group * 2 && |
||||
v_in_group == v_out_group * 2) { |
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
if (cinfo->smoothing_factor) { |
||||
downsample->methods[ci] = h2v2_smooth_downsample; |
||||
downsample->pub.need_context_rows = TRUE; |
||||
} else |
||||
#endif |
||||
downsample->methods[ci] = h2v2_downsample; |
||||
} else if ((h_in_group % h_out_group) == 0 && |
||||
(v_in_group % v_out_group) == 0) { |
||||
smoothok = FALSE; |
||||
downsample->methods[ci] = int_downsample; |
||||
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); |
||||
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); |
||||
} else |
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
||||
} |
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
if (cinfo->smoothing_factor && !smoothok) |
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
||||
#endif |
||||
} |
@ -1,399 +0,0 @@ |
||||
/*
|
||||
* jctrans.c |
||||
* |
||||
* Copyright (C) 1995-1998, Thomas G. Lane. |
||||
* Modified 2000-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains library routines for transcoding compression, |
||||
* that is, writing raw DCT coefficient arrays to an output JPEG file. |
||||
* The routines in jcapimin.c will also be needed by a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
LOCAL(void) transencode_master_selection |
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); |
||||
LOCAL(void) transencode_coef_controller |
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); |
||||
|
||||
|
||||
/*
|
||||
* Compression initialization for writing raw-coefficient data. |
||||
* Before calling this, all parameters and a data destination must be set up. |
||||
* Call jpeg_finish_compress() to actually write the data. |
||||
* |
||||
* The number of passed virtual arrays must match cinfo->num_components. |
||||
* Note that the virtual arrays need not be filled or even realized at |
||||
* the time write_coefficients is called; indeed, if the virtual arrays |
||||
* were requested from this compression object's memory manager, they |
||||
* typically will be realized during this routine and filled afterwards. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) |
||||
{ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Mark all tables to be written */ |
||||
jpeg_suppress_tables(cinfo, FALSE); |
||||
/* (Re)initialize error mgr and destination modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->dest->init_destination) (cinfo); |
||||
/* Perform master selection of active modules */ |
||||
transencode_master_selection(cinfo, coef_arrays); |
||||
/* Wait for jpeg_finish_compress() call */ |
||||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */ |
||||
cinfo->global_state = CSTATE_WRCOEFS; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the compression object with default parameters, |
||||
* then copy from the source object all parameters needed for lossless |
||||
* transcoding. Parameters that can be varied without loss (such as |
||||
* scan script and Huffman optimization) are left in their default states. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, |
||||
j_compress_ptr dstinfo) |
||||
{ |
||||
JQUANT_TBL ** qtblptr; |
||||
jpeg_component_info *incomp, *outcomp; |
||||
JQUANT_TBL *c_quant, *slot_quant; |
||||
int tblno, ci, coefi; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (dstinfo->global_state != CSTATE_START) |
||||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); |
||||
/* Copy fundamental image dimensions */ |
||||
dstinfo->image_width = srcinfo->image_width; |
||||
dstinfo->image_height = srcinfo->image_height; |
||||
dstinfo->input_components = srcinfo->num_components; |
||||
dstinfo->in_color_space = srcinfo->jpeg_color_space; |
||||
dstinfo->jpeg_width = srcinfo->output_width; |
||||
dstinfo->jpeg_height = srcinfo->output_height; |
||||
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; |
||||
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; |
||||
/* Initialize all parameters to default values */ |
||||
jpeg_set_defaults(dstinfo); |
||||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||
* Fix it to get the right header markers for the image colorspace. |
||||
* Note: Entropy table assignment in jpeg_set_colorspace |
||||
* depends on color_transform. |
||||
* Adaption is also required for setting the appropriate |
||||
* entropy coding mode dependent on image data precision. |
||||
*/ |
||||
dstinfo->color_transform = srcinfo->color_transform; |
||||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); |
||||
dstinfo->data_precision = srcinfo->data_precision; |
||||
dstinfo->arith_code = srcinfo->data_precision > 8 ? TRUE : FALSE; |
||||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; |
||||
/* Copy the source's quantization tables. */ |
||||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
||||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { |
||||
qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; |
||||
if (*qtblptr == NULL) |
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); |
||||
MEMCOPY((*qtblptr)->quantval, |
||||
srcinfo->quant_tbl_ptrs[tblno]->quantval, |
||||
SIZEOF((*qtblptr)->quantval)); |
||||
(*qtblptr)->sent_table = FALSE; |
||||
} |
||||
} |
||||
/* Copy the source's per-component info.
|
||||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array. |
||||
*/ |
||||
dstinfo->num_components = srcinfo->num_components; |
||||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; |
||||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) { |
||||
outcomp->component_id = incomp->component_id; |
||||
outcomp->h_samp_factor = incomp->h_samp_factor; |
||||
outcomp->v_samp_factor = incomp->v_samp_factor; |
||||
outcomp->quant_tbl_no = incomp->quant_tbl_no; |
||||
/* Make sure saved quantization table for component matches the qtable
|
||||
* slot. If not, the input file re-used this qtable slot. |
||||
* IJG encoder currently cannot duplicate this. |
||||
*/ |
||||
tblno = outcomp->quant_tbl_no; |
||||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS || |
||||
srcinfo->quant_tbl_ptrs[tblno] == NULL) |
||||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); |
||||
slot_quant = srcinfo->quant_tbl_ptrs[tblno]; |
||||
c_quant = incomp->quant_table; |
||||
if (c_quant != NULL) { |
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) { |
||||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) |
||||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); |
||||
} |
||||
} |
||||
/* Note: we do not copy the source's entropy table assignments;
|
||||
* instead we rely on jpeg_set_colorspace to have made a suitable choice. |
||||
*/ |
||||
} |
||||
/* Also copy JFIF version and resolution information, if available.
|
||||
* Strictly speaking this isn't "critical" info, but it's nearly |
||||
* always appropriate to copy it if available. In particular, |
||||
* if the application chooses to copy JFIF 1.02 extension markers from |
||||
* the source file, we need to copy the version to make sure we don't |
||||
* emit a file that has 1.02 extensions but a claimed version of 1.01. |
||||
*/ |
||||
if (srcinfo->saw_JFIF_marker) { |
||||
if (srcinfo->JFIF_major_version == 1 || |
||||
srcinfo->JFIF_major_version == 2) { |
||||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; |
||||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; |
||||
} |
||||
dstinfo->density_unit = srcinfo->density_unit; |
||||
dstinfo->X_density = srcinfo->X_density; |
||||
dstinfo->Y_density = srcinfo->Y_density; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
jpeg_calc_trans_dimensions (j_compress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase */ |
||||
{ |
||||
if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size) |
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, |
||||
cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size); |
||||
|
||||
cinfo->block_size = cinfo->min_DCT_h_scaled_size; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules for transcoding. |
||||
* This substitutes for jcinit.c's initialization of the full compressor. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
transencode_master_selection (j_compress_ptr cinfo, |
||||
jvirt_barray_ptr * coef_arrays) |
||||
{ |
||||
/* Do computations that are needed before master selection phase */ |
||||
jpeg_calc_trans_dimensions(cinfo); |
||||
|
||||
/* Initialize master control (includes parameter checking/processing) */ |
||||
jinit_c_master_control(cinfo, TRUE /* transcode only */); |
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) |
||||
jinit_arith_encoder(cinfo); |
||||
else { |
||||
jinit_huff_encoder(cinfo); |
||||
} |
||||
|
||||
/* We need a special coefficient buffer controller. */ |
||||
transencode_coef_controller(cinfo, coef_arrays); |
||||
|
||||
jinit_marker_writer(cinfo); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Write the datastream header (SOI, JFIF) immediately.
|
||||
* Frame and scan headers are postponed till later. |
||||
* This lets application insert special markers after the SOI. |
||||
*/ |
||||
(*cinfo->marker->write_file_header) (cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* The rest of this file is a special implementation of the coefficient |
||||
* buffer controller. This is similar to jccoefct.c, but it handles only |
||||
* output from presupplied virtual arrays. Furthermore, we generate any |
||||
* dummy padding blocks on-the-fly rather than expecting them to be present |
||||
* in the arrays. |
||||
*/ |
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_coef_controller pub; /* public fields */ |
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||||
|
||||
/* Virtual block array for each component. */ |
||||
jvirt_barray_ptr * whole_image; |
||||
|
||||
/* Workspace for constructing dummy blocks at right/bottom edges. */ |
||||
JBLOCK dummy_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
} my_coef_controller; |
||||
|
||||
typedef my_coef_controller * my_coef_ptr; |
||||
|
||||
|
||||
LOCAL(void) |
||||
start_iMCU_row (j_compress_ptr cinfo) |
||||
/* Reset within-iMCU-row counters for a new row */ |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||||
* But at the bottom of the image, process only what's left. |
||||
*/ |
||||
if (cinfo->comps_in_scan > 1) { |
||||
coef->MCU_rows_per_iMCU_row = 1; |
||||
} else { |
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||||
else |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||||
} |
||||
|
||||
coef->MCU_ctr = 0; |
||||
coef->MCU_vert_offset = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
if (pass_mode != JBUF_CRANK_DEST) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
coef->iMCU_row_num = 0; |
||||
start_iMCU_row(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the scan. |
||||
* The data is obtained from the virtual arrays and fed to the entropy coder. |
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||||
* |
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
int blkn, ci, xindex, yindex, yoffset, blockcnt; |
||||
JDIMENSION start_col; |
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
JBLOCKROW buffer_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
buffer[ci] = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||||
coef->iMCU_row_num * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, FALSE); |
||||
} |
||||
|
||||
/* Loop to process one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
||||
MCU_col_num++) { |
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
||||
blkn = 0; /* index of current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||||
: compptr->last_col_width; |
||||
start_col = MCU_col_num * compptr->MCU_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
if (coef->iMCU_row_num < last_iMCU_row || |
||||
yoffset + yindex < compptr->last_row_height) { |
||||
/* Fill in pointers to real blocks in this row */ |
||||
buffer_ptr = buffer[ci][yoffset + yindex] + start_col; |
||||
xindex = blockcnt; |
||||
do { |
||||
MCU_buffer[blkn++] = buffer_ptr++; |
||||
} while (--xindex); |
||||
/* Dummy blocks at right edge */ |
||||
if ((xindex = compptr->MCU_width - blockcnt) == 0) |
||||
continue; |
||||
} else { |
||||
/* At bottom of image, need a whole row of dummy blocks */ |
||||
xindex = compptr->MCU_width; |
||||
} |
||||
/* Fill in any dummy blocks needed in this row.
|
||||
* Dummy blocks are filled in the same way as in jccoefct.c: |
||||
* all zeroes in the AC entries, DC entries equal to previous |
||||
* block's DC value. The init routine has already zeroed the |
||||
* AC entries, so we need only set the DC entries correctly. |
||||
*/ |
||||
buffer_ptr = coef->dummy_buffer + blkn; |
||||
do { |
||||
buffer_ptr[0][0] = MCU_buffer[blkn-1][0][0]; |
||||
MCU_buffer[blkn++] = buffer_ptr++; |
||||
} while (--xindex); |
||||
} |
||||
} |
||||
/* Try to write the MCU. */ |
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return FALSE; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
coef->iMCU_row_num++; |
||||
start_iMCU_row(cinfo); |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller. |
||||
* |
||||
* Each passed coefficient array must be the right size for that |
||||
* coefficient: width_in_blocks wide and height_in_blocks high, |
||||
* with unitheight at least v_samp_factor. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
transencode_coef_controller (j_compress_ptr cinfo, |
||||
jvirt_barray_ptr * coef_arrays) |
||||
{ |
||||
my_coef_ptr coef; |
||||
|
||||
coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); |
||||
cinfo->coef = &coef->pub; |
||||
coef->pub.start_pass = start_pass_coef; |
||||
coef->pub.compress_data = compress_output; |
||||
|
||||
/* Save pointer to virtual arrays */ |
||||
coef->whole_image = coef_arrays; |
||||
|
||||
/* Pre-zero space for dummy DCT blocks */ |
||||
MEMZERO(coef->dummy_buffer, SIZEOF(coef->dummy_buffer)); |
||||
} |
@ -1,412 +0,0 @@ |
||||
/*
|
||||
* jdapimin.c |
||||
* |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* Modified 2009-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains application interface code for the decompression half |
||||
* of the JPEG library. These are the "minimum" API routines that may be |
||||
* needed in either the normal full-decompression case or the |
||||
* transcoding-only case. |
||||
* |
||||
* Most of the routines intended to be called directly by an application |
||||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines |
||||
* shared by compression and decompression, and jdtrans.c for the transcoding |
||||
* case. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object. |
||||
* The error manager must already be set up (in case memory manager fails). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) |
||||
{ |
||||
int i; |
||||
|
||||
/* Guard against version mismatches between library and caller. */ |
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ |
||||
if (version != JPEG_LIB_VERSION) |
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); |
||||
if (structsize != SIZEOF(struct jpeg_decompress_struct)) |
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize); |
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set |
||||
* client_data, so we have to save and restore those fields. |
||||
* Note: if application hasn't set client_data, tools like Purify may |
||||
* complain here. |
||||
*/ |
||||
{ |
||||
struct jpeg_error_mgr * err = cinfo->err; |
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */ |
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct)); |
||||
cinfo->err = err; |
||||
cinfo->client_data = client_data; |
||||
} |
||||
cinfo->is_decompressor = TRUE; |
||||
|
||||
/* Initialize a memory manager instance for this object */ |
||||
jinit_memory_mgr((j_common_ptr) cinfo); |
||||
|
||||
/* Zero out pointers to permanent structures. */ |
||||
cinfo->progress = NULL; |
||||
cinfo->src = NULL; |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) |
||||
cinfo->quant_tbl_ptrs[i] = NULL; |
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL; |
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL; |
||||
} |
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header. |
||||
*/ |
||||
cinfo->marker_list = NULL; |
||||
jinit_marker_reader(cinfo); |
||||
|
||||
/* And initialize the overall input controller. */ |
||||
jinit_input_controller(cinfo); |
||||
|
||||
/* OK, I'm ready */ |
||||
cinfo->global_state = DSTATE_START; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_destroy_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation, |
||||
* but don't destroy the object itself. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_abort_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
default_decompress_parms (j_decompress_ptr cinfo) |
||||
{ |
||||
int cid0, cid1, cid2, cid3; |
||||
|
||||
/* Guess the input colorspace, and set output colorspace accordingly. */ |
||||
/* Note application may override our guesses. */ |
||||
switch (cinfo->num_components) { |
||||
case 1: |
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE; |
||||
cinfo->out_color_space = JCS_GRAYSCALE; |
||||
break; |
||||
|
||||
case 3: |
||||
cid0 = cinfo->comp_info[0].component_id; |
||||
cid1 = cinfo->comp_info[1].component_id; |
||||
cid2 = cinfo->comp_info[2].component_id; |
||||
|
||||
/* For robust detection of standard colorspaces
|
||||
* regardless of the presence of special markers, |
||||
* check component IDs from SOF marker first. |
||||
*/ |
||||
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03) |
||||
cinfo->jpeg_color_space = JCS_YCbCr; |
||||
else if (cid0 == 0x01 && cid1 == 0x22 && cid2 == 0x23) |
||||
cinfo->jpeg_color_space = JCS_BG_YCC; |
||||
else if (cid0 == 0x52 && cid1 == 0x47 && cid2 == 0x42) |
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ |
||||
else if (cid0 == 0x72 && cid1 == 0x67 && cid2 == 0x62) |
||||
cinfo->jpeg_color_space = JCS_BG_RGB; /* ASCII 'r', 'g', 'b' */ |
||||
else if (cinfo->saw_JFIF_marker) |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ |
||||
else if (cinfo->saw_Adobe_marker) { |
||||
switch (cinfo->Adobe_transform) { |
||||
case 0: |
||||
cinfo->jpeg_color_space = JCS_RGB; |
||||
break; |
||||
case 1: |
||||
cinfo->jpeg_color_space = JCS_YCbCr; |
||||
break; |
||||
default: |
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ |
||||
} |
||||
} else { |
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ |
||||
} |
||||
/* Always guess RGB is proper output colorspace. */ |
||||
cinfo->out_color_space = JCS_RGB; |
||||
break; |
||||
|
||||
case 4: |
||||
cid0 = cinfo->comp_info[0].component_id; |
||||
cid1 = cinfo->comp_info[1].component_id; |
||||
cid2 = cinfo->comp_info[2].component_id; |
||||
cid3 = cinfo->comp_info[3].component_id; |
||||
|
||||
/* For robust detection of standard colorspaces
|
||||
* regardless of the presence of special markers, |
||||
* check component IDs from SOF marker first. |
||||
*/ |
||||
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03 && cid3 == 0x04) |
||||
cinfo->jpeg_color_space = JCS_YCCK; |
||||
else if (cid0 == 0x43 && cid1 == 0x4D && cid2 == 0x59 && cid3 == 0x4B) |
||||
cinfo->jpeg_color_space = JCS_CMYK; /* ASCII 'C', 'M', 'Y', 'K' */ |
||||
else if (cinfo->saw_Adobe_marker) { |
||||
switch (cinfo->Adobe_transform) { |
||||
case 0: |
||||
cinfo->jpeg_color_space = JCS_CMYK; |
||||
break; |
||||
case 2: |
||||
cinfo->jpeg_color_space = JCS_YCCK; |
||||
break; |
||||
default: |
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); |
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ |
||||
} |
||||
} else { |
||||
/* Unknown IDs and no special markers, assume straight CMYK. */ |
||||
cinfo->jpeg_color_space = JCS_CMYK; |
||||
} |
||||
cinfo->out_color_space = JCS_CMYK; |
||||
break; |
||||
|
||||
default: |
||||
cinfo->jpeg_color_space = JCS_UNKNOWN; |
||||
cinfo->out_color_space = JCS_UNKNOWN; |
||||
} |
||||
|
||||
/* Set defaults for other decompression parameters. */ |
||||
cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */ |
||||
cinfo->scale_denom = cinfo->block_size; |
||||
cinfo->output_gamma = 1.0; |
||||
cinfo->buffered_image = FALSE; |
||||
cinfo->raw_data_out = FALSE; |
||||
cinfo->dct_method = JDCT_DEFAULT; |
||||
cinfo->do_fancy_upsampling = TRUE; |
||||
cinfo->do_block_smoothing = TRUE; |
||||
cinfo->quantize_colors = FALSE; |
||||
/* We set these in case application only sets quantize_colors. */ |
||||
cinfo->dither_mode = JDITHER_FS; |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
cinfo->two_pass_quantize = TRUE; |
||||
#else |
||||
cinfo->two_pass_quantize = FALSE; |
||||
#endif |
||||
cinfo->desired_number_of_colors = 256; |
||||
cinfo->colormap = NULL; |
||||
/* Initialize for no mode change in buffered-image mode. */ |
||||
cinfo->enable_1pass_quant = FALSE; |
||||
cinfo->enable_external_quant = FALSE; |
||||
cinfo->enable_2pass_quant = FALSE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there. |
||||
* Need only initialize JPEG object and supply a data source before calling. |
||||
* |
||||
* This routine will read as far as the first SOS marker (ie, actual start of |
||||
* compressed data), and will save all tables and parameters in the JPEG |
||||
* object. It will also initialize the decompression parameters to default |
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may |
||||
* adjust the decompression parameters and then call jpeg_start_decompress. |
||||
* (Or, if the application only wanted to determine the image parameters, |
||||
* the data need not be decompressed. In that case, call jpeg_abort or |
||||
* jpeg_destroy to release any temporary space.) |
||||
* If an abbreviated (tables only) datastream is presented, the routine will |
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then |
||||
* re-use the JPEG object to read the abbreviated image datastream(s). |
||||
* It is unnecessary (but OK) to call jpeg_abort in this case. |
||||
* The JPEG_SUSPENDED return code only occurs if the data source module |
||||
* requests suspension of the decompressor. In this case the application |
||||
* should load more source data and then re-call jpeg_read_header to resume |
||||
* processing. |
||||
* If a non-suspending data source is used and require_image is TRUE, then the |
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible. |
||||
* |
||||
* This routine is now just a front end to jpeg_consume_input, with some |
||||
* extra error checking. |
||||
*/ |
||||
|
||||
GLOBAL(int) |
||||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) |
||||
{ |
||||
int retcode; |
||||
|
||||
if (cinfo->global_state != DSTATE_START && |
||||
cinfo->global_state != DSTATE_INHEADER) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
retcode = jpeg_consume_input(cinfo); |
||||
|
||||
switch (retcode) { |
||||
case JPEG_REACHED_SOS: |
||||
retcode = JPEG_HEADER_OK; |
||||
break; |
||||
case JPEG_REACHED_EOI: |
||||
if (require_image) /* Complain if application wanted an image */ |
||||
ERREXIT(cinfo, JERR_NO_IMAGE); |
||||
/* Reset to start state; it would be safer to require the application to
|
||||
* call jpeg_abort, but we can't change it now for compatibility reasons. |
||||
* A side effect is to free any temporary memory (there shouldn't be any). |
||||
*/ |
||||
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ |
||||
retcode = JPEG_HEADER_TABLES_ONLY; |
||||
break; |
||||
case JPEG_SUSPENDED: |
||||
/* no work */ |
||||
break; |
||||
} |
||||
|
||||
return retcode; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Consume data in advance of what the decompressor requires. |
||||
* This can be called at any time once the decompressor object has |
||||
* been created and a data source has been set up. |
||||
* |
||||
* This routine is essentially a state machine that handles a couple |
||||
* of critical state-transition actions, namely initial setup and |
||||
* transition from header scanning to ready-for-start_decompress. |
||||
* All the actual input is done via the input controller's consume_input |
||||
* method. |
||||
*/ |
||||
|
||||
GLOBAL(int) |
||||
jpeg_consume_input (j_decompress_ptr cinfo) |
||||
{ |
||||
int retcode = JPEG_SUSPENDED; |
||||
|
||||
/* NB: every possible DSTATE value should be listed in this switch */ |
||||
switch (cinfo->global_state) { |
||||
case DSTATE_START: |
||||
/* Start-of-datastream actions: reset appropriate modules */ |
||||
(*cinfo->inputctl->reset_input_controller) (cinfo); |
||||
/* Initialize application's data source module */ |
||||
(*cinfo->src->init_source) (cinfo); |
||||
cinfo->global_state = DSTATE_INHEADER; |
||||
/*FALLTHROUGH*/ |
||||
case DSTATE_INHEADER: |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ |
||||
/* Set up default parameters based on header data */ |
||||
default_decompress_parms(cinfo); |
||||
/* Set global state: ready for start_decompress */ |
||||
cinfo->global_state = DSTATE_READY; |
||||
} |
||||
break; |
||||
case DSTATE_READY: |
||||
/* Can't advance past first SOS until start_decompress is called */ |
||||
retcode = JPEG_REACHED_SOS; |
||||
break; |
||||
case DSTATE_PRELOAD: |
||||
case DSTATE_PRESCAN: |
||||
case DSTATE_SCANNING: |
||||
case DSTATE_RAW_OK: |
||||
case DSTATE_BUFIMAGE: |
||||
case DSTATE_BUFPOST: |
||||
case DSTATE_STOPPING: |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
break; |
||||
default: |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
} |
||||
return retcode; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Have we finished reading the input file? |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_input_complete (j_decompress_ptr cinfo) |
||||
{ |
||||
/* Check for valid jpeg object */ |
||||
if (cinfo->global_state < DSTATE_START || |
||||
cinfo->global_state > DSTATE_STOPPING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
return cinfo->inputctl->eoi_reached; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Is there more than one scan? |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_has_multiple_scans (j_decompress_ptr cinfo) |
||||
{ |
||||
/* Only valid after jpeg_read_header completes */ |
||||
if (cinfo->global_state < DSTATE_READY || |
||||
cinfo->global_state > DSTATE_STOPPING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
return cinfo->inputctl->has_multiple_scans; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression. |
||||
* |
||||
* This will normally just verify the file trailer and release temp storage. |
||||
* |
||||
* Returns FALSE if suspended. The return value need be inspected only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_finish_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
if ((cinfo->global_state == DSTATE_SCANNING || |
||||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { |
||||
/* Terminate final pass of non-buffered mode */ |
||||
if (cinfo->output_scanline < cinfo->output_height) |
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); |
||||
(*cinfo->master->finish_output_pass) (cinfo); |
||||
cinfo->global_state = DSTATE_STOPPING; |
||||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) { |
||||
/* Finishing after a buffered-image operation */ |
||||
cinfo->global_state = DSTATE_STOPPING; |
||||
} else if (cinfo->global_state != DSTATE_STOPPING) { |
||||
/* STOPPING = repeat call after a suspension, anything else is error */ |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
} |
||||
/* Read until EOI */ |
||||
while (! cinfo->inputctl->eoi_reached) { |
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
||||
return FALSE; /* Suspend, come back later */ |
||||
} |
||||
/* Do final cleanup */ |
||||
(*cinfo->src->term_source) (cinfo); |
||||
/* We can use jpeg_abort to release memory and reset global_state */ |
||||
jpeg_abort((j_common_ptr) cinfo); |
||||
return TRUE; |
||||
} |
@ -1,276 +0,0 @@ |
||||
/*
|
||||
* jdapistd.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2002-2013 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains application interface code for the decompression half |
||||
* of the JPEG library. These are the "standard" API routines that are |
||||
* used in the normal full-decompression case. They are not used by a |
||||
* transcoding-only application. Note that if an application links in |
||||
* jpeg_start_decompress, it will end up linking in the entire decompressor. |
||||
* We thus must separate this file from jdapimin.c to avoid linking the |
||||
* whole decompression library into a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo)); |
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization. |
||||
* jpeg_read_header must be completed before calling this. |
||||
* |
||||
* If a multipass operating mode was selected, this will do all but the |
||||
* last pass, and thus may take a great deal of time. |
||||
* |
||||
* Returns FALSE if suspended. The return value need be inspected only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_start_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state == DSTATE_READY) { |
||||
/* First call: initialize master control, select active modules */ |
||||
jinit_master_decompress(cinfo); |
||||
if (cinfo->buffered_image) { |
||||
/* No more work here; expecting jpeg_start_output next */ |
||||
cinfo->global_state = DSTATE_BUFIMAGE; |
||||
return TRUE; |
||||
} |
||||
cinfo->global_state = DSTATE_PRELOAD; |
||||
} |
||||
if (cinfo->global_state == DSTATE_PRELOAD) { |
||||
/* If file has multiple scans, absorb them all into the coef buffer */ |
||||
if (cinfo->inputctl->has_multiple_scans) { |
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
for (;;) { |
||||
int retcode; |
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
/* Absorb some more input */ |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
if (retcode == JPEG_SUSPENDED) |
||||
return FALSE; |
||||
if (retcode == JPEG_REACHED_EOI) |
||||
break; |
||||
/* Advance progress counter if appropriate */ |
||||
if (cinfo->progress != NULL && |
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { |
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { |
||||
/* jdmaster underestimated number of scans; ratchet up one scan */ |
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; |
||||
} |
||||
} |
||||
} |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
} |
||||
cinfo->output_scan_number = cinfo->input_scan_number; |
||||
} else if (cinfo->global_state != DSTATE_PRESCAN) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Perform any dummy output passes, and set up for the final pass */ |
||||
return output_pass_setup(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set up for an output pass, and perform any dummy pass(es) needed. |
||||
* Common subroutine for jpeg_start_decompress and jpeg_start_output. |
||||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended. |
||||
* Exit: If done, returns TRUE and sets global_state for proper output mode. |
||||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
output_pass_setup (j_decompress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state != DSTATE_PRESCAN) { |
||||
/* First call: do pass setup */ |
||||
(*cinfo->master->prepare_for_output_pass) (cinfo); |
||||
cinfo->output_scanline = 0; |
||||
cinfo->global_state = DSTATE_PRESCAN; |
||||
} |
||||
/* Loop over any required dummy passes */ |
||||
while (cinfo->master->is_dummy_pass) { |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
/* Crank through the dummy pass */ |
||||
while (cinfo->output_scanline < cinfo->output_height) { |
||||
JDIMENSION last_scanline; |
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->output_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
/* Process some data */ |
||||
last_scanline = cinfo->output_scanline; |
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, |
||||
&cinfo->output_scanline, (JDIMENSION) 0); |
||||
if (cinfo->output_scanline == last_scanline) |
||||
return FALSE; /* No progress made, must suspend */ |
||||
} |
||||
/* Finish up dummy pass, and set up for another one */ |
||||
(*cinfo->master->finish_output_pass) (cinfo); |
||||
(*cinfo->master->prepare_for_output_pass) (cinfo); |
||||
cinfo->output_scanline = 0; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
} |
||||
/* Ready for application to drive output pass through
|
||||
* jpeg_read_scanlines or jpeg_read_raw_data. |
||||
*/ |
||||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor. |
||||
* |
||||
* The return value will be the number of lines actually read. |
||||
* This may be less than the number requested in several cases, |
||||
* including bottom of image, data source suspension, and operating |
||||
* modes that emit multiple scanlines at a time. |
||||
* |
||||
* Note: we warn about excess calls to jpeg_read_scanlines() since |
||||
* this likely signals an application programmer error. However, |
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, |
||||
JDIMENSION max_lines) |
||||
{ |
||||
JDIMENSION row_ctr; |
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->output_scanline >= cinfo->output_height) { |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
return 0; |
||||
} |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->output_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Process some data */ |
||||
row_ctr = 0; |
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); |
||||
cinfo->output_scanline += row_ctr; |
||||
return row_ctr; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data. |
||||
* Processes exactly one iMCU row per call, unless suspended. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, |
||||
JDIMENSION max_lines) |
||||
{ |
||||
JDIMENSION lines_per_iMCU_row; |
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->output_scanline >= cinfo->output_height) { |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
return 0; |
||||
} |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->output_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Verify that at least one iMCU row can be returned. */ |
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; |
||||
if (max_lines < lines_per_iMCU_row) |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
|
||||
/* Decompress directly into user's buffer. */ |
||||
if (! (*cinfo->coef->decompress_data) (cinfo, data)) |
||||
return 0; /* suspension forced, can do nothing more */ |
||||
|
||||
/* OK, we processed one iMCU row. */ |
||||
cinfo->output_scanline += lines_per_iMCU_row; |
||||
return lines_per_iMCU_row; |
||||
} |
||||
|
||||
|
||||
/* Additional entry points for buffered-image mode. */ |
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
/*
|
||||
* Initialize for an output pass in buffered-image mode. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_start_output (j_decompress_ptr cinfo, int scan_number) |
||||
{ |
||||
if (cinfo->global_state != DSTATE_BUFIMAGE && |
||||
cinfo->global_state != DSTATE_PRESCAN) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Limit scan number to valid range */ |
||||
if (scan_number <= 0) |
||||
scan_number = 1; |
||||
if (cinfo->inputctl->eoi_reached && |
||||
scan_number > cinfo->input_scan_number) |
||||
scan_number = cinfo->input_scan_number; |
||||
cinfo->output_scan_number = scan_number; |
||||
/* Perform any dummy output passes, and set up for the real pass */ |
||||
return output_pass_setup(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up after an output pass in buffered-image mode. |
||||
* |
||||
* Returns FALSE if suspended. The return value need be inspected only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_finish_output (j_decompress_ptr cinfo) |
||||
{ |
||||
if ((cinfo->global_state == DSTATE_SCANNING || |
||||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { |
||||
/* Terminate this pass. */ |
||||
/* We do not require the whole pass to have been completed. */ |
||||
(*cinfo->master->finish_output_pass) (cinfo); |
||||
cinfo->global_state = DSTATE_BUFPOST; |
||||
} else if (cinfo->global_state != DSTATE_BUFPOST) { |
||||
/* BUFPOST = repeat call after a suspension, anything else is error */ |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
} |
||||
/* Read markers looking for SOS or EOI */ |
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number && |
||||
! cinfo->inputctl->eoi_reached) { |
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
||||
return FALSE; /* Suspend, come back later */ |
||||
} |
||||
cinfo->global_state = DSTATE_BUFIMAGE; |
||||
return TRUE; |
||||
} |
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
@ -1,796 +0,0 @@ |
||||
/*
|
||||
* jdarith.c |
||||
* |
||||
* Developed 1997-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains portable arithmetic entropy decoding routines for JPEG |
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
||||
* |
||||
* Both sequential and progressive modes are supported in this single module. |
||||
* |
||||
* Suspension is not currently supported in this module. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Expanded entropy decoder object for arithmetic decoding. */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_decoder pub; /* public fields */ |
||||
|
||||
INT32 c; /* C register, base of coding interval + input bit buffer */ |
||||
INT32 a; /* A register, normalized size of coding interval */ |
||||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */ |
||||
/* init: ct = -16 */ |
||||
/* run: ct = 0..7 */ |
||||
/* error: ct = -1 */ |
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */ |
||||
unsigned char * dc_stats[NUM_ARITH_TBLS]; |
||||
unsigned char * ac_stats[NUM_ARITH_TBLS]; |
||||
|
||||
/* Statistics bin for coding with fixed probability 0.5 */ |
||||
unsigned char fixed_bin[4]; |
||||
} arith_entropy_decoder; |
||||
|
||||
typedef arith_entropy_decoder * arith_entropy_ptr; |
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area. |
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding. |
||||
* |
||||
* We use a compact representation with 1 byte per statistics bin, |
||||
* thus the numbers directly represent byte sizes. |
||||
* This 1 byte per statistics bin contains the meaning of the MPS |
||||
* (more probable symbol) in the highest bit (mask 0x80), and the |
||||
* index into the probability estimation state machine table |
||||
* in the lower bits (mask 0x7F). |
||||
*/ |
||||
|
||||
#define DC_STAT_BINS 64 |
||||
#define AC_STAT_BINS 256 |
||||
|
||||
|
||||
LOCAL(int) |
||||
get_byte (j_decompress_ptr cinfo) |
||||
/* Read next input byte; we do not support suspension in this module. */ |
||||
{ |
||||
struct jpeg_source_mgr * src = cinfo->src; |
||||
|
||||
if (src->bytes_in_buffer == 0) |
||||
if (! (*src->fill_input_buffer) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
src->bytes_in_buffer--; |
||||
return GETJOCTET(*src->next_input_byte++); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic decoding routine (common in JPEG and JBIG). |
||||
* This needs to go as fast as possible. |
||||
* Machine-dependent optimization facilities |
||||
* are not utilized in this portable implementation. |
||||
* However, this code should be fairly efficient and |
||||
* may be a good base for further optimizations anyway. |
||||
* |
||||
* Return value is 0 or 1 (binary decision). |
||||
* |
||||
* Note: I've changed the handling of the code base & bit |
||||
* buffer register C compared to other implementations |
||||
* based on the standards layout & procedures. |
||||
* While it also contains both the actual base of the |
||||
* coding interval (16 bits) and the next-bits buffer, |
||||
* the cut-point between these two parts is floating |
||||
* (instead of fixed) with the bit shift counter CT. |
||||
* Thus, we also need only one (variable instead of |
||||
* fixed size) shift for the LPS/MPS decision, and |
||||
* we can do away with any renormalization update |
||||
* of C (except for new data insertion, of course). |
||||
* |
||||
* I've also introduced a new scheme for accessing |
||||
* the probability estimation state machine table, |
||||
* derived from Markus Kuhn's JBIG implementation. |
||||
*/ |
||||
|
||||
LOCAL(int) |
||||
arith_decode (j_decompress_ptr cinfo, unsigned char *st) |
||||
{ |
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
||||
register unsigned char nl, nm; |
||||
register INT32 qe, temp; |
||||
register int sv, data; |
||||
|
||||
/* Renormalization & data input per section D.2.6 */ |
||||
while (e->a < 0x8000L) { |
||||
if (--e->ct < 0) { |
||||
/* Need to fetch next data byte */ |
||||
if (cinfo->unread_marker) |
||||
data = 0; /* stuff zero data */ |
||||
else { |
||||
data = get_byte(cinfo); /* read next input byte */ |
||||
if (data == 0xFF) { /* zero stuff or marker code */ |
||||
do data = get_byte(cinfo); |
||||
while (data == 0xFF); /* swallow extra 0xFF bytes */ |
||||
if (data == 0) |
||||
data = 0xFF; /* discard stuffed zero byte */ |
||||
else { |
||||
/* Note: Different from the Huffman decoder, hitting
|
||||
* a marker while processing the compressed data |
||||
* segment is legal in arithmetic coding. |
||||
* The convention is to supply zero data |
||||
* then until decoding is complete. |
||||
*/ |
||||
cinfo->unread_marker = data; |
||||
data = 0; |
||||
} |
||||
} |
||||
} |
||||
e->c = (e->c << 8) | data; /* insert data into C register */ |
||||
if ((e->ct += 8) < 0) /* update bit shift counter */ |
||||
/* Need more initial bytes */ |
||||
if (++e->ct == 0) |
||||
/* Got 2 initial bytes -> re-init A and exit loop */ |
||||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ |
||||
} |
||||
e->a <<= 1; |
||||
} |
||||
|
||||
/* Fetch values from our compact representation of Table D.3(D.2):
|
||||
* Qe values and probability estimation state machine |
||||
*/ |
||||
sv = *st; |
||||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
||||
|
||||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */ |
||||
temp = e->a - qe; |
||||
e->a = temp; |
||||
temp <<= e->ct; |
||||
if (e->c >= temp) { |
||||
e->c -= temp; |
||||
/* Conditional LPS (less probable symbol) exchange */ |
||||
if (e->a < qe) { |
||||
e->a = qe; |
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
||||
} else { |
||||
e->a = qe; |
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
||||
sv ^= 0x80; /* Exchange LPS/MPS */ |
||||
} |
||||
} else if (e->a < 0x8000L) { |
||||
/* Conditional MPS (more probable symbol) exchange */ |
||||
if (e->a < qe) { |
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
||||
sv ^= 0x80; /* Exchange LPS/MPS */ |
||||
} else { |
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
||||
} |
||||
} |
||||
|
||||
return sv >> 7; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
process_restart (j_decompress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
|
||||
/* Advance past the RSTn marker */ |
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
|
||||
/* Re-initialize statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
||||
/* Reset DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
if ((! cinfo->progressive_mode && cinfo->lim_Se) || |
||||
(cinfo->progressive_mode && cinfo->Ss)) { |
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
||||
} |
||||
} |
||||
|
||||
/* Reset arithmetic decoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0; |
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
||||
|
||||
/* Reset restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Arithmetic MCU decoding. |
||||
* Each of these routines decodes and returns one MCU's worth of |
||||
* arithmetic-compressed coefficients. |
||||
* The coefficients are reordered from zigzag order into natural array order, |
||||
* but are not dequantized. |
||||
* |
||||
* The i'th block of the MCU is stored into the block pointed to by |
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
||||
*/ |
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl, sign; |
||||
int v, m; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */ |
||||
if (arith_decode(cinfo, st) == 0) |
||||
entropy->dc_context[ci] = 0; |
||||
else { |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, st + 1); |
||||
st += 2; st += sign; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == (int) 0x8000U) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
||||
else |
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
entropy->last_dc_val[ci] += v; |
||||
} |
||||
|
||||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ |
||||
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, sign, k; |
||||
int v, m; |
||||
const int * natural_order; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
natural_order = cinfo->natural_order; |
||||
|
||||
/* There is always only one block per MCU */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */ |
||||
k = cinfo->Ss - 1; |
||||
do { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */ |
||||
for (;;) { |
||||
k++; |
||||
if (arith_decode(cinfo, st + 1)) break; |
||||
st += 3; |
||||
if (k >= cinfo->Se) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* spectral overflow */ |
||||
return TRUE; |
||||
} |
||||
} |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, entropy->fixed_bin); |
||||
st += 2; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
if (arith_decode(cinfo, st)) { |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == (int) 0x8000U) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
/* Scale and output coefficient in natural (dezigzagged) order */ |
||||
(*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); |
||||
} while (k < cinfo->Se); |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan. |
||||
* Note: we assume such scans can be multi-component, |
||||
* although the spec is not very clear on the point. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
unsigned char *st; |
||||
JCOEF p1; |
||||
int blkn; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
st = entropy->fixed_bin; /* use fixed probability estimation */ |
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
/* Encoded data is simply the next bit of the two's-complement DC value */ |
||||
if (arith_decode(cinfo, st)) |
||||
MCU_data[blkn][0][0] |= p1; |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
JCOEFPTR thiscoef; |
||||
unsigned char *st; |
||||
int tbl, k, kex; |
||||
JCOEF p1, m1; |
||||
const int * natural_order; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
natural_order = cinfo->natural_order; |
||||
|
||||
/* There is always only one block per MCU */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
||||
m1 = -p1; /* -1 in the bit position being coded */ |
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */ |
||||
kex = cinfo->Se; |
||||
do { |
||||
if ((*block)[natural_order[kex]]) break; |
||||
} while (--kex); |
||||
|
||||
k = cinfo->Ss - 1; |
||||
do { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
if (k >= kex) |
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */ |
||||
for (;;) { |
||||
thiscoef = *block + natural_order[++k]; |
||||
if (*thiscoef) { /* previously nonzero coef */ |
||||
if (arith_decode(cinfo, st + 2)) { |
||||
if (*thiscoef < 0) |
||||
*thiscoef += m1; |
||||
else |
||||
*thiscoef += p1; |
||||
} |
||||
break; |
||||
} |
||||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ |
||||
if (arith_decode(cinfo, entropy->fixed_bin)) |
||||
*thiscoef = m1; |
||||
else |
||||
*thiscoef = p1; |
||||
break; |
||||
} |
||||
st += 3; |
||||
if (k >= cinfo->Se) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* spectral overflow */ |
||||
return TRUE; |
||||
} |
||||
} |
||||
} while (k < cinfo->Se); |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of arithmetic-compressed coefficients. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
jpeg_component_info * compptr; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl, sign, k; |
||||
int v, m; |
||||
const int * natural_order; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
natural_order = cinfo->natural_order; |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
||||
|
||||
tbl = compptr->dc_tbl_no; |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */ |
||||
if (arith_decode(cinfo, st) == 0) |
||||
entropy->dc_context[ci] = 0; |
||||
else { |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, st + 1); |
||||
st += 2; st += sign; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == (int) 0x8000U) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
||||
else |
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
entropy->last_dc_val[ci] += v; |
||||
} |
||||
|
||||
(*block)[0] = (JCOEF) entropy->last_dc_val[ci]; |
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
||||
|
||||
if (cinfo->lim_Se == 0) continue; |
||||
tbl = compptr->ac_tbl_no; |
||||
k = 0; |
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */ |
||||
do { |
||||
st = entropy->ac_stats[tbl] + 3 * k; |
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */ |
||||
for (;;) { |
||||
k++; |
||||
if (arith_decode(cinfo, st + 1)) break; |
||||
st += 3; |
||||
if (k >= cinfo->lim_Se) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* spectral overflow */ |
||||
return TRUE; |
||||
} |
||||
} |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, entropy->fixed_bin); |
||||
st += 2; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
if (arith_decode(cinfo, st)) { |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == (int) 0x8000U) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
(*block)[natural_order[k]] = (JCOEF) v; |
||||
} while (k < cinfo->lim_Se); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci, tbl; |
||||
jpeg_component_info * compptr; |
||||
|
||||
if (cinfo->progressive_mode) { |
||||
/* Validate progressive scan parameters */ |
||||
if (cinfo->Ss == 0) { |
||||
if (cinfo->Se != 0) |
||||
goto bad; |
||||
} else { |
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */ |
||||
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) |
||||
goto bad; |
||||
/* AC scans may have only one component */ |
||||
if (cinfo->comps_in_scan != 1) |
||||
goto bad; |
||||
} |
||||
if (cinfo->Ah != 0) { |
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */ |
||||
if (cinfo->Ah-1 != cinfo->Al) |
||||
goto bad; |
||||
} |
||||
if (cinfo->Al > 13) { /* need not check for < 0 */ |
||||
bad: |
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
||||
} |
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings |
||||
* not fatal errors ... not clear if this is right way to behave. |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
||||
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
||||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
||||
if (cinfo->Ah != expected) |
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
||||
coef_bit_ptr[coefi] = cinfo->Al; |
||||
} |
||||
} |
||||
/* Select MCU decoding routine */ |
||||
if (cinfo->Ah == 0) { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.decode_mcu = decode_mcu_DC_first; |
||||
else |
||||
entropy->pub.decode_mcu = decode_mcu_AC_first; |
||||
} else { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine; |
||||
else |
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine; |
||||
} |
||||
} else { |
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning. |
||||
*/ |
||||
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
||||
(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) |
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
||||
/* Select MCU decoding routine */ |
||||
entropy->pub.decode_mcu = decode_mcu; |
||||
} |
||||
|
||||
/* Allocate & initialize requested statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
||||
tbl = compptr->dc_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->dc_stats[tbl] == NULL) |
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
if ((! cinfo->progressive_mode && cinfo->lim_Se) || |
||||
(cinfo->progressive_mode && cinfo->Ss)) { |
||||
tbl = compptr->ac_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->ac_stats[tbl] == NULL) |
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
||||
} |
||||
} |
||||
|
||||
/* Initialize arithmetic decoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0; |
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
||||
|
||||
/* Initialize restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy decoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_arith_decoder (j_decompress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy; |
||||
int i; |
||||
|
||||
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder)); |
||||
cinfo->entropy = &entropy->pub; |
||||
entropy->pub.start_pass = start_pass; |
||||
entropy->pub.finish_pass = finish_pass; |
||||
|
||||
/* Mark tables unallocated */ |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
entropy->dc_stats[i] = NULL; |
||||
entropy->ac_stats[i] = NULL; |
||||
} |
||||
|
||||
/* Initialize index for fixed probability estimation */ |
||||
entropy->fixed_bin[0] = 113; |
||||
|
||||
if (cinfo->progressive_mode) { |
||||
/* Create progression status table */ |
||||
int *coef_bit_ptr, ci; |
||||
cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components * DCTSIZE2 * SIZEOF(int)); |
||||
coef_bit_ptr = & cinfo->coef_bits[0][0]; |
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++) |
||||
*coef_bit_ptr++ = -1; |
||||
} |
||||
} |
@ -1,263 +0,0 @@ |
||||
/*
|
||||
* jdatadst.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2009-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains compression data destination routines for the case of |
||||
* emitting JPEG data to memory or to a file (or any stdio stream). |
||||
* While these routines are sufficient for most applications, |
||||
* some will want to use a different destination manager. |
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of |
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider |
||||
* than 8 bits on your machine, you may need to do some tweaking. |
||||
*/ |
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jerror.h" |
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ |
||||
extern void * malloc JPP((size_t size)); |
||||
extern void free JPP((void *ptr)); |
||||
#endif |
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */ |
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_destination_mgr pub; /* public fields */ |
||||
|
||||
FILE * outfile; /* target stream */ |
||||
JOCTET buffer[OUTPUT_BUF_SIZE]; /* output buffer */ |
||||
} my_destination_mgr; |
||||
|
||||
typedef my_destination_mgr * my_dest_ptr; |
||||
|
||||
|
||||
/* Expanded data destination object for memory output */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_destination_mgr pub; /* public fields */ |
||||
|
||||
unsigned char ** outbuffer; /* target buffer */ |
||||
size_t * outsize; |
||||
unsigned char * newbuffer; /* newly allocated buffer */ |
||||
JOCTET * buffer; /* start of buffer */ |
||||
size_t bufsize; |
||||
} my_mem_destination_mgr; |
||||
|
||||
typedef my_mem_destination_mgr * my_mem_dest_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress |
||||
* before any data is actually written. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
init_destination (j_compress_ptr cinfo) |
||||
{ |
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; |
||||
|
||||
dest->pub.next_output_byte = dest->buffer; |
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; |
||||
} |
||||
|
||||
METHODDEF(void) |
||||
init_mem_destination (j_compress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up. |
||||
* |
||||
* In typical applications, this should write the entire output buffer |
||||
* (ignoring the current state of next_output_byte & free_in_buffer), |
||||
* reset the pointer & count to the start of the buffer, and return TRUE |
||||
* indicating that the buffer has been dumped. |
||||
* |
||||
* In applications that need to be able to suspend compression due to output |
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now. |
||||
* In this situation, the compressor will return to its caller (possibly with |
||||
* an indication that it has not accepted all the supplied scanlines). The |
||||
* application should resume compression after it has made more room in the |
||||
* output buffer. Note that there are substantial restrictions on the use of |
||||
* suspension --- see the documentation. |
||||
* |
||||
* When suspending, the compressor will back up to a convenient restart point |
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer |
||||
* indicate where the restart point will be if the current call returns FALSE. |
||||
* Data beyond this point will be regenerated after resumption, so do not |
||||
* write it out when emptying the buffer externally. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
empty_output_buffer (j_compress_ptr cinfo) |
||||
{ |
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; |
||||
|
||||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != |
||||
(size_t) OUTPUT_BUF_SIZE) |
||||
ERREXIT(cinfo, JERR_FILE_WRITE); |
||||
|
||||
dest->pub.next_output_byte = dest->buffer; |
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
METHODDEF(boolean) |
||||
empty_mem_output_buffer (j_compress_ptr cinfo) |
||||
{ |
||||
size_t nextsize; |
||||
JOCTET * nextbuffer; |
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; |
||||
|
||||
/* Try to allocate new buffer with double size */ |
||||
nextsize = dest->bufsize * 2; |
||||
nextbuffer = (JOCTET *) malloc(nextsize); |
||||
|
||||
if (nextbuffer == NULL) |
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 11); |
||||
|
||||
MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); |
||||
|
||||
if (dest->newbuffer != NULL) |
||||
free(dest->newbuffer); |
||||
|
||||
dest->newbuffer = nextbuffer; |
||||
|
||||
dest->pub.next_output_byte = nextbuffer + dest->bufsize; |
||||
dest->pub.free_in_buffer = dest->bufsize; |
||||
|
||||
dest->buffer = nextbuffer; |
||||
dest->bufsize = nextsize; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress |
||||
* after all data has been written. Usually needs to flush buffer. |
||||
* |
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding |
||||
* application must deal with any cleanup that should happen even |
||||
* for error exit. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
term_destination (j_compress_ptr cinfo) |
||||
{ |
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; |
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; |
||||
|
||||
/* Write any data remaining in the buffer */ |
||||
if (datacount > 0) { |
||||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) |
||||
ERREXIT(cinfo, JERR_FILE_WRITE); |
||||
} |
||||
JFFLUSH(dest->outfile); |
||||
/* Make sure we wrote the output file OK */ |
||||
if (JFERROR(dest->outfile)) |
||||
ERREXIT(cinfo, JERR_FILE_WRITE); |
||||
} |
||||
|
||||
METHODDEF(void) |
||||
term_mem_destination (j_compress_ptr cinfo) |
||||
{ |
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; |
||||
|
||||
*dest->outbuffer = dest->buffer; |
||||
*dest->outsize = dest->bufsize - dest->pub.free_in_buffer; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream. |
||||
* The caller must have already opened the stream, |
||||
* and is responsible for closing it after finishing compression. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile) |
||||
{ |
||||
my_dest_ptr dest; |
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest. |
||||
* This makes it dangerous to use this manager and a different destination |
||||
* manager serially with the same JPEG object, because their private object |
||||
* sizes may be different. Caveat programmer. |
||||
*/ |
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_destination_mgr)); |
||||
} |
||||
|
||||
dest = (my_dest_ptr) cinfo->dest; |
||||
dest->pub.init_destination = init_destination; |
||||
dest->pub.empty_output_buffer = empty_output_buffer; |
||||
dest->pub.term_destination = term_destination; |
||||
dest->outfile = outfile; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a memory buffer. |
||||
* The caller may supply an own initial buffer with appropriate size. |
||||
* Otherwise, or when the actual data output exceeds the given size, |
||||
* the library adapts the buffer size as necessary. |
||||
* The standard library functions malloc/free are used for allocating |
||||
* larger memory, so the buffer is available to the application after |
||||
* finishing compression, and then the application is responsible for |
||||
* freeing the requested memory. |
||||
* Note: An initial buffer supplied by the caller is expected to be |
||||
* managed by the application. The library does not free such buffer |
||||
* when allocating a larger buffer. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_dest (j_compress_ptr cinfo, |
||||
unsigned char ** outbuffer, size_t * outsize) |
||||
{ |
||||
my_mem_dest_ptr dest; |
||||
|
||||
if (outbuffer == NULL || outsize == NULL) /* sanity check */ |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same buffer without re-executing jpeg_mem_dest. |
||||
*/ |
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_mem_destination_mgr)); |
||||
} |
||||
|
||||
dest = (my_mem_dest_ptr) cinfo->dest; |
||||
dest->pub.init_destination = init_mem_destination; |
||||
dest->pub.empty_output_buffer = empty_mem_output_buffer; |
||||
dest->pub.term_destination = term_mem_destination; |
||||
dest->outbuffer = outbuffer; |
||||
dest->outsize = outsize; |
||||
dest->newbuffer = NULL; |
||||
|
||||
if (*outbuffer == NULL || *outsize == 0) { |
||||
/* Allocate initial buffer */ |
||||
dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE); |
||||
if (dest->newbuffer == NULL) |
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); |
||||
*outsize = OUTPUT_BUF_SIZE; |
||||
} |
||||
|
||||
dest->pub.next_output_byte = dest->buffer = *outbuffer; |
||||
dest->pub.free_in_buffer = dest->bufsize = *outsize; |
||||
} |
@ -1,271 +0,0 @@ |
||||
/*
|
||||
* jdatasrc.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2009-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains decompression data source routines for the case of |
||||
* reading JPEG data from memory or from a file (or any stdio stream). |
||||
* While these routines are sufficient for most applications, |
||||
* some will want to use a different source manager. |
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of |
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider |
||||
* than 8 bits on your machine, you may need to do some tweaking. |
||||
*/ |
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jerror.h" |
||||
|
||||
|
||||
/* Expanded data source object for stdio input */ |
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_source_mgr pub; /* public fields */ |
||||
|
||||
FILE * infile; /* source stream */ |
||||
JOCTET buffer[INPUT_BUF_SIZE]; /* input buffer */ |
||||
boolean start_of_file; /* have we gotten any data yet? */ |
||||
} my_source_mgr; |
||||
|
||||
typedef my_source_mgr * my_src_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header |
||||
* before any data is actually read. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
init_source (j_decompress_ptr cinfo) |
||||
{ |
||||
my_src_ptr src = (my_src_ptr) cinfo->src; |
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer. |
||||
* This is correct behavior for reading a series of images from one source. |
||||
*/ |
||||
src->start_of_file = TRUE; |
||||
} |
||||
|
||||
METHODDEF(void) |
||||
init_mem_source (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied. |
||||
* |
||||
* In typical applications, this should read fresh data into the buffer |
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer), |
||||
* reset the pointer & count to the start of the buffer, and return TRUE |
||||
* indicating that the buffer has been reloaded. It is not necessary to |
||||
* fill the buffer entirely, only to obtain at least one more byte. |
||||
* |
||||
* There is no such thing as an EOF return. If the end of the file has been |
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into |
||||
* the buffer. In most cases, generating a warning message and inserting a |
||||
* fake EOI marker is the best course of action --- this will allow the |
||||
* decompressor to output however much of the image is there. However, |
||||
* the resulting error message is misleading if the real problem is an empty |
||||
* input file, so we handle that case specially. |
||||
* |
||||
* In applications that need to be able to suspend compression due to input |
||||
* not being available yet, a FALSE return indicates that no more data can be |
||||
* obtained right now, but more may be forthcoming later. In this situation, |
||||
* the decompressor will return to its caller (with an indication of the |
||||
* number of scanlines it has read, if any). The application should resume |
||||
* decompression after it has loaded more data into the input buffer. Note |
||||
* that there are substantial restrictions on the use of suspension --- see |
||||
* the documentation. |
||||
* |
||||
* When suspending, the decompressor will back up to a convenient restart point |
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer |
||||
* indicate where the restart point will be if the current call returns FALSE. |
||||
* Data beyond this point must be rescanned after resumption, so move it to |
||||
* the front of the buffer rather than discarding it. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
fill_input_buffer (j_decompress_ptr cinfo) |
||||
{ |
||||
my_src_ptr src = (my_src_ptr) cinfo->src; |
||||
size_t nbytes; |
||||
|
||||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); |
||||
|
||||
if (nbytes <= 0) { |
||||
if (src->start_of_file) /* Treat empty input file as fatal error */ |
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY); |
||||
WARNMS(cinfo, JWRN_JPEG_EOF); |
||||
/* Insert a fake EOI marker */ |
||||
src->buffer[0] = (JOCTET) 0xFF; |
||||
src->buffer[1] = (JOCTET) JPEG_EOI; |
||||
nbytes = 2; |
||||
} |
||||
|
||||
src->pub.next_input_byte = src->buffer; |
||||
src->pub.bytes_in_buffer = nbytes; |
||||
src->start_of_file = FALSE; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
METHODDEF(boolean) |
||||
fill_mem_input_buffer (j_decompress_ptr cinfo) |
||||
{ |
||||
static const JOCTET mybuffer[4] = { |
||||
(JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0 |
||||
}; |
||||
|
||||
/* The whole JPEG data is expected to reside in the supplied memory
|
||||
* buffer, so any request for more data beyond the given buffer size |
||||
* is treated as an error. |
||||
*/ |
||||
WARNMS(cinfo, JWRN_JPEG_EOF); |
||||
|
||||
/* Insert a fake EOI marker */ |
||||
|
||||
cinfo->src->next_input_byte = mybuffer; |
||||
cinfo->src->bytes_in_buffer = 2; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of |
||||
* uninteresting data (such as an APPn marker). |
||||
* |
||||
* Writers of suspendable-input applications must note that skip_input_data |
||||
* is not granted the right to give a suspension return. If the skip extends |
||||
* beyond the data currently in the buffer, the buffer can be marked empty so |
||||
* that the next read will cause a fill_input_buffer call that can suspend. |
||||
* Arranging for additional bytes to be discarded before reloading the input |
||||
* buffer is the application writer's problem. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
skip_input_data (j_decompress_ptr cinfo, long num_bytes) |
||||
{ |
||||
struct jpeg_source_mgr * src = cinfo->src; |
||||
size_t nbytes; |
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth |
||||
* any trouble anyway --- large skips are infrequent. |
||||
*/ |
||||
if (num_bytes > 0) { |
||||
nbytes = (size_t) num_bytes; |
||||
while (nbytes > src->bytes_in_buffer) { |
||||
nbytes -= src->bytes_in_buffer; |
||||
(void) (*src->fill_input_buffer) (cinfo); |
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled. |
||||
*/ |
||||
} |
||||
src->next_input_byte += nbytes; |
||||
src->bytes_in_buffer -= nbytes; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the |
||||
* resync_to_restart method for error recovery in the presence of RST markers. |
||||
* For the moment, this source module just uses the default resync method |
||||
* provided by the JPEG library. That method assumes that no backtracking |
||||
* is possible. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress |
||||
* after all data has been read. Often a no-op. |
||||
* |
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding |
||||
* application must deal with any cleanup that should happen even |
||||
* for error exit. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
term_source (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream. |
||||
* The caller must have already opened the stream, |
||||
* and is responsible for closing it after finishing decompression. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile) |
||||
{ |
||||
my_src_ptr src; |
||||
|
||||
/* The source object including the input buffer is made permanent so that
|
||||
* a series of JPEG images can be read from the same file by calling |
||||
* jpeg_stdio_src only before the first one. (If we discarded the buffer |
||||
* at the end of one image, we'd likely lose the start of the next one.) |
||||
* This makes it unsafe to use this manager and a different source |
||||
* manager serially with the same JPEG object. Caveat programmer. |
||||
*/ |
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_source_mgr)); |
||||
} |
||||
|
||||
src = (my_src_ptr) cinfo->src; |
||||
src->pub.init_source = init_source; |
||||
src->pub.fill_input_buffer = fill_input_buffer; |
||||
src->pub.skip_input_data = skip_input_data; |
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ |
||||
src->pub.term_source = term_source; |
||||
src->infile = infile; |
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ |
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a supplied memory buffer. |
||||
* The buffer must contain the whole JPEG data. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_src (j_decompress_ptr cinfo, |
||||
const unsigned char * inbuffer, size_t insize) |
||||
{ |
||||
struct jpeg_source_mgr * src; |
||||
|
||||
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ |
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY); |
||||
|
||||
/* The source object is made permanent so that a series of JPEG images
|
||||
* can be read from the same buffer by calling jpeg_mem_src only before |
||||
* the first one. |
||||
*/ |
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(struct jpeg_source_mgr)); |
||||
} |
||||
|
||||
src = cinfo->src; |
||||
src->init_source = init_mem_source; |
||||
src->fill_input_buffer = fill_mem_input_buffer; |
||||
src->skip_input_data = skip_input_data; |
||||
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ |
||||
src->term_source = term_source; |
||||
src->bytes_in_buffer = insize; |
||||
src->next_input_byte = (const JOCTET *) inbuffer; |
||||
} |
@ -1,744 +0,0 @@ |
||||
/*
|
||||
* jdcoefct.c |
||||
* |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* Modified 2002-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the coefficient buffer controller for decompression. |
||||
* This controller is the top level of the JPEG decompressor proper. |
||||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
||||
* |
||||
* In buffered-image mode, this controller is the interface between |
||||
* input-oriented processing and output-oriented processing. |
||||
* Also, the input side (only) is used when reading a file for transcoding. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Block smoothing is only applicable for progressive JPEG, so: */ |
||||
#ifndef D_PROGRESSIVE_SUPPORTED |
||||
#undef BLOCK_SMOOTHING_SUPPORTED |
||||
#endif |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_d_coef_controller pub; /* public fields */ |
||||
|
||||
/* These variables keep track of the current location of the input side. */ |
||||
/* cinfo->input_iMCU_row is also used for this. */ |
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||||
|
||||
/* The output side's location is represented by cinfo->output_iMCU_row. */ |
||||
|
||||
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
||||
* We append a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
||||
* and let the entropy decoder write into that workspace each time. |
||||
* In multi-pass modes, this array points to the current MCU's blocks |
||||
* within the virtual arrays; it is used only by the input side. |
||||
*/ |
||||
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
/* In multi-pass modes, we need a virtual block array for each component. */ |
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
||||
#endif |
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
/* When doing block smoothing, we latch coefficient Al values here */ |
||||
int * coef_bits_latch; |
||||
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
||||
#endif |
||||
|
||||
/* Workspace for single-pass modes (omitted otherwise). */ |
||||
JBLOCK blk_buffer[D_MAX_BLOCKS_IN_MCU]; |
||||
} my_coef_controller; |
||||
|
||||
typedef my_coef_controller * my_coef_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(int) decompress_onepass |
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
METHODDEF(int) decompress_data |
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
||||
#endif |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
||||
METHODDEF(int) decompress_smooth_data |
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
start_iMCU_row (j_decompress_ptr cinfo) |
||||
/* Reset within-iMCU-row counters for a new row (input side) */ |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||||
* But at the bottom of the image, process only what's left. |
||||
*/ |
||||
if (cinfo->comps_in_scan > 1) { |
||||
coef->MCU_rows_per_iMCU_row = 1; |
||||
} else { |
||||
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||||
else |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||||
} |
||||
|
||||
coef->MCU_ctr = 0; |
||||
coef->MCU_vert_offset = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an input processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_input_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
cinfo->input_iMCU_row = 0; |
||||
start_iMCU_row(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an output processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_output_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* If multipass, check to see whether to use block smoothing on this pass */ |
||||
if (coef->pub.coef_arrays != NULL) { |
||||
if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
||||
coef->pub.decompress_data = decompress_smooth_data; |
||||
else |
||||
coef->pub.decompress_data = decompress_data; |
||||
} |
||||
#endif |
||||
cinfo->output_iMCU_row = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the single-pass case. |
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
||||
* Input and output must run in lockstep since we have only a one-MCU buffer. |
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
||||
* |
||||
* NB: output_buf contains a plane for each component in image, |
||||
* which we index according to the component's SOF position. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
int ci, xindex, yindex, yoffset, useful_width; |
||||
JBLOCKROW blkp; |
||||
JSAMPARRAY output_ptr; |
||||
JDIMENSION start_col, output_col; |
||||
jpeg_component_info *compptr; |
||||
inverse_DCT_method_ptr inverse_DCT; |
||||
|
||||
/* Loop to process as much as one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
||||
MCU_col_num++) { |
||||
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */ |
||||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
||||
if (cinfo->lim_Se) /* can bypass in DC only case */ |
||||
MEMZERO(blkp, cinfo->blocks_in_MCU * SIZEOF(JBLOCK)); |
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||
* We skip dummy blocks at the right and bottom edges (but blkp gets |
||||
* incremented past them!). |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Don't bother to IDCT an uninteresting component. */ |
||||
if (! compptr->component_needed) { |
||||
blkp += compptr->MCU_blocks; |
||||
continue; |
||||
} |
||||
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
||||
output_ptr = output_buf[compptr->component_index] + |
||||
yoffset * compptr->DCT_v_scaled_size; |
||||
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||||
: compptr->last_col_width; |
||||
start_col = MCU_col_num * compptr->MCU_sample_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
if (cinfo->input_iMCU_row < last_iMCU_row || |
||||
yoffset + yindex < compptr->last_row_height) { |
||||
output_col = start_col; |
||||
for (xindex = 0; xindex < useful_width; xindex++) { |
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) (blkp + xindex), |
||||
output_ptr, output_col); |
||||
output_col += compptr->DCT_h_scaled_size; |
||||
} |
||||
output_ptr += compptr->DCT_v_scaled_size; |
||||
} |
||||
blkp += compptr->MCU_width; |
||||
} |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
cinfo->output_iMCU_row++; |
||||
if (++(cinfo->input_iMCU_row) <= last_iMCU_row) { |
||||
start_iMCU_row(cinfo); |
||||
return JPEG_ROW_COMPLETED; |
||||
} |
||||
/* Completed the scan */ |
||||
(*cinfo->inputctl->finish_input_pass) (cinfo); |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Dummy consume-input routine for single-pass operation. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
dummy_consume_data (j_decompress_ptr cinfo) |
||||
{ |
||||
return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
||||
} |
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
/*
|
||||
* Consume input data and store it in the full-image coefficient buffer. |
||||
* We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
||||
* ie, v_samp_factor block rows for each component in the scan. |
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
consume_data (j_decompress_ptr cinfo) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
int ci, xindex, yindex, yoffset; |
||||
JDIMENSION start_col; |
||||
JBLOCKARRAY blkp; |
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||||
JBLOCKROW buffer_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
buffer[ci] = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||||
cinfo->input_iMCU_row * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, TRUE); |
||||
/* Note: entropy decoder expects buffer to be zeroed,
|
||||
* but this is handled automatically by the memory manager |
||||
* because we requested a pre-zeroed array. |
||||
*/ |
||||
} |
||||
|
||||
/* Loop to process one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
||||
MCU_col_num++) { |
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
||||
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
start_col = MCU_col_num * compptr->MCU_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
buffer_ptr = buffer[ci][yoffset + yindex] + start_col; |
||||
xindex = compptr->MCU_width; |
||||
do { |
||||
*blkp++ = buffer_ptr++; |
||||
} while (--xindex); |
||||
} |
||||
} |
||||
/* Try to fetch the MCU. */ |
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
||||
start_iMCU_row(cinfo); |
||||
return JPEG_ROW_COMPLETED; |
||||
} |
||||
/* Completed the scan */ |
||||
(*cinfo->inputctl->finish_input_pass) (cinfo); |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the multi-pass case. |
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
||||
* |
||||
* NB: output_buf contains a plane for each component in image. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
JDIMENSION block_num; |
||||
int ci, block_row, block_rows; |
||||
JBLOCKARRAY buffer; |
||||
JBLOCKROW buffer_ptr; |
||||
JSAMPARRAY output_ptr; |
||||
JDIMENSION output_col; |
||||
jpeg_component_info *compptr; |
||||
inverse_DCT_method_ptr inverse_DCT; |
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */ |
||||
while (cinfo->input_scan_number < cinfo->output_scan_number || |
||||
(cinfo->input_scan_number == cinfo->output_scan_number && |
||||
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
|
||||
/* OK, output from the virtual arrays. */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Don't bother to IDCT an uninteresting component. */ |
||||
if (! compptr->component_needed) |
||||
continue; |
||||
/* Align the virtual buffer for this component. */ |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
cinfo->output_iMCU_row * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, FALSE); |
||||
/* Count non-dummy DCT block rows in this iMCU row. */ |
||||
if (cinfo->output_iMCU_row < last_iMCU_row) |
||||
block_rows = compptr->v_samp_factor; |
||||
else { |
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||||
} |
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
||||
output_ptr = output_buf[ci]; |
||||
/* Loop over all DCT blocks to be processed. */ |
||||
for (block_row = 0; block_row < block_rows; block_row++) { |
||||
buffer_ptr = buffer[block_row]; |
||||
output_col = 0; |
||||
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
||||
output_ptr, output_col); |
||||
buffer_ptr++; |
||||
output_col += compptr->DCT_h_scaled_size; |
||||
} |
||||
output_ptr += compptr->DCT_v_scaled_size; |
||||
} |
||||
} |
||||
|
||||
if (++(cinfo->output_iMCU_row) <= last_iMCU_row) |
||||
return JPEG_ROW_COMPLETED; |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
|
||||
/*
|
||||
* This code applies interblock smoothing as described by section K.8 |
||||
* of the JPEG standard: the first 5 AC coefficients are estimated from |
||||
* the DC values of a DCT block and its 8 neighboring blocks. |
||||
* We apply smoothing only for progressive JPEG decoding, and only if |
||||
* the coefficients it can estimate are not yet known to full precision. |
||||
*/ |
||||
|
||||
/* Natural-order array positions of the first 5 zigzag-order coefficients */ |
||||
#define Q01_POS 1 |
||||
#define Q10_POS 8 |
||||
#define Q20_POS 16 |
||||
#define Q11_POS 9 |
||||
#define Q02_POS 2 |
||||
|
||||
/*
|
||||
* Determine whether block smoothing is applicable and safe. |
||||
* We also latch the current states of the coef_bits[] entries for the |
||||
* AC coefficients; otherwise, if the input side of the decompressor |
||||
* advances into a new scan, we might think the coefficients are known |
||||
* more accurately than they really are. |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
smoothing_ok (j_decompress_ptr cinfo) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
boolean smoothing_useful = FALSE; |
||||
int ci, coefi; |
||||
jpeg_component_info *compptr; |
||||
JQUANT_TBL * qtable; |
||||
int * coef_bits; |
||||
int * coef_bits_latch; |
||||
|
||||
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
||||
return FALSE; |
||||
|
||||
/* Allocate latch area if not already done */ |
||||
if (coef->coef_bits_latch == NULL) |
||||
coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components * (SAVED_COEFS * SIZEOF(int))); |
||||
coef_bits_latch = coef->coef_bits_latch; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* All components' quantization values must already be latched. */ |
||||
if ((qtable = compptr->quant_table) == NULL) |
||||
return FALSE; |
||||
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
||||
if (qtable->quantval[0] == 0 || |
||||
qtable->quantval[Q01_POS] == 0 || |
||||
qtable->quantval[Q10_POS] == 0 || |
||||
qtable->quantval[Q20_POS] == 0 || |
||||
qtable->quantval[Q11_POS] == 0 || |
||||
qtable->quantval[Q02_POS] == 0) |
||||
return FALSE; |
||||
/* DC values must be at least partly known for all components. */ |
||||
coef_bits = cinfo->coef_bits[ci]; |
||||
if (coef_bits[0] < 0) |
||||
return FALSE; |
||||
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
||||
for (coefi = 1; coefi <= 5; coefi++) { |
||||
coef_bits_latch[coefi] = coef_bits[coefi]; |
||||
if (coef_bits[coefi] != 0) |
||||
smoothing_useful = TRUE; |
||||
} |
||||
coef_bits_latch += SAVED_COEFS; |
||||
} |
||||
|
||||
return smoothing_useful; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Variant of decompress_data for use when doing block smoothing. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
JDIMENSION block_num, last_block_column; |
||||
int ci, block_row, block_rows, access_rows; |
||||
JBLOCKARRAY buffer; |
||||
JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
||||
JSAMPARRAY output_ptr; |
||||
JDIMENSION output_col; |
||||
jpeg_component_info *compptr; |
||||
inverse_DCT_method_ptr inverse_DCT; |
||||
boolean first_row, last_row; |
||||
JBLOCK workspace; |
||||
int *coef_bits; |
||||
JQUANT_TBL *quanttbl; |
||||
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
||||
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
||||
int Al, pred; |
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */ |
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number && |
||||
! cinfo->inputctl->eoi_reached) { |
||||
if (cinfo->input_scan_number == cinfo->output_scan_number) { |
||||
/* If input is working on current scan, we ordinarily want it to
|
||||
* have completed the current row. But if input scan is DC, |
||||
* we want it to keep one row ahead so that next block row's DC |
||||
* values are up to date. |
||||
*/ |
||||
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
||||
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
||||
break; |
||||
} |
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
|
||||
/* OK, output from the virtual arrays. */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Don't bother to IDCT an uninteresting component. */ |
||||
if (! compptr->component_needed) |
||||
continue; |
||||
/* Count non-dummy DCT block rows in this iMCU row. */ |
||||
if (cinfo->output_iMCU_row < last_iMCU_row) { |
||||
block_rows = compptr->v_samp_factor; |
||||
access_rows = block_rows * 2; /* this and next iMCU row */ |
||||
last_row = FALSE; |
||||
} else { |
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||||
access_rows = block_rows; /* this iMCU row only */ |
||||
last_row = TRUE; |
||||
} |
||||
/* Align the virtual buffer for this component. */ |
||||
if (cinfo->output_iMCU_row > 0) { |
||||
access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
||||
(JDIMENSION) access_rows, FALSE); |
||||
buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
||||
first_row = FALSE; |
||||
} else { |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
||||
first_row = TRUE; |
||||
} |
||||
/* Fetch component-dependent info */ |
||||
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
||||
quanttbl = compptr->quant_table; |
||||
Q00 = quanttbl->quantval[0]; |
||||
Q01 = quanttbl->quantval[Q01_POS]; |
||||
Q10 = quanttbl->quantval[Q10_POS]; |
||||
Q20 = quanttbl->quantval[Q20_POS]; |
||||
Q11 = quanttbl->quantval[Q11_POS]; |
||||
Q02 = quanttbl->quantval[Q02_POS]; |
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
||||
output_ptr = output_buf[ci]; |
||||
/* Loop over all DCT blocks to be processed. */ |
||||
for (block_row = 0; block_row < block_rows; block_row++) { |
||||
buffer_ptr = buffer[block_row]; |
||||
if (first_row && block_row == 0) |
||||
prev_block_row = buffer_ptr; |
||||
else |
||||
prev_block_row = buffer[block_row-1]; |
||||
if (last_row && block_row == block_rows-1) |
||||
next_block_row = buffer_ptr; |
||||
else |
||||
next_block_row = buffer[block_row+1]; |
||||
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||
* Initialize all nine here so as to do the right thing on narrow pics. |
||||
*/ |
||||
DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
||||
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
||||
DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
||||
output_col = 0; |
||||
last_block_column = compptr->width_in_blocks - 1; |
||||
for (block_num = 0; block_num <= last_block_column; block_num++) { |
||||
/* Fetch current DCT block into workspace so we can modify it. */ |
||||
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
||||
/* Update DC values */ |
||||
if (block_num < last_block_column) { |
||||
DC3 = (int) prev_block_row[1][0]; |
||||
DC6 = (int) buffer_ptr[1][0]; |
||||
DC9 = (int) next_block_row[1][0]; |
||||
} |
||||
/* Compute coefficient estimates per K.8.
|
||||
* An estimate is applied only if coefficient is still zero, |
||||
* and is not known to be fully accurate. |
||||
*/ |
||||
/* AC01 */ |
||||
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
||||
num = 36 * Q00 * (DC4 - DC6); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[1] = (JCOEF) pred; |
||||
} |
||||
/* AC10 */ |
||||
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
||||
num = 36 * Q00 * (DC2 - DC8); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[8] = (JCOEF) pred; |
||||
} |
||||
/* AC20 */ |
||||
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
||||
num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[16] = (JCOEF) pred; |
||||
} |
||||
/* AC11 */ |
||||
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
||||
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[9] = (JCOEF) pred; |
||||
} |
||||
/* AC02 */ |
||||
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
||||
num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[2] = (JCOEF) pred; |
||||
} |
||||
/* OK, do the IDCT */ |
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
||||
output_ptr, output_col); |
||||
/* Advance for next column */ |
||||
DC1 = DC2; DC2 = DC3; |
||||
DC4 = DC5; DC5 = DC6; |
||||
DC7 = DC8; DC8 = DC9; |
||||
buffer_ptr++, prev_block_row++, next_block_row++; |
||||
output_col += compptr->DCT_h_scaled_size; |
||||
} |
||||
output_ptr += compptr->DCT_v_scaled_size; |
||||
} |
||||
} |
||||
|
||||
if (++(cinfo->output_iMCU_row) <= last_iMCU_row) |
||||
return JPEG_ROW_COMPLETED; |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
#endif /* BLOCK_SMOOTHING_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_coef_ptr coef; |
||||
|
||||
if (need_full_buffer) { |
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
/* Allocate a full-image virtual array for each component, */ |
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
||||
/* Note we ask for a pre-zeroed array. */ |
||||
int ci, access_rows; |
||||
jpeg_component_info *compptr; |
||||
|
||||
coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer)); |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
access_rows = compptr->v_samp_factor; |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
/* If block smoothing could be used, need a bigger window */ |
||||
if (cinfo->progressive_mode) |
||||
access_rows *= 3; |
||||
#endif |
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
||||
(long) compptr->h_samp_factor), |
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
||||
(long) compptr->v_samp_factor), |
||||
(JDIMENSION) access_rows); |
||||
} |
||||
coef->pub.consume_data = consume_data; |
||||
coef->pub.decompress_data = decompress_data; |
||||
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
/* We only need a single-MCU buffer. */ |
||||
JBLOCKARRAY blkp; |
||||
JBLOCKROW buffer_ptr; |
||||
int bi; |
||||
|
||||
coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); |
||||
buffer_ptr = coef->blk_buffer; |
||||
if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */ |
||||
MEMZERO(buffer_ptr, SIZEOF(coef->blk_buffer)); |
||||
blkp = coef->MCU_buffer; |
||||
bi = D_MAX_BLOCKS_IN_MCU; |
||||
do { |
||||
*blkp++ = buffer_ptr++; |
||||
} while (--bi); |
||||
coef->pub.consume_data = dummy_consume_data; |
||||
coef->pub.decompress_data = decompress_onepass; |
||||
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
||||
} |
||||
|
||||
coef->pub.start_input_pass = start_input_pass; |
||||
coef->pub.start_output_pass = start_output_pass; |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
coef->coef_bits_latch = NULL; |
||||
#endif |
||||
cinfo->coef = &coef->pub; |
||||
} |
@ -1,769 +0,0 @@ |
||||
/*
|
||||
* jdcolor.c |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2011-2023 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains output colorspace conversion routines. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
#if RANGE_BITS < 2 |
||||
/* Deliberate syntax err */ |
||||
Sorry, this code requires 2 or more range extension bits. |
||||
#endif |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_color_deconverter pub; /* public fields */ |
||||
|
||||
/* Private state for YCbCr->RGB and BG_YCC->RGB conversion */ |
||||
int * Cr_r_tab; /* => table for Cr to R conversion */ |
||||
int * Cb_b_tab; /* => table for Cb to B conversion */ |
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */ |
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */ |
||||
|
||||
/* Private state for RGB->Y conversion */ |
||||
INT32 * R_y_tab; /* => table for R to Y conversion */ |
||||
INT32 * G_y_tab; /* => table for G to Y conversion */ |
||||
INT32 * B_y_tab; /* => table for B to Y conversion */ |
||||
} my_color_deconverter; |
||||
|
||||
typedef my_color_deconverter * my_cconvert_ptr; |
||||
|
||||
|
||||
/*************** YCbCr -> RGB conversion: most common case **************/ |
||||
/*************** BG_YCC -> RGB conversion: less common case **************/ |
||||
/*************** RGB -> Y conversion: less common case **************/ |
||||
|
||||
/*
|
||||
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), |
||||
* previously known as Recommendation CCIR 601-1, except that Cb and Cr |
||||
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. |
||||
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. |
||||
* sYCC (standard luma-chroma-chroma color space with extended gamut) |
||||
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. |
||||
* bg-sRGB and bg-sYCC (big gamut standard color spaces) |
||||
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. |
||||
* Note that the derived conversion coefficients given in some of these |
||||
* documents are imprecise. The general conversion equations are |
||||
* |
||||
* R = Y + K * (1 - Kr) * Cr |
||||
* G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb) |
||||
* B = Y + K * (1 - Kb) * Cb |
||||
* |
||||
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B |
||||
* |
||||
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 |
||||
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, |
||||
* the conversion equations to be implemented are therefore |
||||
* |
||||
* R = Y + 1.402 * Cr |
||||
* G = Y - 0.344136286 * Cb - 0.714136286 * Cr |
||||
* B = Y + 1.772 * Cb |
||||
* |
||||
* Y = 0.299 * R + 0.587 * G + 0.114 * B |
||||
* |
||||
* where Cb and Cr represent the incoming values less CENTERJSAMPLE. |
||||
* For bg-sYCC, with K = 4, the equations are |
||||
* |
||||
* R = Y + 2.804 * Cr |
||||
* G = Y - 0.688272572 * Cb - 1.428272572 * Cr |
||||
* B = Y + 3.544 * Cb |
||||
* |
||||
* To avoid floating-point arithmetic, we represent the fractional constants |
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide |
||||
* the products by 2^16, with appropriate rounding, to get the correct answer. |
||||
* Notice that Y, being an integral input, does not contribute any fraction |
||||
* so it need not participate in the rounding. |
||||
* |
||||
* For even more speed, we avoid doing any multiplications in the inner loop |
||||
* by precalculating the constants times Cb and Cr for all possible values. |
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); |
||||
* for 9-bit to 12-bit samples it is still acceptable. It's not very |
||||
* reasonable for 16-bit samples, but if you want lossless storage |
||||
* you shouldn't be changing colorspace anyway. |
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; |
||||
* the values for the G calculation are left scaled up, |
||||
* since we must add them together before rounding. |
||||
*/ |
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
build_ycc_rgb_table (j_decompress_ptr cinfo) |
||||
/* Normal case, sYCC */ |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
int i; |
||||
INT32 x; |
||||
SHIFT_TEMPS |
||||
|
||||
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
||||
/* Cr=>R value is nearest int to 1.402 * x */ |
||||
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS); |
||||
/* Cb=>B value is nearest int to 1.772 * x */ |
||||
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS); |
||||
/* Cr=>G value is scaled-up -0.714136286 * x */ |
||||
cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x; |
||||
/* Cb=>G value is scaled-up -0.344136286 * x */ |
||||
/* We also add in ONE_HALF so that need not do it in inner loop */ |
||||
cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
build_bg_ycc_rgb_table (j_decompress_ptr cinfo) |
||||
/* Wide gamut case, bg-sYCC */ |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
int i; |
||||
INT32 x; |
||||
SHIFT_TEMPS |
||||
|
||||
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
||||
/* Cr=>R value is nearest int to 2.804 * x */ |
||||
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS); |
||||
/* Cb=>B value is nearest int to 3.544 * x */ |
||||
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS); |
||||
/* Cr=>G value is scaled-up -1.428272572 * x */ |
||||
cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x; |
||||
/* Cb=>G value is scaled-up -0.688272572 * x */ |
||||
/* We also add in ONE_HALF so that need not do it in inner loop */ |
||||
cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace. |
||||
* |
||||
* Note that we change from noninterleaved, one-plane-per-component format |
||||
* to interleaved-pixel format. The output buffer is therefore three times |
||||
* as wide as the input buffer. |
||||
* |
||||
* A starting row offset is provided only for the input buffer. The caller |
||||
* can easily adjust the passed output_buf value to accommodate any row |
||||
* offset required on that side. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
ycc_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int y, cb, cr; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
register int * Crrtab = cconvert->Cr_r_tab; |
||||
register int * Cbbtab = cconvert->Cb_b_tab; |
||||
register INT32 * Crgtab = cconvert->Cr_g_tab; |
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = GETJSAMPLE(inptr0[col]); |
||||
cb = GETJSAMPLE(inptr1[col]); |
||||
cr = GETJSAMPLE(inptr2[col]); |
||||
/* Range-limiting is essential due to noise introduced by DCT losses,
|
||||
* for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings. |
||||
*/ |
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; |
||||
outptr[RGB_GREEN] = range_limit[y + |
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**************** Cases other than YCC -> RGB ****************/ |
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->grayscale colorspace conversion. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
build_rgb_y_table (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
INT32 i; |
||||
|
||||
cconvert->R_y_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
cconvert->G_y_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
cconvert->B_y_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) { |
||||
cconvert->R_y_tab[i] = FIX(0.299) * i; |
||||
cconvert->G_y_tab[i] = FIX(0.587) * i; |
||||
cconvert->B_y_tab[i] = FIX(0.114) * i + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert RGB to grayscale. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_gray_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register INT32 y; |
||||
register INT32 * Rytab = cconvert->R_y_tab; |
||||
register INT32 * Gytab = cconvert->G_y_tab; |
||||
register INT32 * Bytab = cconvert->B_y_tab; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = Rytab[GETJSAMPLE(inptr0[col])]; |
||||
y += Gytab[GETJSAMPLE(inptr1[col])]; |
||||
y += Bytab[GETJSAMPLE(inptr2[col])]; |
||||
outptr[col] = (JSAMPLE) (y >> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace. |
||||
* [R-G,G,B-G] to [R,G,B] conversion with modulo calculation |
||||
* (inverse color transform). |
||||
* This can be seen as an adaption of the general YCbCr->RGB |
||||
* conversion equation with Kr = Kb = 0, while replacing the |
||||
* normalization by modulo calculation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb1_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register int r, g, b; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr0[col]); |
||||
g = GETJSAMPLE(inptr1[col]); |
||||
b = GETJSAMPLE(inptr2[col]); |
||||
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
|
||||
* (modulo) operator is equivalent to the bitmask operator AND. |
||||
*/ |
||||
outptr[RGB_RED] = (JSAMPLE) ((r + g - CENTERJSAMPLE) & MAXJSAMPLE); |
||||
outptr[RGB_GREEN] = (JSAMPLE) g; |
||||
outptr[RGB_BLUE] = (JSAMPLE) ((b + g - CENTERJSAMPLE) & MAXJSAMPLE); |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* [R-G,G,B-G] to grayscale conversion with modulo calculation |
||||
* (inverse color transform). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb1_gray_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register INT32 y; |
||||
register INT32 * Rytab = cconvert->R_y_tab; |
||||
register INT32 * Gytab = cconvert->G_y_tab; |
||||
register INT32 * Bytab = cconvert->B_y_tab; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr0[col]); |
||||
g = GETJSAMPLE(inptr1[col]); |
||||
b = GETJSAMPLE(inptr2[col]); |
||||
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
|
||||
* (modulo) operator is equivalent to the bitmask operator AND. |
||||
*/ |
||||
y = Rytab[(r + g - CENTERJSAMPLE) & MAXJSAMPLE]; |
||||
y += Gytab[g]; |
||||
y += Bytab[(b + g - CENTERJSAMPLE) & MAXJSAMPLE]; |
||||
outptr[col] = (JSAMPLE) (y >> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace. |
||||
* No colorspace change, but conversion from separate-planes |
||||
* to interleaved representation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
/* We can dispense with GETJSAMPLE() here */ |
||||
outptr[RGB_RED] = inptr0[col]; |
||||
outptr[RGB_GREEN] = inptr1[col]; |
||||
outptr[RGB_BLUE] = inptr2[col]; |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data, |
||||
* converting from separate-planes to interleaved representation. |
||||
* Note: Omit uninteresting components in output buffer. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
null_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr; |
||||
register JDIMENSION count; |
||||
register int out_comps = cinfo->out_color_components; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
JSAMPROW startptr; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
while (--num_rows >= 0) { |
||||
/* It seems fastest to make a separate pass for each component. */ |
||||
startptr = *output_buf++; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (! compptr->component_needed) |
||||
continue; /* skip uninteresting component */ |
||||
inptr = input_buf[ci][input_row]; |
||||
outptr = startptr++; |
||||
for (count = num_cols; count > 0; count--) { |
||||
*outptr = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
outptr += out_comps; |
||||
} |
||||
} |
||||
input_row++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data. |
||||
* This also works for YCC -> grayscale conversion, in which |
||||
* we just copy the Y (luminance) component and ignore chrominance. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
grayscale_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
jcopy_sample_rows(input_buf[0] + input_row, output_buf, |
||||
num_rows, cinfo->output_width); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB: just duplicate the graylevel three times. |
||||
* This is provided to support applications that don't want to cope |
||||
* with grayscale as a separate case. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
gray_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = input_buf[0][input_row++]; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
/* We can dispense with GETJSAMPLE() here */ |
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace. |
||||
* This version handles Adobe-style YCCK->CMYK conversion, |
||||
* where we convert YCbCr to R=1-C, G=1-M, and B=1-Y using the |
||||
* same conversion as above, while passing K (black) unchanged. |
||||
* We assume build_ycc_rgb_table has been called. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
ycck_cmyk_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int y, cb, cr; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
register int * Crrtab = cconvert->Cr_r_tab; |
||||
register int * Cbbtab = cconvert->Cb_b_tab; |
||||
register INT32 * Crgtab = cconvert->Cr_g_tab; |
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
inptr3 = input_buf[3][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = GETJSAMPLE(inptr0[col]); |
||||
cb = GETJSAMPLE(inptr1[col]); |
||||
cr = GETJSAMPLE(inptr2[col]); |
||||
/* Range-limiting is essential due to noise introduced by DCT losses,
|
||||
* and for extended gamut encodings (sYCC). |
||||
*/ |
||||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ |
||||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ |
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS)))]; |
||||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ |
||||
/* K passes through unchanged */ |
||||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ |
||||
outptr += 4; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert CMYK to YK part of YCCK for colorless output. |
||||
* We assume build_rgb_y_table has been called. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
cmyk_yk_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register INT32 y; |
||||
register INT32 * Rytab = cconvert->R_y_tab; |
||||
register INT32 * Gytab = cconvert->G_y_tab; |
||||
register INT32 * Bytab = cconvert->B_y_tab; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
inptr3 = input_buf[3][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = Rytab[MAXJSAMPLE - GETJSAMPLE(inptr0[col])]; |
||||
y += Gytab[MAXJSAMPLE - GETJSAMPLE(inptr1[col])]; |
||||
y += Bytab[MAXJSAMPLE - GETJSAMPLE(inptr2[col])]; |
||||
outptr[0] = (JSAMPLE) (y >> SCALEBITS); |
||||
/* K passes through unchanged */ |
||||
outptr[1] = inptr3[col]; /* don't need GETJSAMPLE here */ |
||||
outptr += 2; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_dcolor (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work needed */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for output colorspace conversion. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_color_deconverter (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert; |
||||
int ci, i; |
||||
|
||||
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter)); |
||||
cinfo->cconvert = &cconvert->pub; |
||||
cconvert->pub.start_pass = start_pass_dcolor; |
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */ |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
if (cinfo->num_components != 1) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
case JCS_YCbCr: |
||||
case JCS_BG_RGB: |
||||
case JCS_BG_YCC: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
case JCS_YCCK: |
||||
if (cinfo->num_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
|
||||
default: /* JCS_UNKNOWN can be anything */ |
||||
if (cinfo->num_components < 1) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
} |
||||
|
||||
/* Support color transform only for RGB colorspaces */ |
||||
if (cinfo->color_transform && |
||||
cinfo->jpeg_color_space != JCS_RGB && |
||||
cinfo->jpeg_color_space != JCS_BG_RGB) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also adjust the component_needed flags for any unused components, |
||||
* so that earlier pipeline stages can avoid useless computation. |
||||
*/ |
||||
|
||||
switch (cinfo->out_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
cinfo->out_color_components = 1; |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
case JCS_YCbCr: |
||||
case JCS_BG_YCC: |
||||
cconvert->pub.color_convert = grayscale_convert; |
||||
/* For color->grayscale conversion, only the Y (0) component is needed */ |
||||
for (ci = 1; ci < cinfo->num_components; ci++) |
||||
cinfo->comp_info[ci].component_needed = FALSE; |
||||
break; |
||||
case JCS_RGB: |
||||
switch (cinfo->color_transform) { |
||||
case JCT_NONE: |
||||
cconvert->pub.color_convert = rgb_gray_convert; |
||||
break; |
||||
case JCT_SUBTRACT_GREEN: |
||||
cconvert->pub.color_convert = rgb1_gray_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
build_rgb_y_table(cinfo); |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
cinfo->out_color_components = RGB_PIXELSIZE; |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
cconvert->pub.color_convert = gray_rgb_convert; |
||||
break; |
||||
case JCS_YCbCr: |
||||
cconvert->pub.color_convert = ycc_rgb_convert; |
||||
build_ycc_rgb_table(cinfo); |
||||
break; |
||||
case JCS_BG_YCC: |
||||
cconvert->pub.color_convert = ycc_rgb_convert; |
||||
build_bg_ycc_rgb_table(cinfo); |
||||
break; |
||||
case JCS_RGB: |
||||
switch (cinfo->color_transform) { |
||||
case JCT_NONE: |
||||
cconvert->pub.color_convert = rgb_convert; |
||||
break; |
||||
case JCT_SUBTRACT_GREEN: |
||||
cconvert->pub.color_convert = rgb1_rgb_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_BG_RGB: |
||||
if (cinfo->jpeg_color_space != JCS_BG_RGB) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
cinfo->out_color_components = RGB_PIXELSIZE; |
||||
switch (cinfo->color_transform) { |
||||
case JCT_NONE: |
||||
cconvert->pub.color_convert = rgb_convert; |
||||
break; |
||||
case JCT_SUBTRACT_GREEN: |
||||
cconvert->pub.color_convert = rgb1_rgb_convert; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
if (cinfo->jpeg_color_space != JCS_YCCK) |
||||
goto def_label; |
||||
cinfo->out_color_components = 4; |
||||
cconvert->pub.color_convert = ycck_cmyk_convert; |
||||
build_ycc_rgb_table(cinfo); |
||||
break; |
||||
|
||||
case JCS_YCCK: |
||||
if (cinfo->jpeg_color_space != JCS_CMYK || |
||||
/* Support only YK part of YCCK for colorless output */ |
||||
! cinfo->comp_info[0].component_needed || |
||||
cinfo->comp_info[1].component_needed || |
||||
cinfo->comp_info[2].component_needed || |
||||
! cinfo->comp_info[3].component_needed) |
||||
goto def_label; |
||||
cinfo->out_color_components = 2; |
||||
/* Need all components on input side */ |
||||
cinfo->comp_info[1].component_needed = TRUE; |
||||
cinfo->comp_info[2].component_needed = TRUE; |
||||
cconvert->pub.color_convert = cmyk_yk_convert; |
||||
build_rgb_y_table(cinfo); |
||||
break; |
||||
|
||||
default: def_label: /* permit null conversion to same output space */ |
||||
if (cinfo->out_color_space != cinfo->jpeg_color_space) |
||||
/* unsupported non-null conversion */ |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
i = 0; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) |
||||
if (cinfo->comp_info[ci].component_needed) |
||||
i++; /* count output color components */ |
||||
cinfo->out_color_components = i; |
||||
cconvert->pub.color_convert = null_convert; |
||||
} |
||||
|
||||
if (cinfo->quantize_colors) |
||||
cinfo->output_components = 1; /* single colormapped output component */ |
||||
else |
||||
cinfo->output_components = cinfo->out_color_components; |
||||
} |
@ -1,409 +0,0 @@ |
||||
/*
|
||||
* jdct.h |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2002-2023 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This include file contains common declarations for the forward and |
||||
* inverse DCT modules. These declarations are private to the DCT managers |
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. |
||||
* The individual DCT algorithms are kept in separate files to ease
|
||||
* machine-dependent tuning (e.g., assembly coding). |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to an input sample array and |
||||
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed |
||||
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32 |
||||
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an |
||||
* array of type FAST_FLOAT, instead.) |
||||
* The input data is to be fetched from the sample array starting at a |
||||
* specified column. (Any row offset needed will be applied to the array |
||||
* pointer before it is passed to the FDCT code.) |
||||
* Note that the number of samples fetched by the FDCT routine is |
||||
* DCT_h_scaled_size * DCT_v_scaled_size. |
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore |
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This |
||||
* convention improves accuracy in integer implementations and saves some |
||||
* work in floating-point ones. |
||||
* Quantization of the output coefficients is done by jcdctmgr.c. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */ |
||||
#else |
||||
typedef INT32 DCTELEM; /* must have 32 bits */ |
||||
#endif |
||||
|
||||
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, |
||||
JSAMPARRAY sample_data, |
||||
JDIMENSION start_col)); |
||||
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, |
||||
JSAMPARRAY sample_data, |
||||
JDIMENSION start_col)); |
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer |
||||
* to an output sample array. The routine must dequantize the input data as |
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table |
||||
* pointed to by compptr->dct_table. The output data is to be placed into the |
||||
* sample array starting at a specified column. (Any row offset needed will |
||||
* be applied to the array pointer before it is passed to the IDCT code.) |
||||
* Note that the number of samples emitted by the IDCT routine is |
||||
* DCT_h_scaled_size * DCT_v_scaled_size. |
||||
*/ |
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ |
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type. |
||||
*/ |
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ |
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ |
||||
#else |
||||
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ |
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ |
||||
#endif |
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ |
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and |
||||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could |
||||
* be quite far out of range if the input data is corrupt, so a bulletproof |
||||
* range-limiting step is required. We use a mask-and-table-lookup method |
||||
* to do the combined operations quickly, assuming that RANGE_CENTER |
||||
* (defined in jpegint.h) is a power of 2. See the comments with |
||||
* prepare_range_limit_table (in jdmaster.c) for more info. |
||||
*/ |
||||
|
||||
#define RANGE_MASK (RANGE_CENTER * 2 - 1) |
||||
#define RANGE_SUBSET (RANGE_CENTER - CENTERJSAMPLE) |
||||
|
||||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit - RANGE_SUBSET) |
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */ |
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES |
||||
#define jpeg_fdct_islow jFDislow |
||||
#define jpeg_fdct_ifast jFDifast |
||||
#define jpeg_fdct_float jFDfloat |
||||
#define jpeg_fdct_7x7 jFD7x7 |
||||
#define jpeg_fdct_6x6 jFD6x6 |
||||
#define jpeg_fdct_5x5 jFD5x5 |
||||
#define jpeg_fdct_4x4 jFD4x4 |
||||
#define jpeg_fdct_3x3 jFD3x3 |
||||
#define jpeg_fdct_2x2 jFD2x2 |
||||
#define jpeg_fdct_1x1 jFD1x1 |
||||
#define jpeg_fdct_9x9 jFD9x9 |
||||
#define jpeg_fdct_10x10 jFD10x10 |
||||
#define jpeg_fdct_11x11 jFD11x11 |
||||
#define jpeg_fdct_12x12 jFD12x12 |
||||
#define jpeg_fdct_13x13 jFD13x13 |
||||
#define jpeg_fdct_14x14 jFD14x14 |
||||
#define jpeg_fdct_15x15 jFD15x15 |
||||
#define jpeg_fdct_16x16 jFD16x16 |
||||
#define jpeg_fdct_16x8 jFD16x8 |
||||
#define jpeg_fdct_14x7 jFD14x7 |
||||
#define jpeg_fdct_12x6 jFD12x6 |
||||
#define jpeg_fdct_10x5 jFD10x5 |
||||
#define jpeg_fdct_8x4 jFD8x4 |
||||
#define jpeg_fdct_6x3 jFD6x3 |
||||
#define jpeg_fdct_4x2 jFD4x2 |
||||
#define jpeg_fdct_2x1 jFD2x1 |
||||
#define jpeg_fdct_8x16 jFD8x16 |
||||
#define jpeg_fdct_7x14 jFD7x14 |
||||
#define jpeg_fdct_6x12 jFD6x12 |
||||
#define jpeg_fdct_5x10 jFD5x10 |
||||
#define jpeg_fdct_4x8 jFD4x8 |
||||
#define jpeg_fdct_3x6 jFD3x6 |
||||
#define jpeg_fdct_2x4 jFD2x4 |
||||
#define jpeg_fdct_1x2 jFD1x2 |
||||
#define jpeg_idct_islow jRDislow |
||||
#define jpeg_idct_ifast jRDifast |
||||
#define jpeg_idct_float jRDfloat |
||||
#define jpeg_idct_7x7 jRD7x7 |
||||
#define jpeg_idct_6x6 jRD6x6 |
||||
#define jpeg_idct_5x5 jRD5x5 |
||||
#define jpeg_idct_4x4 jRD4x4 |
||||
#define jpeg_idct_3x3 jRD3x3 |
||||
#define jpeg_idct_2x2 jRD2x2 |
||||
#define jpeg_idct_1x1 jRD1x1 |
||||
#define jpeg_idct_9x9 jRD9x9 |
||||
#define jpeg_idct_10x10 jRD10x10 |
||||
#define jpeg_idct_11x11 jRD11x11 |
||||
#define jpeg_idct_12x12 jRD12x12 |
||||
#define jpeg_idct_13x13 jRD13x13 |
||||
#define jpeg_idct_14x14 jRD14x14 |
||||
#define jpeg_idct_15x15 jRD15x15 |
||||
#define jpeg_idct_16x16 jRD16x16 |
||||
#define jpeg_idct_16x8 jRD16x8 |
||||
#define jpeg_idct_14x7 jRD14x7 |
||||
#define jpeg_idct_12x6 jRD12x6 |
||||
#define jpeg_idct_10x5 jRD10x5 |
||||
#define jpeg_idct_8x4 jRD8x4 |
||||
#define jpeg_idct_6x3 jRD6x3 |
||||
#define jpeg_idct_4x2 jRD4x2 |
||||
#define jpeg_idct_2x1 jRD2x1 |
||||
#define jpeg_idct_8x16 jRD8x16 |
||||
#define jpeg_idct_7x14 jRD7x14 |
||||
#define jpeg_idct_6x12 jRD6x12 |
||||
#define jpeg_idct_5x10 jRD5x10 |
||||
#define jpeg_idct_4x8 jRD4x8 |
||||
#define jpeg_idct_3x6 jRD3x6 |
||||
#define jpeg_idct_2x4 jRD2x4 |
||||
#define jpeg_idct_1x2 jRD1x2 |
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */ |
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */ |
||||
|
||||
EXTERN(void) jpeg_fdct_islow |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_ifast |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_float |
||||
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_7x7 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_6x6 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_5x5 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_4x4 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_3x3 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_2x2 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_1x1 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_9x9 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_10x10 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_11x11 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_12x12 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_13x13 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_14x14 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_15x15 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_16x16 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_16x8 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_14x7 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_12x6 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_10x5 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_8x4 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_6x3 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_4x2 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_2x1 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_8x16 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_7x14 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_6x12 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_5x10 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_4x8 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_3x6 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_2x4 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
EXTERN(void) jpeg_fdct_1x2 |
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
||||
|
||||
EXTERN(void) jpeg_idct_islow |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_ifast |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_float |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_7x7 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_6x6 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_5x5 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_4x4 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_3x3 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_2x2 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_1x1 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_9x9 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_10x10 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_11x11 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_12x12 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_13x13 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_14x14 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_15x15 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_16x16 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_16x8 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_14x7 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_12x6 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_10x5 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_8x4 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_6x3 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_4x2 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_2x1 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_8x16 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_7x14 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_6x12 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_5x10 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_4x8 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_3x6 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_2x4 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
EXTERN(void) jpeg_idct_1x2 |
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many |
||||
* but not all of the DCT/IDCT modules. |
||||
* |
||||
* All values are expected to be of type INT32. |
||||
* Fractional constants are scaled left by CONST_BITS bits. |
||||
* CONST_BITS is defined within each module using these macros, |
||||
* and may differ from one module to the next. |
||||
*/ |
||||
|
||||
#define ONE ((INT32) 1) |
||||
#define CONST_SCALE (ONE << CONST_BITS) |
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time, |
||||
* thus causing a lot of useless floating-point operations at run time. |
||||
*/ |
||||
|
||||
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) |
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* This macro is used only when the two inputs will actually be no more than |
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a |
||||
* full 32x32 multiply. This provides a useful speedup on many machines. |
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably |
||||
* in C, but some C compilers will do the right thing if you provide the |
||||
* correct combination of casts. |
||||
*/ |
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) |
||||
#endif |
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) |
||||
#endif |
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */ |
||||
#define MULTIPLY16C16(var,const) ((var) * (const)) |
||||
#endif |
||||
|
||||
/* Same except both inputs are variables. */ |
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
||||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) |
||||
#endif |
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */ |
||||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2)) |
||||
#endif |
||||
|
||||
/* Like RIGHT_SHIFT, but applies to a DCTELEM.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp; |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
||||
#else |
||||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
||||
#endif |
||||
#define IRIGHT_SHIFT(x,shft) \ |
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||||
(ishift_temp >> (shft))) |
||||
#else |
||||
#define ISHIFT_TEMPS |
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
@ -1,384 +0,0 @@ |
||||
/*
|
||||
* jddctmgr.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2002-2013 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the inverse-DCT management logic. |
||||
* This code selects a particular IDCT implementation to be used, |
||||
* and it performs related housekeeping chores. No code in this file |
||||
* is executed per IDCT step, only during output pass setup. |
||||
* |
||||
* Note that the IDCT routines are responsible for performing coefficient |
||||
* dequantization as well as the IDCT proper. This module sets up the |
||||
* dequantization multiplier table needed by the IDCT routine. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
|
||||
/*
|
||||
* The decompressor input side (jdinput.c) saves away the appropriate |
||||
* quantization table for each component at the start of the first scan |
||||
* involving that component. (This is necessary in order to correctly |
||||
* decode files that reuse Q-table slots.) |
||||
* When we are ready to make an output pass, the saved Q-table is converted |
||||
* to a multiplier table that will actually be used by the IDCT routine. |
||||
* The multiplier table contents are IDCT-method-dependent. To support |
||||
* application changes in IDCT method between scans, we can remake the |
||||
* multiplier tables if necessary. |
||||
* In buffered-image mode, the first output pass may occur before any data |
||||
* has been seen for some components, and thus before their Q-tables have |
||||
* been saved away. To handle this case, multiplier tables are preset |
||||
* to zeroes; the result of the IDCT will be a neutral gray level. |
||||
*/ |
||||
|
||||
|
||||
/* Private subobject for this module */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_inverse_dct pub; /* public fields */ |
||||
|
||||
/* This array contains the IDCT method code that each multiplier table
|
||||
* is currently set up for, or -1 if it's not yet set up. |
||||
* The actual multiplier tables are pointed to by dct_table in the |
||||
* per-component comp_info structures. |
||||
*/ |
||||
int cur_method[MAX_COMPONENTS]; |
||||
} my_idct_controller; |
||||
|
||||
typedef my_idct_controller * my_idct_ptr; |
||||
|
||||
|
||||
/* Allocated multiplier tables: big enough for any supported variant */ |
||||
|
||||
typedef union { |
||||
ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
||||
#endif |
||||
} multiplier_table; |
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested. |
||||
*/ |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
#define PROVIDE_ISLOW_TABLES |
||||
#else |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
#define PROVIDE_ISLOW_TABLES |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass. |
||||
* Here we select the proper IDCT routine for each component and build |
||||
* a matching multiplier table. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
||||
int ci, i; |
||||
jpeg_component_info *compptr; |
||||
int method = 0; |
||||
inverse_DCT_method_ptr method_ptr = NULL; |
||||
JQUANT_TBL * qtbl; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Select the proper IDCT routine for this component's scaling */ |
||||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
case ((1 << 8) + 1): |
||||
method_ptr = jpeg_idct_1x1; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((2 << 8) + 2): |
||||
method_ptr = jpeg_idct_2x2; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((3 << 8) + 3): |
||||
method_ptr = jpeg_idct_3x3; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((4 << 8) + 4): |
||||
method_ptr = jpeg_idct_4x4; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((5 << 8) + 5): |
||||
method_ptr = jpeg_idct_5x5; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((6 << 8) + 6): |
||||
method_ptr = jpeg_idct_6x6; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((7 << 8) + 7): |
||||
method_ptr = jpeg_idct_7x7; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((9 << 8) + 9): |
||||
method_ptr = jpeg_idct_9x9; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((10 << 8) + 10): |
||||
method_ptr = jpeg_idct_10x10; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((11 << 8) + 11): |
||||
method_ptr = jpeg_idct_11x11; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((12 << 8) + 12): |
||||
method_ptr = jpeg_idct_12x12; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((13 << 8) + 13): |
||||
method_ptr = jpeg_idct_13x13; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((14 << 8) + 14): |
||||
method_ptr = jpeg_idct_14x14; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((15 << 8) + 15): |
||||
method_ptr = jpeg_idct_15x15; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((16 << 8) + 16): |
||||
method_ptr = jpeg_idct_16x16; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((16 << 8) + 8): |
||||
method_ptr = jpeg_idct_16x8; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((14 << 8) + 7): |
||||
method_ptr = jpeg_idct_14x7; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((12 << 8) + 6): |
||||
method_ptr = jpeg_idct_12x6; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((10 << 8) + 5): |
||||
method_ptr = jpeg_idct_10x5; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((8 << 8) + 4): |
||||
method_ptr = jpeg_idct_8x4; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((6 << 8) + 3): |
||||
method_ptr = jpeg_idct_6x3; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((4 << 8) + 2): |
||||
method_ptr = jpeg_idct_4x2; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((2 << 8) + 1): |
||||
method_ptr = jpeg_idct_2x1; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((8 << 8) + 16): |
||||
method_ptr = jpeg_idct_8x16; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((7 << 8) + 14): |
||||
method_ptr = jpeg_idct_7x14; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((6 << 8) + 12): |
||||
method_ptr = jpeg_idct_6x12; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((5 << 8) + 10): |
||||
method_ptr = jpeg_idct_5x10; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((4 << 8) + 8): |
||||
method_ptr = jpeg_idct_4x8; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((3 << 8) + 6): |
||||
method_ptr = jpeg_idct_3x6; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((2 << 8) + 4): |
||||
method_ptr = jpeg_idct_2x4; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case ((1 << 8) + 2): |
||||
method_ptr = jpeg_idct_1x2; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
#endif |
||||
case ((DCTSIZE << 8) + DCTSIZE): |
||||
switch (cinfo->dct_method) { |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
case JDCT_ISLOW: |
||||
method_ptr = jpeg_idct_islow; |
||||
method = JDCT_ISLOW; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
method_ptr = jpeg_idct_ifast; |
||||
method = JDCT_IFAST; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
method_ptr = jpeg_idct_float; |
||||
method = JDCT_FLOAT; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
break; |
||||
default: |
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, |
||||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); |
||||
break; |
||||
} |
||||
idct->pub.inverse_DCT[ci] = method_ptr; |
||||
/* Create multiplier table from quant table.
|
||||
* However, we can skip this if the component is uninteresting |
||||
* or if we already built the table. Also, if no quant table |
||||
* has yet been saved for the component, we leave the |
||||
* multiplier table all-zero; we'll be reading zeroes from the |
||||
* coefficient controller's buffer anyway. |
||||
*/ |
||||
if (! compptr->component_needed || idct->cur_method[ci] == method) |
||||
continue; |
||||
qtbl = compptr->quant_table; |
||||
if (qtbl == NULL) /* happens if no data yet for component */ |
||||
continue; |
||||
idct->cur_method[ci] = method; |
||||
switch (method) { |
||||
#ifdef PROVIDE_ISLOW_TABLES |
||||
case JDCT_ISLOW: |
||||
{ |
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored as ints to ensure access efficiency. |
||||
*/ |
||||
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
{ |
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* For integer operation, the multiplier table is to be scaled by |
||||
* IFAST_SCALE_BITS. |
||||
*/ |
||||
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
||||
#define CONST_BITS 14 |
||||
static const INT16 aanscales[DCTSIZE2] = { |
||||
/* precomputed values scaled up by 14 bits */ |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
||||
}; |
||||
SHIFT_TEMPS |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
ifmtbl[i] = (IFAST_MULT_TYPE) |
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
||||
(INT32) aanscales[i]), |
||||
CONST_BITS-IFAST_SCALE_BITS); |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
{ |
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* We apply a further scale factor of 1/8. |
||||
*/ |
||||
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
||||
int row, col; |
||||
static const double aanscalefactor[DCTSIZE] = { |
||||
1.0, 1.387039845, 1.306562965, 1.175875602, |
||||
1.0, 0.785694958, 0.541196100, 0.275899379 |
||||
}; |
||||
|
||||
i = 0; |
||||
for (row = 0; row < DCTSIZE; row++) { |
||||
for (col = 0; col < DCTSIZE; col++) { |
||||
fmtbl[i] = (FLOAT_MULT_TYPE) |
||||
((double) qtbl->quantval[i] * |
||||
aanscalefactor[row] * aanscalefactor[col] * 0.125); |
||||
i++; |
||||
} |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_inverse_dct (j_decompress_ptr cinfo) |
||||
{ |
||||
my_idct_ptr idct; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
idct = (my_idct_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
SIZEOF(my_idct_controller)); |
||||
cinfo->idct = &idct->pub; |
||||
idct->pub.start_pass = start_pass; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Allocate and pre-zero a multiplier table for each component */ |
||||
compptr->dct_table = |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
SIZEOF(multiplier_table)); |
||||
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); |
||||
/* Mark multiplier table not yet set up for any method */ |
||||
idct->cur_method[ci] = -1; |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -1,657 +0,0 @@ |
||||
/*
|
||||
* jdinput.c |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2002-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains input control logic for the JPEG decompressor. |
||||
* These routines are concerned with controlling the decompressor's input |
||||
* processing (marker reading and coefficient decoding). The actual input |
||||
* reading is done in jdmarker.c, jdhuff.c, and jdarith.c. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_input_controller pub; /* public fields */ |
||||
|
||||
int inheaders; /* Nonzero until first SOS is reached */ |
||||
} my_input_controller; |
||||
|
||||
typedef my_input_controller * my_inputctl_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo)); |
||||
|
||||
|
||||
/*
|
||||
* Routines to calculate various quantities related to the size of the image. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values. |
||||
* NOTE: this is exported for possible use by application. |
||||
* Hence it mustn't do anything that can't be done twice. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_core_output_dimensions (j_decompress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase.
|
||||
* This function is used for transcoding and full decompression. |
||||
*/ |
||||
{ |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */ |
||||
if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) { |
||||
/* Provide 1/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 1; |
||||
cinfo->min_DCT_v_scaled_size = 1; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) { |
||||
/* Provide 2/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 2; |
||||
cinfo->min_DCT_v_scaled_size = 2; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) { |
||||
/* Provide 3/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 3; |
||||
cinfo->min_DCT_v_scaled_size = 3; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) { |
||||
/* Provide 4/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 4; |
||||
cinfo->min_DCT_v_scaled_size = 4; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) { |
||||
/* Provide 5/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 5; |
||||
cinfo->min_DCT_v_scaled_size = 5; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) { |
||||
/* Provide 6/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 6; |
||||
cinfo->min_DCT_v_scaled_size = 6; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) { |
||||
/* Provide 7/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 7; |
||||
cinfo->min_DCT_v_scaled_size = 7; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) { |
||||
/* Provide 8/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 8; |
||||
cinfo->min_DCT_v_scaled_size = 8; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) { |
||||
/* Provide 9/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 9; |
||||
cinfo->min_DCT_v_scaled_size = 9; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) { |
||||
/* Provide 10/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 10; |
||||
cinfo->min_DCT_v_scaled_size = 10; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) { |
||||
/* Provide 11/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 11; |
||||
cinfo->min_DCT_v_scaled_size = 11; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) { |
||||
/* Provide 12/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 12; |
||||
cinfo->min_DCT_v_scaled_size = 12; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) { |
||||
/* Provide 13/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 13; |
||||
cinfo->min_DCT_v_scaled_size = 13; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) { |
||||
/* Provide 14/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 14; |
||||
cinfo->min_DCT_v_scaled_size = 14; |
||||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) { |
||||
/* Provide 15/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 15; |
||||
cinfo->min_DCT_v_scaled_size = 15; |
||||
} else { |
||||
/* Provide 16/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size); |
||||
cinfo->min_DCT_h_scaled_size = 16; |
||||
cinfo->min_DCT_v_scaled_size = 16; |
||||
} |
||||
|
||||
/* Recompute dimensions of components */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size; |
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size; |
||||
} |
||||
|
||||
#else /* !IDCT_SCALING_SUPPORTED */ |
||||
|
||||
/* Hardwire it to "no scaling" */ |
||||
cinfo->output_width = cinfo->image_width; |
||||
cinfo->output_height = cinfo->image_height; |
||||
/* initial_setup has already initialized DCT_scaled_size,
|
||||
* and has computed unscaled downsampled_width and downsampled_height. |
||||
*/ |
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
initial_setup (j_decompress_ptr cinfo) |
||||
/* Called once, when first SOS marker is reached */ |
||||
{ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Make sure image isn't bigger than I can handle */ |
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || |
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
||||
|
||||
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */ |
||||
if (cinfo->data_precision < 8 || cinfo->data_precision > 12) |
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
||||
|
||||
/* Check that number of components won't exceed internal array sizes */ |
||||
if (cinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
|
||||
/* Compute maximum sampling factors; check factor validity */ |
||||
cinfo->max_h_samp_factor = 1; |
||||
cinfo->max_v_samp_factor = 1; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || |
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) |
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING); |
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, |
||||
compptr->h_samp_factor); |
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, |
||||
compptr->v_samp_factor); |
||||
} |
||||
|
||||
/* Derive block_size, natural_order, and lim_Se */ |
||||
if (cinfo->is_baseline || (cinfo->progressive_mode && |
||||
cinfo->comps_in_scan)) { /* no pseudo SOS marker */ |
||||
cinfo->block_size = DCTSIZE; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
} else |
||||
switch (cinfo->Se) { |
||||
case (1*1-1): |
||||
cinfo->block_size = 1; |
||||
cinfo->natural_order = jpeg_natural_order; /* not needed */ |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (2*2-1): |
||||
cinfo->block_size = 2; |
||||
cinfo->natural_order = jpeg_natural_order2; |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (3*3-1): |
||||
cinfo->block_size = 3; |
||||
cinfo->natural_order = jpeg_natural_order3; |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (4*4-1): |
||||
cinfo->block_size = 4; |
||||
cinfo->natural_order = jpeg_natural_order4; |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (5*5-1): |
||||
cinfo->block_size = 5; |
||||
cinfo->natural_order = jpeg_natural_order5; |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (6*6-1): |
||||
cinfo->block_size = 6; |
||||
cinfo->natural_order = jpeg_natural_order6; |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (7*7-1): |
||||
cinfo->block_size = 7; |
||||
cinfo->natural_order = jpeg_natural_order7; |
||||
cinfo->lim_Se = cinfo->Se; |
||||
break; |
||||
case (8*8-1): |
||||
cinfo->block_size = 8; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (9*9-1): |
||||
cinfo->block_size = 9; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (10*10-1): |
||||
cinfo->block_size = 10; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (11*11-1): |
||||
cinfo->block_size = 11; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (12*12-1): |
||||
cinfo->block_size = 12; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (13*13-1): |
||||
cinfo->block_size = 13; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (14*14-1): |
||||
cinfo->block_size = 14; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (15*15-1): |
||||
cinfo->block_size = 15; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
case (16*16-1): |
||||
cinfo->block_size = 16; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
break; |
||||
default: |
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
||||
} |
||||
|
||||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
|
||||
* In the full decompressor, |
||||
* this will be overridden by jpeg_calc_output_dimensions in jdmaster.c; |
||||
* but in the transcoder, |
||||
* jpeg_calc_output_dimensions is not used, so we must do it here. |
||||
*/ |
||||
cinfo->min_DCT_h_scaled_size = cinfo->block_size; |
||||
cinfo->min_DCT_v_scaled_size = cinfo->block_size; |
||||
|
||||
/* Compute dimensions of components */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
compptr->DCT_h_scaled_size = cinfo->block_size; |
||||
compptr->DCT_v_scaled_size = cinfo->block_size; |
||||
/* Size in DCT blocks */ |
||||
compptr->width_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, |
||||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
||||
compptr->height_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, |
||||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
||||
/* downsampled_width and downsampled_height will also be overridden by
|
||||
* jdmaster.c if we are doing full decompression. The transcoder library |
||||
* doesn't use these values, but the calling application might. |
||||
*/ |
||||
/* Size in samples */ |
||||
compptr->downsampled_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, |
||||
(long) cinfo->max_h_samp_factor); |
||||
compptr->downsampled_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, |
||||
(long) cinfo->max_v_samp_factor); |
||||
/* Mark component needed, until color conversion says otherwise */ |
||||
compptr->component_needed = TRUE; |
||||
/* Mark no quantization table yet saved for component */ |
||||
compptr->quant_table = NULL; |
||||
} |
||||
|
||||
/* Compute number of fully interleaved MCU rows. */ |
||||
cinfo->total_iMCU_rows = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height, |
||||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
||||
|
||||
/* Decide whether file contains multiple scans */ |
||||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) |
||||
cinfo->inputctl->has_multiple_scans = TRUE; |
||||
else |
||||
cinfo->inputctl->has_multiple_scans = FALSE; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
per_scan_setup (j_decompress_ptr cinfo) |
||||
/* Do computations that are needed before processing a JPEG scan */ |
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ |
||||
{ |
||||
int ci, mcublks, tmp; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->comps_in_scan == 1) { |
||||
|
||||
/* Noninterleaved (single-component) scan */ |
||||
compptr = cinfo->cur_comp_info[0]; |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = compptr->width_in_blocks; |
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; |
||||
|
||||
/* For noninterleaved scan, always one block per MCU */ |
||||
compptr->MCU_width = 1; |
||||
compptr->MCU_height = 1; |
||||
compptr->MCU_blocks = 1; |
||||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size; |
||||
compptr->last_col_width = 1; |
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row. |
||||
*/ |
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (tmp == 0) tmp = compptr->v_samp_factor; |
||||
compptr->last_row_height = tmp; |
||||
|
||||
/* Prepare array describing MCU composition */ |
||||
cinfo->blocks_in_MCU = 1; |
||||
cinfo->MCU_membership[0] = 0; |
||||
|
||||
} else { |
||||
|
||||
/* Interleaved (multi-component) scan */ |
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, |
||||
MAX_COMPS_IN_SCAN); |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width, |
||||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
||||
cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows; |
||||
|
||||
cinfo->blocks_in_MCU = 0; |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Sampling factors give # of blocks of component in each MCU */ |
||||
compptr->MCU_width = compptr->h_samp_factor; |
||||
compptr->MCU_height = compptr->v_samp_factor; |
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; |
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; |
||||
/* Figure number of non-dummy blocks in last MCU column & row */ |
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); |
||||
if (tmp == 0) tmp = compptr->MCU_width; |
||||
compptr->last_col_width = tmp; |
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); |
||||
if (tmp == 0) tmp = compptr->MCU_height; |
||||
compptr->last_row_height = tmp; |
||||
/* Prepare array describing MCU composition */ |
||||
mcublks = compptr->MCU_blocks; |
||||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) |
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); |
||||
while (mcublks-- > 0) { |
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; |
||||
} |
||||
} |
||||
|
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Save away a copy of the Q-table referenced by each component present |
||||
* in the current scan, unless already saved during a prior scan. |
||||
* |
||||
* In a multiple-scan JPEG file, the encoder could assign different components |
||||
* the same Q-table slot number, but change table definitions between scans |
||||
* so that each component uses a different Q-table. (The IJG encoder is not |
||||
* currently capable of doing this, but other encoders might.) Since we want |
||||
* to be able to dequantize all the components at the end of the file, this |
||||
* means that we have to save away the table actually used for each component. |
||||
* We do this by copying the table at the start of the first scan containing |
||||
* the component. |
||||
* The JPEG spec prohibits the encoder from changing the contents of a Q-table |
||||
* slot between scans of a component using that slot. If the encoder does so |
||||
* anyway, this decoder will simply use the Q-table values that were current |
||||
* at the start of the first scan for the component. |
||||
* |
||||
* The decompressor output side looks only at the saved quant tables, |
||||
* not at the current Q-table slots. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
latch_quant_tables (j_decompress_ptr cinfo) |
||||
{ |
||||
int ci, qtblno; |
||||
jpeg_component_info *compptr; |
||||
JQUANT_TBL * qtbl; |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* No work if we already saved Q-table for this component */ |
||||
if (compptr->quant_table != NULL) |
||||
continue; |
||||
/* Make sure specified quantization table is present */ |
||||
qtblno = compptr->quant_tbl_no; |
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
||||
/* OK, save away the quantization table */ |
||||
qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(JQUANT_TBL)); |
||||
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); |
||||
compptr->quant_table = qtbl; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the input modules to read a scan of compressed data. |
||||
* The first call to this is done by jdmaster.c after initializing |
||||
* the entire decompressor (during jpeg_start_decompress). |
||||
* Subsequent calls come from consume_markers, below. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_input_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
per_scan_setup(cinfo); |
||||
latch_quant_tables(cinfo); |
||||
(*cinfo->entropy->start_pass) (cinfo); |
||||
(*cinfo->coef->start_input_pass) (cinfo); |
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up after inputting a compressed-data scan. |
||||
* This is called by the coefficient controller after it's read all |
||||
* the expected data of the scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_input_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
(*cinfo->entropy->finish_pass) (cinfo); |
||||
cinfo->inputctl->consume_input = consume_markers; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Read JPEG markers before, between, or after compressed-data scans. |
||||
* Change state as necessary when a new scan is reached. |
||||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. |
||||
* |
||||
* The consume_input method pointer points either here or to the |
||||
* coefficient controller's consume_data routine, depending on whether |
||||
* we are reading a compressed data segment or inter-segment markers. |
||||
* |
||||
* Note: This function should NOT return a pseudo SOS marker (with zero |
||||
* component number) to the caller. A pseudo marker received by |
||||
* read_markers is processed and then skipped for other markers. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
consume_markers (j_decompress_ptr cinfo) |
||||
{ |
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; |
||||
int val; |
||||
|
||||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ |
||||
return JPEG_REACHED_EOI; |
||||
|
||||
for (;;) { /* Loop to pass pseudo SOS marker */ |
||||
val = (*cinfo->marker->read_markers) (cinfo); |
||||
|
||||
switch (val) { |
||||
case JPEG_REACHED_SOS: /* Found SOS */ |
||||
if (inputctl->inheaders) { /* 1st SOS */ |
||||
if (inputctl->inheaders == 1) |
||||
initial_setup(cinfo); |
||||
if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */ |
||||
inputctl->inheaders = 2; |
||||
break; |
||||
} |
||||
inputctl->inheaders = 0; |
||||
/* Note: start_input_pass must be called by jdmaster.c
|
||||
* before any more input can be consumed. jdapimin.c is |
||||
* responsible for enforcing this sequencing. |
||||
*/ |
||||
} else { /* 2nd or later SOS marker */ |
||||
if (! inputctl->pub.has_multiple_scans) |
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ |
||||
if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */ |
||||
break; |
||||
start_input_pass(cinfo); |
||||
} |
||||
return val; |
||||
case JPEG_REACHED_EOI: /* Found EOI */ |
||||
inputctl->pub.eoi_reached = TRUE; |
||||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */ |
||||
if (cinfo->marker->saw_SOF) |
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS); |
||||
} else { |
||||
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||
* if user set output_scan_number larger than number of scans. |
||||
*/ |
||||
if (cinfo->output_scan_number > cinfo->input_scan_number) |
||||
cinfo->output_scan_number = cinfo->input_scan_number; |
||||
} |
||||
return val; |
||||
case JPEG_SUSPENDED: |
||||
return val; |
||||
default: |
||||
return val; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Reset state to begin a fresh datastream. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
reset_input_controller (j_decompress_ptr cinfo) |
||||
{ |
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; |
||||
|
||||
inputctl->pub.consume_input = consume_markers; |
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ |
||||
inputctl->pub.eoi_reached = FALSE; |
||||
inputctl->inheaders = 1; |
||||
/* Reset other modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->marker->reset_marker_reader) (cinfo); |
||||
/* Reset progression state -- would be cleaner if entropy decoder did this */ |
||||
cinfo->coef_bits = NULL; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the input controller module. |
||||
* This is called only once, when the decompression object is created. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_input_controller (j_decompress_ptr cinfo) |
||||
{ |
||||
my_inputctl_ptr inputctl; |
||||
|
||||
/* Create subobject in permanent pool */ |
||||
inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_input_controller)); |
||||
cinfo->inputctl = &inputctl->pub; |
||||
/* Initialize method pointers */ |
||||
inputctl->pub.consume_input = consume_markers; |
||||
inputctl->pub.reset_input_controller = reset_input_controller; |
||||
inputctl->pub.start_input_pass = start_input_pass; |
||||
inputctl->pub.finish_input_pass = finish_input_pass; |
||||
/* Initialize state: can't use reset_input_controller since we don't
|
||||
* want to try to reset other modules yet. |
||||
*/ |
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ |
||||
inputctl->pub.eoi_reached = FALSE; |
||||
inputctl->inheaders = 1; |
||||
} |
@ -1,511 +0,0 @@ |
||||
/*
|
||||
* jdmainct.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2002-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the main buffer controller for decompression. |
||||
* The main buffer lies between the JPEG decompressor proper and the |
||||
* post-processor; it holds downsampled data in the JPEG colorspace. |
||||
* |
||||
* Note that this code is bypassed in raw-data mode, since the application |
||||
* supplies the equivalent of the main buffer in that case. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image |
||||
* buffer; any full-height buffers will be found inside the coefficient or |
||||
* postprocessing controllers. Nonetheless, the main controller is not |
||||
* trivial. Its responsibility is to provide context rows for upsampling/ |
||||
* rescaling, and doing this in an efficient fashion is a bit tricky. |
||||
* |
||||
* Postprocessor input data is counted in "row groups". A row group is |
||||
* defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) |
||||
* sample rows of each component. (We require DCT_scaled_size values to be |
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size |
||||
* values will likely be powers of two, so we actually have the stronger |
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) |
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each |
||||
* row group (times any additional scale factor that the upsampler is |
||||
* applying). |
||||
* |
||||
* The coefficient controller will deliver data to us one iMCU row at a time; |
||||
* each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or |
||||
* exactly min_DCT_v_scaled_size row groups. (This amount of data corresponds |
||||
* to one row of MCUs when the image is fully interleaved.) Note that the |
||||
* number of sample rows varies across components, but the number of row |
||||
* groups does not. Some garbage sample rows may be included in the last iMCU |
||||
* row at the bottom of the image. |
||||
* |
||||
* Depending on the vertical scaling algorithm used, the upsampler may need |
||||
* access to the sample row(s) above and below its current input row group. |
||||
* The upsampler is required to set need_context_rows TRUE at global selection |
||||
* time if so. When need_context_rows is FALSE, this controller can simply |
||||
* obtain one iMCU row at a time from the coefficient controller and dole it |
||||
* out as row groups to the postprocessor. |
||||
* |
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer |
||||
* passed to postprocessing contains at least one row group's worth of samples |
||||
* above and below the row group(s) being processed. Note that the context |
||||
* rows "above" the first passed row group appear at negative row offsets in |
||||
* the passed buffer. At the top and bottom of the image, the required |
||||
* context rows are manufactured by duplicating the first or last real sample |
||||
* row; this avoids having special cases in the upsampling inner loops. |
||||
* |
||||
* The amount of context is fixed at one row group just because that's a |
||||
* convenient number for this controller to work with. The existing |
||||
* upsamplers really only need one sample row of context. An upsampler |
||||
* supporting arbitrary output rescaling might wish for more than one row |
||||
* group of context when shrinking the image; tough, we don't handle that. |
||||
* (This is justified by the assumption that downsizing will be handled mostly |
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at |
||||
* the upsample step needn't be much less than one.) |
||||
* |
||||
* To provide the desired context, we have to retain the last two row groups |
||||
* of one iMCU row while reading in the next iMCU row. (The last row group |
||||
* can't be processed until we have another row group for its below-context, |
||||
* and so we have to save the next-to-last group too for its above-context.) |
||||
* We could do this most simply by copying data around in our buffer, but |
||||
* that'd be very slow. We can avoid copying any data by creating a rather |
||||
* strange pointer structure. Here's how it works. We allocate a workspace |
||||
* consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number |
||||
* of row groups per iMCU row). We create two sets of redundant pointers to |
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized |
||||
* pointer lists look like this: |
||||
* M+1 M-1 |
||||
* master pointer --> 0 master pointer --> 0 |
||||
* 1 1 |
||||
* ... ... |
||||
* M-3 M-3 |
||||
* M-2 M |
||||
* M-1 M+1 |
||||
* M M-2 |
||||
* M+1 M-1 |
||||
* 0 0 |
||||
* We read alternate iMCU rows using each master pointer; thus the last two |
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace. |
||||
* The pointer lists are set up so that the required context rows appear to |
||||
* be adjacent to the proper places when we pass the pointer lists to the |
||||
* upsampler. |
||||
* |
||||
* The above pictures describe the normal state of the pointer lists. |
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate |
||||
* the first or last sample row as necessary (this is cheaper than copying |
||||
* sample rows around). |
||||
* |
||||
* This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1. In that |
||||
* situation each iMCU row provides only one row group so the buffering logic |
||||
* must be different (eg, we must read two iMCU rows before we can emit the |
||||
* first row group). For now, we simply do not support providing context |
||||
* rows when min_DCT_v_scaled_size is 1. That combination seems unlikely to |
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably |
||||
* want it quick and dirty, so a context-free upsampler is sufficient. |
||||
*/ |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_d_main_controller pub; /* public fields */ |
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */ |
||||
JSAMPARRAY buffer[MAX_COMPONENTS]; |
||||
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ |
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ |
||||
|
||||
/* Remaining fields are only used in the context case. */ |
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ |
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */ |
||||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ |
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */ |
||||
int context_state; /* process_data state machine status */ |
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ |
||||
} my_main_controller; |
||||
|
||||
typedef my_main_controller * my_main_ptr; |
||||
|
||||
/* context_state values: */ |
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ |
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ |
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(void) process_data_simple_main |
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); |
||||
METHODDEF(void) process_data_context_main |
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
METHODDEF(void) process_data_crank_post |
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
alloc_funny_pointers (j_decompress_ptr cinfo) |
||||
/* Allocate space for the funny pointer lists.
|
||||
* This is done only once, not once per pass. |
||||
*/ |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
int ci, rgroup; |
||||
int M = cinfo->min_DCT_v_scaled_size; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY xbuf; |
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles. |
||||
*/ |
||||
mainp->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); |
||||
mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (! compptr->component_needed) |
||||
continue; /* skip uninteresting component */ |
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ |
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles. |
||||
*/ |
||||
xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, |
||||
JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); |
||||
xbuf += rgroup; /* want one row group at negative offsets */ |
||||
mainp->xbuffer[0][ci] = xbuf; |
||||
xbuf += rgroup * (M + 4); |
||||
mainp->xbuffer[1][ci] = xbuf; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
make_funny_pointers (j_decompress_ptr cinfo) |
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in mainp->buffer), |
||||
* and the space for the pointer lists is allocated too. |
||||
* This routine just fills in the curiously ordered lists. |
||||
* This will be repeated at the beginning of each pass. |
||||
*/ |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
int ci, i, rgroup; |
||||
int M = cinfo->min_DCT_v_scaled_size; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY buf, xbuf0, xbuf1; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (! compptr->component_needed) |
||||
continue; /* skip uninteresting component */ |
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ |
||||
xbuf0 = mainp->xbuffer[0][ci]; |
||||
xbuf1 = mainp->xbuffer[1][ci]; |
||||
/* First copy the workspace pointers as-is */ |
||||
buf = mainp->buffer[ci]; |
||||
for (i = 0; i < rgroup * (M + 2); i++) { |
||||
xbuf0[i] = xbuf1[i] = buf[i]; |
||||
} |
||||
/* In the second list, put the last four row groups in swapped order */ |
||||
for (i = 0; i < rgroup * 2; i++) { |
||||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; |
||||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; |
||||
} |
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above" |
||||
* pointers to duplicate the first actual data line. This only needs |
||||
* to happen in xbuffer[0]. |
||||
*/ |
||||
for (i = 0; i < rgroup; i++) { |
||||
xbuf0[i - rgroup] = xbuf0[0]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
set_wraparound_pointers (j_decompress_ptr cinfo) |
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state. |
||||
*/ |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
int ci, i, rgroup; |
||||
int M = cinfo->min_DCT_v_scaled_size; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY xbuf0, xbuf1; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (! compptr->component_needed) |
||||
continue; /* skip uninteresting component */ |
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ |
||||
xbuf0 = mainp->xbuffer[0][ci]; |
||||
xbuf1 = mainp->xbuffer[1][ci]; |
||||
for (i = 0; i < rgroup; i++) { |
||||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; |
||||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; |
||||
xbuf0[rgroup*(M+2) + i] = xbuf0[i]; |
||||
xbuf1[rgroup*(M+2) + i] = xbuf1[i]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
set_bottom_pointers (j_decompress_ptr cinfo) |
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row. |
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row. |
||||
*/ |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
int ci, i, rgroup, iMCUheight, rows_left; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY xbuf; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (! compptr->component_needed) |
||||
continue; /* skip uninteresting component */ |
||||
/* Count sample rows in one iMCU row and in one row group */ |
||||
iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size; |
||||
rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size; |
||||
/* Count nondummy sample rows remaining for this component */ |
||||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); |
||||
if (rows_left == 0) rows_left = iMCUheight; |
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once. |
||||
*/ |
||||
if (ci == 0) { |
||||
mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); |
||||
} |
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context. |
||||
*/ |
||||
xbuf = mainp->xbuffer[mainp->whichptr][ci]; |
||||
for (i = 0; i < rgroup * 2; i++) { |
||||
xbuf[rows_left + i] = xbuf[rows_left-1]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
if (cinfo->upsample->need_context_rows) { |
||||
mainp->pub.process_data = process_data_context_main; |
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ |
||||
mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ |
||||
mainp->context_state = CTX_PREPARE_FOR_IMCU; |
||||
mainp->iMCU_row_ctr = 0; |
||||
mainp->buffer_full = FALSE; /* Mark buffer empty */ |
||||
} else { |
||||
/* Simple case with no context needed */ |
||||
mainp->pub.process_data = process_data_simple_main; |
||||
mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */ |
||||
} |
||||
break; |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
case JBUF_CRANK_DEST: |
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */ |
||||
mainp->pub.process_data = process_data_crank_post; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This handles the simple case where no context is required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */ |
||||
if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) { |
||||
if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer)) |
||||
return; /* suspension forced, can do nothing more */ |
||||
mainp->rowgroup_ctr = 0; /* OK, we have an iMCU row to work with */ |
||||
} |
||||
|
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom |
||||
* of image anyway (at row resolution), so no point in us doing it too. |
||||
*/ |
||||
|
||||
/* Feed the postprocessor */ |
||||
(*cinfo->post->post_process_data) (cinfo, mainp->buffer, |
||||
&mainp->rowgroup_ctr, mainp->rowgroups_avail, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This handles the case where context rows must be provided. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) |
||||
{ |
||||
my_main_ptr mainp = (my_main_ptr) cinfo->main; |
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */ |
||||
if (! mainp->buffer_full) { |
||||
if (! (*cinfo->coef->decompress_data) (cinfo, |
||||
mainp->xbuffer[mainp->whichptr])) |
||||
return; /* suspension forced, can do nothing more */ |
||||
mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ |
||||
mainp->iMCU_row_ctr++; /* count rows received */ |
||||
} |
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared |
||||
* to exit and restart. This switch lets us keep track of how far we got. |
||||
* Note that each case falls through to the next on successful completion. |
||||
*/ |
||||
switch (mainp->context_state) { |
||||
case CTX_POSTPONED_ROW: |
||||
/* Call postprocessor using previously set pointers for postponed row */ |
||||
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], |
||||
&mainp->rowgroup_ctr, mainp->rowgroups_avail, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
if (mainp->rowgroup_ctr < mainp->rowgroups_avail) |
||||
return; /* Need to suspend */ |
||||
mainp->context_state = CTX_PREPARE_FOR_IMCU; |
||||
if (*out_row_ctr >= out_rows_avail) |
||||
return; /* Postprocessor exactly filled output buf */ |
||||
/*FALLTHROUGH*/ |
||||
case CTX_PREPARE_FOR_IMCU: |
||||
/* Prepare to process first M-1 row groups of this iMCU row */ |
||||
mainp->rowgroup_ctr = 0; |
||||
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); |
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows. |
||||
*/ |
||||
if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows) |
||||
set_bottom_pointers(cinfo); |
||||
mainp->context_state = CTX_PROCESS_IMCU; |
||||
/*FALLTHROUGH*/ |
||||
case CTX_PROCESS_IMCU: |
||||
/* Call postprocessor using previously set pointers */ |
||||
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], |
||||
&mainp->rowgroup_ctr, mainp->rowgroups_avail, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
if (mainp->rowgroup_ctr < mainp->rowgroups_avail) |
||||
return; /* Need to suspend */ |
||||
/* After the first iMCU, change wraparound pointers to normal state */ |
||||
if (mainp->iMCU_row_ctr == 1) |
||||
set_wraparound_pointers(cinfo); |
||||
/* Prepare to load new iMCU row using other xbuffer list */ |
||||
mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */ |
||||
mainp->buffer_full = FALSE; |
||||
/* Still need to process last row group of this iMCU row, */ |
||||
/* which is saved at index M+1 of the other xbuffer */ |
||||
mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); |
||||
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); |
||||
mainp->context_state = CTX_POSTPONED_ROW; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* Final pass of two-pass quantization: just call the postprocessor. |
||||
* Source data will be the postprocessor controller's internal buffer. |
||||
*/ |
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
|
||||
METHODDEF(void) |
||||
process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) |
||||
{ |
||||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, |
||||
(JDIMENSION *) NULL, (JDIMENSION) 0, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
} |
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_main_ptr mainp; |
||||
int ci, rgroup, ngroups; |
||||
jpeg_component_info *compptr; |
||||
|
||||
mainp = (my_main_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller)); |
||||
cinfo->main = &mainp->pub; |
||||
mainp->pub.start_pass = start_pass_main; |
||||
|
||||
if (need_full_buffer) /* shouldn't happen */ |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need. |
||||
*/ |
||||
if (cinfo->upsample->need_context_rows) { |
||||
if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */ |
||||
ERREXIT(cinfo, JERR_NOTIMPL); |
||||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ |
||||
ngroups = cinfo->min_DCT_v_scaled_size + 2; |
||||
} else { |
||||
/* There are always min_DCT_v_scaled_size row groups in an iMCU row. */ |
||||
ngroups = cinfo->min_DCT_v_scaled_size; |
||||
mainp->rowgroups_avail = (JDIMENSION) ngroups; |
||||
} |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (! compptr->component_needed) |
||||
continue; /* skip uninteresting component */ |
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ |
||||
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), |
||||
(JDIMENSION) (rgroup * ngroups)); |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -1,532 +0,0 @@ |
||||
/*
|
||||
* jdmaster.c |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2002-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains master control logic for the JPEG decompressor. |
||||
* These routines are concerned with selecting the modules to be executed |
||||
* and with determining the number of passes and the work to be done in each |
||||
* pass. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_decomp_master pub; /* public fields */ |
||||
|
||||
int pass_number; /* # of passes completed */ |
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ |
||||
|
||||
/* Saved references to initialized quantizer modules,
|
||||
* in case we need to switch modes. |
||||
*/ |
||||
struct jpeg_color_quantizer * quantizer_1pass; |
||||
struct jpeg_color_quantizer * quantizer_2pass; |
||||
} my_decomp_master; |
||||
|
||||
typedef my_decomp_master * my_master_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used. |
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c! |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
use_merged_upsample (j_decompress_ptr cinfo) |
||||
{ |
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED |
||||
/* Merging is the equivalent of plain box-filter upsampling. */ |
||||
/* The following condition is only needed if fancy shall select
|
||||
* a different upsampling method. In our current implementation |
||||
* fancy only affects the DCT scaling, thus we can use fancy |
||||
* upsampling and merged upsample simultaneously, in particular |
||||
* with scaled DCT sizes larger than the default DCTSIZE. |
||||
*/ |
||||
#if 0 |
||||
if (cinfo->do_fancy_upsampling) |
||||
return FALSE; |
||||
#endif |
||||
if (cinfo->CCIR601_sampling) |
||||
return FALSE; |
||||
/* jdmerge.c only supports YCC=>RGB color conversion */ |
||||
if ((cinfo->jpeg_color_space != JCS_YCbCr && |
||||
cinfo->jpeg_color_space != JCS_BG_YCC) || |
||||
cinfo->num_components != 3 || |
||||
cinfo->out_color_space != JCS_RGB || |
||||
cinfo->out_color_components != RGB_PIXELSIZE || |
||||
cinfo->color_transform) |
||||
return FALSE; |
||||
/* and it only handles 2h1v or 2h2v sampling ratios */ |
||||
if (cinfo->comp_info[0].h_samp_factor != 2 || |
||||
cinfo->comp_info[1].h_samp_factor != 1 || |
||||
cinfo->comp_info[2].h_samp_factor != 1 || |
||||
cinfo->comp_info[0].v_samp_factor > 2 || |
||||
cinfo->comp_info[1].v_samp_factor != 1 || |
||||
cinfo->comp_info[2].v_samp_factor != 1) |
||||
return FALSE; |
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */ |
||||
if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || |
||||
cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || |
||||
cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || |
||||
cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || |
||||
cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || |
||||
cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size) |
||||
return FALSE; |
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */ |
||||
return TRUE; /* by golly, it'll work... */ |
||||
#else |
||||
return FALSE; |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values. |
||||
* NOTE: this is exported for possible use by application. |
||||
* Hence it mustn't do anything that can't be done twice. |
||||
* Also note that it may be called before the master module is initialized! |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase.
|
||||
* This function is used for full decompression. |
||||
*/ |
||||
{ |
||||
int ci, i; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Prevent application from calling me at wrong times */ |
||||
if (cinfo->global_state != DSTATE_READY) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Compute core output image dimensions and DCT scaling choices. */ |
||||
jpeg_core_output_dimensions(cinfo); |
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling. |
||||
* This saves time if the upsampler gets to use 1:1 scaling. |
||||
* Note this code adapts subsampling ratios which are powers of 2. |
||||
*/ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
int ssize = 1; |
||||
if (! cinfo->raw_data_out) |
||||
while (cinfo->min_DCT_h_scaled_size * ssize <= |
||||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && |
||||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == |
||||
0) { |
||||
ssize = ssize * 2; |
||||
} |
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; |
||||
ssize = 1; |
||||
if (! cinfo->raw_data_out) |
||||
while (cinfo->min_DCT_v_scaled_size * ssize <= |
||||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && |
||||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == |
||||
0) { |
||||
ssize = ssize * 2; |
||||
} |
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; |
||||
|
||||
/* We don't support IDCT ratios larger than 2. */ |
||||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) |
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; |
||||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) |
||||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; |
||||
|
||||
/* Recompute downsampled dimensions of components;
|
||||
* application needs to know these if using raw downsampled data. |
||||
*/ |
||||
/* Size in samples, after IDCT scaling */ |
||||
compptr->downsampled_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * |
||||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), |
||||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
||||
compptr->downsampled_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * |
||||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), |
||||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
||||
} |
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */ |
||||
|
||||
/* Report number of components in selected colorspace. */ |
||||
/* This should correspond to the actual code in the color conversion module. */ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
cinfo->out_color_components = 1; |
||||
break; |
||||
case JCS_RGB: |
||||
case JCS_BG_RGB: |
||||
cinfo->out_color_components = RGB_PIXELSIZE; |
||||
break; |
||||
default: /* YCCK <=> CMYK conversion or same colorspace as in file */ |
||||
i = 0; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) |
||||
if (compptr->component_needed) |
||||
i++; /* count output color components */ |
||||
cinfo->out_color_components = i; |
||||
} |
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 : |
||||
cinfo->out_color_components); |
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */ |
||||
if (use_merged_upsample(cinfo)) |
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; |
||||
else |
||||
cinfo->rec_outbuf_height = 1; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Several decompression processes need to range-limit values to the range |
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range |
||||
* due to noise introduced by quantization, roundoff error, etc. These |
||||
* processes are inner loops and need to be as fast as possible. On most |
||||
* machines, particularly CPUs with pipelines or instruction prefetch, |
||||
* a (subscript-check-less) C table lookup |
||||
* x = sample_range_limit[x]; |
||||
* is faster than explicit tests |
||||
* if (x < 0) x = 0; |
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE; |
||||
* These processes all use a common table prepared by the routine below. |
||||
* |
||||
* For most steps we can mathematically guarantee that the initial value |
||||
* of x is within 2*(MAXJSAMPLE+1) of the legal range, so a table running |
||||
* from -2*(MAXJSAMPLE+1) to 3*MAXJSAMPLE+2 is sufficient. But for the |
||||
* initial limiting step (just after the IDCT), a wildly out-of-range value |
||||
* is possible if the input data is corrupt. To avoid any chance of indexing |
||||
* off the end of memory and getting a bad-pointer trap, we perform the |
||||
* post-IDCT limiting thus: |
||||
* x = (sample_range_limit - SUBSET)[(x + CENTER) & MASK]; |
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit |
||||
* samples. Under normal circumstances this is more than enough range and |
||||
* a correct output will be generated; with bogus input data the mask will |
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output. |
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned |
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it. |
||||
* This is accomplished with SUBSET = CENTER - CENTERJSAMPLE. |
||||
* |
||||
* Note that the table is allocated in near data space on PCs; it's small |
||||
* enough and used often enough to justify this. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
prepare_range_limit_table (j_decompress_ptr cinfo) |
||||
/* Allocate and fill in the sample_range_limit table */ |
||||
{ |
||||
JSAMPLE * table; |
||||
int i; |
||||
|
||||
table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, |
||||
JPOOL_IMAGE, (RANGE_CENTER * 2 + MAXJSAMPLE + 1) * SIZEOF(JSAMPLE)); |
||||
/* First segment of range limit table: limit[x] = 0 for x < 0 */ |
||||
MEMZERO(table, RANGE_CENTER * SIZEOF(JSAMPLE)); |
||||
table += RANGE_CENTER; /* allow negative subscripts of table */ |
||||
cinfo->sample_range_limit = table; |
||||
/* Main part of range limit table: limit[x] = x */ |
||||
for (i = 0; i <= MAXJSAMPLE; i++) |
||||
table[i] = (JSAMPLE) i; |
||||
/* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */ |
||||
for (; i <= MAXJSAMPLE + RANGE_CENTER; i++) |
||||
table[i] = MAXJSAMPLE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules. |
||||
* This is done once at jpeg_start_decompress time. We determine |
||||
* which modules will be used and give them appropriate initialization calls. |
||||
* We also initialize the decompressor input side to begin consuming data. |
||||
* |
||||
* Since jpeg_read_header has finished, we know what is in the SOF |
||||
* and (first) SOS markers. We also have all the application parameter |
||||
* settings. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
master_selection (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
boolean use_c_buffer; |
||||
long samplesperrow; |
||||
JDIMENSION jd_samplesperrow; |
||||
|
||||
/* For now, precision must match compiled-in value... */ |
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE) |
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
||||
|
||||
/* Initialize dimensions and other stuff */ |
||||
jpeg_calc_output_dimensions(cinfo); |
||||
prepare_range_limit_table(cinfo); |
||||
|
||||
/* Sanity check on image dimensions */ |
||||
if (cinfo->output_height <= 0 || cinfo->output_width <= 0 || |
||||
cinfo->out_color_components <= 0) |
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */ |
||||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; |
||||
jd_samplesperrow = (JDIMENSION) samplesperrow; |
||||
if ((long) jd_samplesperrow != samplesperrow) |
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
||||
|
||||
/* Initialize my private state */ |
||||
master->pass_number = 0; |
||||
master->using_merged_upsample = use_merged_upsample(cinfo); |
||||
|
||||
/* Color quantizer selection */ |
||||
master->quantizer_1pass = NULL; |
||||
master->quantizer_2pass = NULL; |
||||
/* No mode changes if not using buffered-image mode. */ |
||||
if (! cinfo->quantize_colors || ! cinfo->buffered_image) { |
||||
cinfo->enable_1pass_quant = FALSE; |
||||
cinfo->enable_external_quant = FALSE; |
||||
cinfo->enable_2pass_quant = FALSE; |
||||
} |
||||
if (cinfo->quantize_colors) { |
||||
if (cinfo->raw_data_out) |
||||
ERREXIT(cinfo, JERR_NOTIMPL); |
||||
/* 2-pass quantizer only works in 3-component color space. */ |
||||
if (cinfo->out_color_components != 3) { |
||||
cinfo->enable_1pass_quant = TRUE; |
||||
cinfo->enable_external_quant = FALSE; |
||||
cinfo->enable_2pass_quant = FALSE; |
||||
cinfo->colormap = NULL; |
||||
} else if (cinfo->colormap != NULL) { |
||||
cinfo->enable_external_quant = TRUE; |
||||
} else if (cinfo->two_pass_quantize) { |
||||
cinfo->enable_2pass_quant = TRUE; |
||||
} else { |
||||
cinfo->enable_1pass_quant = TRUE; |
||||
} |
||||
|
||||
if (cinfo->enable_1pass_quant) { |
||||
#ifdef QUANT_1PASS_SUPPORTED |
||||
jinit_1pass_quantizer(cinfo); |
||||
master->quantizer_1pass = cinfo->cquantize; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} |
||||
|
||||
/* We use the 2-pass code to map to external colormaps. */ |
||||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
jinit_2pass_quantizer(cinfo); |
||||
master->quantizer_2pass = cinfo->cquantize; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} |
||||
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||
* this is necessary for starting with quantization to an external map. |
||||
*/ |
||||
} |
||||
|
||||
/* Post-processing: in particular, color conversion first */ |
||||
if (! cinfo->raw_data_out) { |
||||
if (master->using_merged_upsample) { |
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED |
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */ |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
jinit_color_deconverter(cinfo); |
||||
jinit_upsampler(cinfo); |
||||
} |
||||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); |
||||
} |
||||
/* Inverse DCT */ |
||||
jinit_inverse_dct(cinfo); |
||||
/* Entropy decoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) |
||||
jinit_arith_decoder(cinfo); |
||||
else { |
||||
jinit_huff_decoder(cinfo); |
||||
} |
||||
|
||||
/* Initialize principal buffer controllers. */ |
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; |
||||
jinit_d_coef_controller(cinfo, use_c_buffer); |
||||
|
||||
if (! cinfo->raw_data_out) |
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */ |
||||
(*cinfo->inputctl->start_input_pass) (cinfo); |
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
/* If jpeg_start_decompress will read the whole file, initialize
|
||||
* progress monitoring appropriately. The input step is counted |
||||
* as one pass. |
||||
*/ |
||||
if (cinfo->progress != NULL && ! cinfo->buffered_image && |
||||
cinfo->inputctl->has_multiple_scans) { |
||||
int nscans; |
||||
/* Estimate number of scans to set pass_limit. */ |
||||
if (cinfo->progressive_mode) { |
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ |
||||
nscans = 2 + 3 * cinfo->num_components; |
||||
} else { |
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */ |
||||
nscans = cinfo->num_components; |
||||
} |
||||
cinfo->progress->pass_counter = 0L; |
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; |
||||
cinfo->progress->completed_passes = 0; |
||||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); |
||||
/* Count the input pass as done */ |
||||
master->pass_number++; |
||||
} |
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup. |
||||
* This is called at the beginning of each output pass. We determine which |
||||
* modules will be active during this pass and give them appropriate |
||||
* start_pass calls. We also set is_dummy_pass to indicate whether this |
||||
* is a "real" output pass or a dummy pass for color quantization. |
||||
* (In the latter case, jdapistd.c will crank the pass to completion.) |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
prepare_for_output_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
if (master->pub.is_dummy_pass) { |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
/* Final pass of 2-pass quantization */ |
||||
master->pub.is_dummy_pass = FALSE; |
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE); |
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
} else { |
||||
if (cinfo->quantize_colors && cinfo->colormap == NULL) { |
||||
/* Select new quantization method */ |
||||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { |
||||
cinfo->cquantize = master->quantizer_2pass; |
||||
master->pub.is_dummy_pass = TRUE; |
||||
} else if (cinfo->enable_1pass_quant) { |
||||
cinfo->cquantize = master->quantizer_1pass; |
||||
} else { |
||||
ERREXIT(cinfo, JERR_MODE_CHANGE); |
||||
} |
||||
} |
||||
(*cinfo->idct->start_pass) (cinfo); |
||||
(*cinfo->coef->start_output_pass) (cinfo); |
||||
if (! cinfo->raw_data_out) { |
||||
if (! master->using_merged_upsample) |
||||
(*cinfo->cconvert->start_pass) (cinfo); |
||||
(*cinfo->upsample->start_pass) (cinfo); |
||||
if (cinfo->quantize_colors) |
||||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); |
||||
(*cinfo->post->start_pass) (cinfo, |
||||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
||||
} |
||||
} |
||||
|
||||
/* Set up progress monitor's pass info if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->completed_passes = master->pass_number; |
||||
cinfo->progress->total_passes = master->pass_number + |
||||
(master->pub.is_dummy_pass ? 2 : 1); |
||||
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||
* yet reached, but no more passes if EOI has been reached. |
||||
*/ |
||||
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { |
||||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of an output pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_output_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
if (cinfo->quantize_colors) |
||||
(*cinfo->cquantize->finish_pass) (cinfo); |
||||
master->pass_number++; |
||||
} |
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_new_colormap (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
/* Prevent application from calling me at wrong times */ |
||||
if (cinfo->global_state != DSTATE_BUFIMAGE) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (cinfo->quantize_colors && cinfo->enable_external_quant && |
||||
cinfo->colormap != NULL) { |
||||
/* Select 2-pass quantizer for external colormap use */ |
||||
cinfo->cquantize = master->quantizer_2pass; |
||||
/* Notify quantizer of colormap change */ |
||||
(*cinfo->cquantize->new_color_map) (cinfo); |
||||
master->pub.is_dummy_pass = FALSE; /* just in case */ |
||||
} else |
||||
ERREXIT(cinfo, JERR_MODE_CHANGE); |
||||
} |
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control and select active modules. |
||||
* This is performed at the start of jpeg_start_decompress. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_master_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master; |
||||
|
||||
master = (my_master_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master)); |
||||
cinfo->master = &master->pub; |
||||
master->pub.prepare_for_output_pass = prepare_for_output_pass; |
||||
master->pub.finish_output_pass = finish_output_pass; |
||||
|
||||
master->pub.is_dummy_pass = FALSE; |
||||
|
||||
master_selection(cinfo); |
||||
} |
@ -1,437 +0,0 @@ |
||||
/*
|
||||
* jdmerge.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2013-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains code for merged upsampling/color conversion. |
||||
* |
||||
* This file combines functions from jdsample.c and jdcolor.c; |
||||
* read those files first to understand what's going on. |
||||
* |
||||
* When the chroma components are to be upsampled by simple replication |
||||
* (ie, box filtering), we can save some work in color conversion by |
||||
* calculating all the output pixels corresponding to a pair of chroma |
||||
* samples at one time. In the conversion equations |
||||
* R = Y + K1 * Cr |
||||
* G = Y + K2 * Cb + K3 * Cr |
||||
* B = Y + K4 * Cb |
||||
* only the Y term varies among the group of pixels corresponding to a pair |
||||
* of chroma samples, so the rest of the terms can be calculated just once. |
||||
* At typical sampling ratios, this eliminates half or three-quarters |
||||
* of the multiplications needed for color conversion. |
||||
* |
||||
* This file currently provides implementations for the following cases: |
||||
* YCC => RGB color conversion only (YCbCr or BG_YCC). |
||||
* Sampling ratios of 2h1v or 2h2v. |
||||
* No scaling needed at upsample time. |
||||
* Corner-aligned (non-CCIR601) sampling alignment. |
||||
* Other special cases could be added, but in most applications these |
||||
* are the only common cases. (For uncommon cases we fall back on |
||||
* the more general code in jdsample.c and jdcolor.c.) |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED |
||||
|
||||
|
||||
#if RANGE_BITS < 2 |
||||
/* Deliberate syntax err */ |
||||
Sorry, this code requires 2 or more range extension bits. |
||||
#endif |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_upsampler pub; /* public fields */ |
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */ |
||||
JMETHOD(void, upmethod, (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf)); |
||||
|
||||
/* Private state for YCC->RGB conversion */ |
||||
int * Cr_r_tab; /* => table for Cr to R conversion */ |
||||
int * Cb_b_tab; /* => table for Cb to B conversion */ |
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */ |
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */ |
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the |
||||
* application provides just a one-row buffer; we also use the spare |
||||
* to discard the dummy last row if the image height is odd. |
||||
*/ |
||||
JSAMPROW spare_row; |
||||
boolean spare_full; /* T if spare buffer is occupied */ |
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */ |
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */ |
||||
} my_upsampler; |
||||
|
||||
typedef my_upsampler * my_upsample_ptr; |
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. |
||||
* This is taken directly from jdcolor.c; see that file for more info. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
build_ycc_rgb_table (j_decompress_ptr cinfo) |
||||
/* Normal case, sYCC */ |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
int i; |
||||
INT32 x; |
||||
SHIFT_TEMPS |
||||
|
||||
upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
||||
/* Cr=>R value is nearest int to 1.402 * x */ |
||||
upsample->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS); |
||||
/* Cb=>B value is nearest int to 1.772 * x */ |
||||
upsample->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS); |
||||
/* Cr=>G value is scaled-up -0.714136286 * x */ |
||||
upsample->Cr_g_tab[i] = (- FIX(0.714136286)) * x; |
||||
/* Cb=>G value is scaled-up -0.344136286 * x */ |
||||
/* We also add in ONE_HALF so that need not do it in inner loop */ |
||||
upsample->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
build_bg_ycc_rgb_table (j_decompress_ptr cinfo) |
||||
/* Wide gamut case, bg-sYCC */ |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
int i; |
||||
INT32 x; |
||||
SHIFT_TEMPS |
||||
|
||||
upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
||||
upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
||||
/* Cr=>R value is nearest int to 2.804 * x */ |
||||
upsample->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS); |
||||
/* Cb=>B value is nearest int to 3.544 * x */ |
||||
upsample->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS); |
||||
/* Cr=>G value is scaled-up -1.428272572 * x */ |
||||
upsample->Cr_g_tab[i] = (- FIX(1.428272572)) * x; |
||||
/* Cb=>G value is scaled-up -0.688272572 * x */ |
||||
/* We also add in ONE_HALF so that need not do it in inner loop */ |
||||
upsample->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_merged_upsample (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
/* Mark the spare buffer empty */ |
||||
upsample->spare_full = FALSE; |
||||
/* Initialize total-height counter for detecting bottom of image */ |
||||
upsample->rows_to_go = cinfo->output_height; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion). |
||||
* |
||||
* The control routine just handles the row buffering considerations. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
merged_2v_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
/* 2:1 vertical sampling case: may need a spare row. */ |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
JSAMPROW work_ptrs[2]; |
||||
JDIMENSION num_rows; /* number of rows returned to caller */ |
||||
|
||||
if (upsample->spare_full) { |
||||
/* If we have a spare row saved from a previous cycle, just return it. */ |
||||
jcopy_sample_rows(& upsample->spare_row, output_buf + *out_row_ctr, |
||||
1, upsample->out_row_width); |
||||
num_rows = 1; |
||||
upsample->spare_full = FALSE; |
||||
} else { |
||||
/* Figure number of rows to return to caller. */ |
||||
num_rows = 2; |
||||
/* Not more than the distance to the end of the image. */ |
||||
if (num_rows > upsample->rows_to_go) |
||||
num_rows = upsample->rows_to_go; |
||||
/* And not more than what the client can accept: */ |
||||
out_rows_avail -= *out_row_ctr; |
||||
if (num_rows > out_rows_avail) |
||||
num_rows = out_rows_avail; |
||||
/* Create output pointer array for upsampler. */ |
||||
work_ptrs[0] = output_buf[*out_row_ctr]; |
||||
if (num_rows > 1) { |
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1]; |
||||
} else { |
||||
work_ptrs[1] = upsample->spare_row; |
||||
upsample->spare_full = TRUE; |
||||
} |
||||
/* Now do the upsampling. */ |
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); |
||||
} |
||||
|
||||
/* Adjust counts */ |
||||
*out_row_ctr += num_rows; |
||||
upsample->rows_to_go -= num_rows; |
||||
/* When the buffer is emptied, declare this input row group consumed */ |
||||
if (! upsample->spare_full) |
||||
(*in_row_group_ctr)++; |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
merged_1v_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */ |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
/* Just do the upsampling. */ |
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, |
||||
output_buf + *out_row_ctr); |
||||
/* Adjust counts */ |
||||
(*out_row_ctr)++; |
||||
(*in_row_group_ctr)++; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do |
||||
* the actual upsampling/conversion. One row group is processed per call. |
||||
* |
||||
* Note: since we may be writing directly into application-supplied buffers, |
||||
* we have to be honest about the output width; we can't assume the buffer |
||||
* has been rounded up to an even width. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_merged_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr; |
||||
JSAMPROW inptr0, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
INT32 * Crgtab = upsample->Cr_g_tab; |
||||
INT32 * Cbgtab = upsample->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr = output_buf[0]; |
||||
/* Loop for each pair of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
cred = Crrtab[cr]; |
||||
/* Fetch 2 Y values and emit 2 pixels */ |
||||
y = GETJSAMPLE(*inptr0++); |
||||
outptr[RGB_RED] = range_limit[y + cred]; |
||||
outptr[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr[RGB_BLUE] = range_limit[y + cblue]; |
||||
outptr += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr0++); |
||||
outptr[RGB_RED] = range_limit[y + cred]; |
||||
outptr[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr[RGB_BLUE] = range_limit[y + cblue]; |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
y = GETJSAMPLE(*inptr0); |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; |
||||
outptr[RGB_GREEN] = range_limit[y + |
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_merged_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr0, outptr1; |
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
INT32 * Crgtab = upsample->Cr_g_tab; |
||||
INT32 * Cbgtab = upsample->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2]; |
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr0 = output_buf[0]; |
||||
outptr1 = output_buf[1]; |
||||
/* Loop for each group of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
cred = Crrtab[cr]; |
||||
/* Fetch 4 Y values and emit 4 pixels */ |
||||
y = GETJSAMPLE(*inptr00++); |
||||
outptr0[RGB_RED] = range_limit[y + cred]; |
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr0[RGB_BLUE] = range_limit[y + cblue]; |
||||
outptr0 += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr00++); |
||||
outptr0[RGB_RED] = range_limit[y + cred]; |
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr0[RGB_BLUE] = range_limit[y + cblue]; |
||||
outptr0 += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr01++); |
||||
outptr1[RGB_RED] = range_limit[y + cred]; |
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr1[RGB_BLUE] = range_limit[y + cblue]; |
||||
outptr1 += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr01++); |
||||
outptr1[RGB_RED] = range_limit[y + cred]; |
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr1[RGB_BLUE] = range_limit[y + cblue]; |
||||
outptr1 += RGB_PIXELSIZE; |
||||
} |
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
cred = Crrtab[cr]; |
||||
y = GETJSAMPLE(*inptr00); |
||||
outptr0[RGB_RED] = range_limit[y + cred]; |
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr0[RGB_BLUE] = range_limit[y + cblue]; |
||||
y = GETJSAMPLE(*inptr01); |
||||
outptr1[RGB_RED] = range_limit[y + cred]; |
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr1[RGB_BLUE] = range_limit[y + cblue]; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion. |
||||
* |
||||
* NB: this is called under the conditions determined by use_merged_upsample() |
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities |
||||
* of this module; no safety checks are made here. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_merged_upsampler (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample; |
||||
|
||||
upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler)); |
||||
cinfo->upsample = &upsample->pub; |
||||
upsample->pub.start_pass = start_pass_merged_upsample; |
||||
upsample->pub.need_context_rows = FALSE; |
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; |
||||
|
||||
if (cinfo->max_v_samp_factor == 2) { |
||||
upsample->pub.upsample = merged_2v_upsample; |
||||
upsample->upmethod = h2v2_merged_upsample; |
||||
/* Allocate a spare row buffer */ |
||||
upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(size_t) upsample->out_row_width * SIZEOF(JSAMPLE)); |
||||
} else { |
||||
upsample->pub.upsample = merged_1v_upsample; |
||||
upsample->upmethod = h2v1_merged_upsample; |
||||
/* No spare row needed */ |
||||
upsample->spare_row = NULL; |
||||
} |
||||
|
||||
if (cinfo->jpeg_color_space == JCS_BG_YCC) |
||||
build_bg_ycc_rgb_table(cinfo); |
||||
else |
||||
build_ycc_rgb_table(cinfo); |
||||
} |
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */ |
@ -1,290 +0,0 @@ |
||||
/*
|
||||
* jdpostct.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains the decompression postprocessing controller. |
||||
* This controller manages the upsampling, color conversion, and color |
||||
* quantization/reduction steps; specifically, it controls the buffering |
||||
* between upsample/color conversion and color quantization/reduction. |
||||
* |
||||
* If no color quantization/reduction is required, then this module has no |
||||
* work to do, and it just hands off to the upsample/color conversion code. |
||||
* An integrated upsample/convert/quantize process would replace this module |
||||
* entirely. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_d_post_controller pub; /* public fields */ |
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer. |
||||
* For two-pass color quantization, we need a full-image buffer; |
||||
* for one-pass operation, a strip buffer is sufficient. |
||||
*/ |
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ |
||||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ |
||||
JDIMENSION strip_height; /* buffer size in rows */ |
||||
/* for two-pass mode only: */ |
||||
JDIMENSION starting_row; /* row # of first row in current strip */ |
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */ |
||||
} my_post_controller; |
||||
|
||||
typedef my_post_controller * my_post_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(void) post_process_1pass |
||||
JPP((j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail)); |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
METHODDEF(void) post_process_prepass |
||||
JPP((j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail)); |
||||
METHODDEF(void) post_process_2pass |
||||
JPP((j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail)); |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
if (cinfo->quantize_colors) { |
||||
/* Single-pass processing with color quantization. */ |
||||
post->pub.post_process_data = post_process_1pass; |
||||
/* We could be doing buffered-image output before starting a 2-pass
|
||||
* color quantization; in that case, jinit_d_post_controller did not |
||||
* allocate a strip buffer. Use the virtual-array buffer as workspace. |
||||
*/ |
||||
if (post->buffer == NULL) { |
||||
post->buffer = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, post->whole_image, |
||||
(JDIMENSION) 0, post->strip_height, TRUE); |
||||
} |
||||
} else { |
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly. |
||||
*/ |
||||
post->pub.post_process_data = cinfo->upsample->upsample; |
||||
} |
||||
break; |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
case JBUF_SAVE_AND_PASS: |
||||
/* First pass of 2-pass quantization */ |
||||
if (post->whole_image == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
post->pub.post_process_data = post_process_prepass; |
||||
break; |
||||
case JBUF_CRANK_DEST: |
||||
/* Second pass of 2-pass quantization */ |
||||
if (post->whole_image == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
post->pub.post_process_data = post_process_2pass; |
||||
break; |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
break; |
||||
} |
||||
post->starting_row = post->next_row = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case. |
||||
* This is used for color precision reduction as well as one-pass quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
post_process_1pass (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
JDIMENSION num_rows, max_rows; |
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */ |
||||
/* Note we rely on the upsampler to detect bottom of image. */ |
||||
max_rows = out_rows_avail - *out_row_ctr; |
||||
if (max_rows > post->strip_height) |
||||
max_rows = post->strip_height; |
||||
num_rows = 0; |
||||
(*cinfo->upsample->upsample) (cinfo, |
||||
input_buf, in_row_group_ctr, in_row_groups_avail, |
||||
post->buffer, &num_rows, max_rows); |
||||
/* Quantize and emit data. */ |
||||
(*cinfo->cquantize->color_quantize) (cinfo, |
||||
post->buffer, output_buf + *out_row_ctr, (int) num_rows); |
||||
*out_row_ctr += num_rows; |
||||
} |
||||
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
post_process_prepass (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
JDIMENSION old_next_row, num_rows; |
||||
|
||||
/* Reposition virtual buffer if at start of strip. */ |
||||
if (post->next_row == 0) { |
||||
post->buffer = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, post->whole_image, |
||||
post->starting_row, post->strip_height, TRUE); |
||||
} |
||||
|
||||
/* Upsample some data (up to a strip height's worth). */ |
||||
old_next_row = post->next_row; |
||||
(*cinfo->upsample->upsample) (cinfo, |
||||
input_buf, in_row_group_ctr, in_row_groups_avail, |
||||
post->buffer, &post->next_row, post->strip_height); |
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */ |
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */ |
||||
if (post->next_row > old_next_row) { |
||||
num_rows = post->next_row - old_next_row; |
||||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, |
||||
(JSAMPARRAY) NULL, (int) num_rows); |
||||
*out_row_ctr += num_rows; |
||||
} |
||||
|
||||
/* Advance if we filled the strip. */ |
||||
if (post->next_row >= post->strip_height) { |
||||
post->starting_row += post->strip_height; |
||||
post->next_row = 0; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
post_process_2pass (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
JDIMENSION num_rows, max_rows; |
||||
|
||||
/* Reposition virtual buffer if at start of strip. */ |
||||
if (post->next_row == 0) { |
||||
post->buffer = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, post->whole_image, |
||||
post->starting_row, post->strip_height, FALSE); |
||||
} |
||||
|
||||
/* Determine number of rows to emit. */ |
||||
num_rows = post->strip_height - post->next_row; /* available in strip */ |
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ |
||||
if (num_rows > max_rows) |
||||
num_rows = max_rows; |
||||
/* We have to check bottom of image here, can't depend on upsampler. */ |
||||
max_rows = cinfo->output_height - post->starting_row; |
||||
if (num_rows > max_rows) |
||||
num_rows = max_rows; |
||||
|
||||
/* Quantize and emit data. */ |
||||
(*cinfo->cquantize->color_quantize) (cinfo, |
||||
post->buffer + post->next_row, output_buf + *out_row_ctr, |
||||
(int) num_rows); |
||||
*out_row_ctr += num_rows; |
||||
|
||||
/* Advance if we filled the strip. */ |
||||
post->next_row += num_rows; |
||||
if (post->next_row >= post->strip_height) { |
||||
post->starting_row += post->strip_height; |
||||
post->next_row = 0; |
||||
} |
||||
} |
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_post_ptr post; |
||||
|
||||
post = (my_post_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
SIZEOF(my_post_controller)); |
||||
cinfo->post = (struct jpeg_d_post_controller *) post; |
||||
post->pub.start_pass = start_pass_dpost; |
||||
post->whole_image = NULL; /* flag for no virtual arrays */ |
||||
post->buffer = NULL; /* flag for no strip buffer */ |
||||
|
||||
/* Create the quantization buffer, if needed */ |
||||
if (cinfo->quantize_colors) { |
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return. |
||||
* (In the presence of output rescaling, we might want to be smarter?) |
||||
*/ |
||||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; |
||||
if (need_full_buffer) { |
||||
/* Two-pass color quantization: need full-image storage. */ |
||||
/* We round up the number of rows to a multiple of the strip height. */ |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
post->whole_image = (*cinfo->mem->request_virt_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
||||
cinfo->output_width * cinfo->out_color_components, |
||||
(JDIMENSION) jround_up((long) cinfo->output_height, |
||||
(long) post->strip_height), |
||||
post->strip_height); |
||||
#else |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
} else { |
||||
/* One-pass color quantization: just make a strip buffer. */ |
||||
post->buffer = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->output_width * cinfo->out_color_components, |
||||
post->strip_height); |
||||
} |
||||
} |
||||
} |
@ -1,341 +0,0 @@ |
||||
/*
|
||||
* jdsample.c |
||||
* |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* Modified 2002-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains upsampling routines. |
||||
* |
||||
* Upsampling input data is counted in "row groups". A row group |
||||
* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) |
||||
* sample rows of each component. Upsampling will normally produce |
||||
* max_v_samp_factor pixel rows from each row group (but this could vary |
||||
* if the upsampler is applying a scale factor of its own). |
||||
* |
||||
* An excellent reference for image resampling is |
||||
* Digital Image Warping, George Wolberg, 1990. |
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */ |
||||
typedef JMETHOD(void, upsample1_ptr, |
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)); |
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_upsampler pub; /* public fields */ |
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it |
||||
* has been color converted and output. |
||||
* Note: we do not allocate any storage for component(s) which are full-size, |
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is |
||||
* simply set to point to the input data array, thereby avoiding copying. |
||||
*/ |
||||
JSAMPARRAY color_buf[MAX_COMPONENTS]; |
||||
|
||||
/* Per-component upsampling method pointers */ |
||||
upsample1_ptr methods[MAX_COMPONENTS]; |
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */ |
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */ |
||||
|
||||
/* Height of an input row group for each component. */ |
||||
int rowgroup_height[MAX_COMPONENTS]; |
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods. |
||||
*/ |
||||
UINT8 h_expand[MAX_COMPONENTS]; |
||||
UINT8 v_expand[MAX_COMPONENTS]; |
||||
} my_upsampler; |
||||
|
||||
typedef my_upsampler * my_upsample_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_upsample (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
/* Mark the conversion buffer empty */ |
||||
upsample->next_row_out = cinfo->max_v_samp_factor; |
||||
/* Initialize total-height counter for detecting bottom of image */ |
||||
upsample->rows_to_go = cinfo->output_height; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion). |
||||
* |
||||
* In this version we upsample each component independently. |
||||
* We upsample one row group into the conversion buffer, then apply |
||||
* color conversion a row at a time. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
sep_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
JDIMENSION num_rows; |
||||
|
||||
/* Fill the conversion buffer, if it's empty */ |
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Don't bother to upsample an uninteresting component. */ |
||||
if (! compptr->component_needed) |
||||
continue; |
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it. |
||||
*/ |
||||
(*upsample->methods[ci]) (cinfo, compptr, |
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
||||
upsample->color_buf + ci); |
||||
} |
||||
upsample->next_row_out = 0; |
||||
} |
||||
|
||||
/* Color-convert and emit rows */ |
||||
|
||||
/* How many we have in the buffer: */ |
||||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); |
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor: |
||||
*/ |
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go; |
||||
/* And not more than what the client can accept: */ |
||||
out_rows_avail -= *out_row_ctr; |
||||
if (num_rows > out_rows_avail) |
||||
num_rows = out_rows_avail; |
||||
|
||||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, |
||||
(JDIMENSION) upsample->next_row_out, |
||||
output_buf + *out_row_ctr, |
||||
(int) num_rows); |
||||
|
||||
/* Adjust counts */ |
||||
*out_row_ctr += num_rows; |
||||
upsample->rows_to_go -= num_rows; |
||||
upsample->next_row_out += num_rows; |
||||
/* When the buffer is emptied, declare this input row group consumed */ |
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
||||
(*in_row_group_ctr)++; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values |
||||
* of a single component. One row group is processed per call. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the |
||||
* input buffer, and thus avoid copying any data. Note that this is |
||||
* safe only because sep_upsample doesn't declare the input row group |
||||
* "consumed" until we are done color converting and emitting it. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) |
||||
{ |
||||
*output_data_ptr = input_data; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* This version handles any integral sampling ratios. |
||||
* This is not used for typical JPEG files, so it need not be fast. |
||||
* Nor, for that matter, is it particularly accurate: the algorithm is |
||||
* simple replication of the input pixel onto the corresponding output |
||||
* pixels. The hi-falutin sampling literature refers to this as a |
||||
* "box filter". A box filter tends to introduce visible artifacts, |
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios |
||||
* you would be well advised to improve this code. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
JSAMPARRAY output_data, output_end; |
||||
register JSAMPROW inptr, outptr; |
||||
register JSAMPLE invalue; |
||||
register int h; |
||||
JSAMPROW outend; |
||||
int h_expand, v_expand; |
||||
|
||||
h_expand = upsample->h_expand[compptr->component_index]; |
||||
v_expand = upsample->v_expand[compptr->component_index]; |
||||
|
||||
output_data = *output_data_ptr; |
||||
output_end = output_data + cinfo->max_v_samp_factor; |
||||
for (; output_data < output_end; output_data += v_expand) { |
||||
/* Generate one output row with proper horizontal expansion */ |
||||
inptr = *input_data++; |
||||
outptr = *output_data; |
||||
outend = outptr + cinfo->output_width; |
||||
while (outptr < outend) { |
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
for (h = h_expand; h > 0; h--) { |
||||
*outptr++ = invalue; |
||||
} |
||||
} |
||||
/* Generate any additional output rows by duplicating the first one */ |
||||
if (v_expand > 1) { |
||||
jcopy_sample_rows(output_data, output_data + 1, |
||||
v_expand - 1, cinfo->output_width); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
||||
* It's still a box filter. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
register JSAMPROW inptr, outptr; |
||||
register JSAMPLE invalue; |
||||
JSAMPROW outend; |
||||
int outrow; |
||||
|
||||
for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) { |
||||
inptr = input_data[outrow]; |
||||
outptr = output_data[outrow]; |
||||
outend = outptr + cinfo->output_width; |
||||
while (outptr < outend) { |
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
*outptr++ = invalue; |
||||
*outptr++ = invalue; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
||||
* It's still a box filter. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data, output_end; |
||||
register JSAMPROW inptr, outptr; |
||||
register JSAMPLE invalue; |
||||
JSAMPROW outend; |
||||
|
||||
output_data = *output_data_ptr; |
||||
output_end = output_data + cinfo->max_v_samp_factor; |
||||
for (; output_data < output_end; output_data += 2) { |
||||
inptr = *input_data++; |
||||
outptr = *output_data; |
||||
outend = outptr + cinfo->output_width; |
||||
while (outptr < outend) { |
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
*outptr++ = invalue; |
||||
*outptr++ = invalue; |
||||
} |
||||
jcopy_sample_rows(output_data, output_data + 1, |
||||
1, cinfo->output_width); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for upsampling. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_upsampler (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample; |
||||
int ci; |
||||
jpeg_component_info * compptr; |
||||
int h_in_group, v_in_group, h_out_group, v_out_group; |
||||
|
||||
upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler)); |
||||
cinfo->upsample = &upsample->pub; |
||||
upsample->pub.start_pass = start_pass_upsample; |
||||
upsample->pub.upsample = sep_upsample; |
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
||||
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */ |
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed. |
||||
*/ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Don't bother to upsample an uninteresting component. */ |
||||
if (! compptr->component_needed) |
||||
continue; |
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
||||
*/ |
||||
h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / |
||||
cinfo->min_DCT_h_scaled_size; |
||||
v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
||||
cinfo->min_DCT_v_scaled_size; |
||||
h_out_group = cinfo->max_h_samp_factor; |
||||
v_out_group = cinfo->max_v_samp_factor; |
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
||||
if (h_in_group == h_out_group && v_in_group == v_out_group) { |
||||
/* Fullsize components can be processed without any work. */ |
||||
upsample->methods[ci] = fullsize_upsample; |
||||
continue; /* don't need to allocate buffer */ |
||||
} |
||||
if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) { |
||||
/* Special case for 2h1v upsampling */ |
||||
upsample->methods[ci] = h2v1_upsample; |
||||
} else if (h_in_group * 2 == h_out_group && |
||||
v_in_group * 2 == v_out_group) { |
||||
/* Special case for 2h2v upsampling */ |
||||
upsample->methods[ci] = h2v2_upsample; |
||||
} else if ((h_out_group % h_in_group) == 0 && |
||||
(v_out_group % v_in_group) == 0) { |
||||
/* Generic integral-factors upsampling method */ |
||||
upsample->methods[ci] = int_upsample; |
||||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); |
||||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); |
||||
} else |
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
||||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) jround_up((long) cinfo->output_width, |
||||
(long) cinfo->max_h_samp_factor), |
||||
(JDIMENSION) cinfo->max_v_samp_factor); |
||||
} |
||||
} |
@ -1,140 +0,0 @@ |
||||
/*
|
||||
* jdtrans.c |
||||
* |
||||
* Copyright (C) 1995-1997, Thomas G. Lane. |
||||
* Modified 2000-2009 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains library routines for transcoding decompression, |
||||
* that is, reading raw DCT coefficient arrays from an input JPEG file. |
||||
* The routines in jdapimin.c will also be needed by a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo)); |
||||
|
||||
|
||||
/*
|
||||
* Read the coefficient arrays from a JPEG file. |
||||
* jpeg_read_header must be completed before calling this. |
||||
* |
||||
* The entire image is read into a set of virtual coefficient-block arrays, |
||||
* one per component. The return value is a pointer to the array of |
||||
* virtual-array descriptors. These can be manipulated directly via the |
||||
* JPEG memory manager, or handed off to jpeg_write_coefficients(). |
||||
* To release the memory occupied by the virtual arrays, call |
||||
* jpeg_finish_decompress() when done with the data. |
||||
* |
||||
* An alternative usage is to simply obtain access to the coefficient arrays |
||||
* during a buffered-image-mode decompression operation. This is allowed |
||||
* after any jpeg_finish_output() call. The arrays can be accessed until |
||||
* jpeg_finish_decompress() is called. (Note that any call to the library |
||||
* may reposition the arrays, so don't rely on access_virt_barray() results |
||||
* to stay valid across library calls.) |
||||
* |
||||
* Returns NULL if suspended. This case need be checked only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(jvirt_barray_ptr *) |
||||
jpeg_read_coefficients (j_decompress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state == DSTATE_READY) { |
||||
/* First call: initialize active modules */ |
||||
transdecode_master_selection(cinfo); |
||||
cinfo->global_state = DSTATE_RDCOEFS; |
||||
} |
||||
if (cinfo->global_state == DSTATE_RDCOEFS) { |
||||
/* Absorb whole file into the coef buffer */ |
||||
for (;;) { |
||||
int retcode; |
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
/* Absorb some more input */ |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
if (retcode == JPEG_SUSPENDED) |
||||
return NULL; |
||||
if (retcode == JPEG_REACHED_EOI) |
||||
break; |
||||
/* Advance progress counter if appropriate */ |
||||
if (cinfo->progress != NULL && |
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { |
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { |
||||
/* startup underestimated number of scans; ratchet up one scan */ |
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; |
||||
} |
||||
} |
||||
} |
||||
/* Set state so that jpeg_finish_decompress does the right thing */ |
||||
cinfo->global_state = DSTATE_STOPPING; |
||||
} |
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access |
||||
* to the coefficients during a full buffered-image-mode decompression. |
||||
*/ |
||||
if ((cinfo->global_state == DSTATE_STOPPING || |
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { |
||||
return cinfo->coef->coef_arrays; |
||||
} |
||||
/* Oops, improper usage */ |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
return NULL; /* keep compiler happy */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules for transcoding. |
||||
* This substitutes for jdmaster.c's initialization of the full decompressor. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
transdecode_master_selection (j_decompress_ptr cinfo) |
||||
{ |
||||
/* This is effectively a buffered-image operation. */ |
||||
cinfo->buffered_image = TRUE; |
||||
|
||||
/* Compute output image dimensions and related values. */ |
||||
jpeg_core_output_dimensions(cinfo); |
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) |
||||
jinit_arith_decoder(cinfo); |
||||
else { |
||||
jinit_huff_decoder(cinfo); |
||||
} |
||||
|
||||
/* Always get a full-image coefficient buffer. */ |
||||
jinit_d_coef_controller(cinfo, TRUE); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */ |
||||
(*cinfo->inputctl->start_input_pass) (cinfo); |
||||
|
||||
/* Initialize progress monitoring. */ |
||||
if (cinfo->progress != NULL) { |
||||
int nscans; |
||||
/* Estimate number of scans to set pass_limit. */ |
||||
if (cinfo->progressive_mode) { |
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ |
||||
nscans = 2 + 3 * cinfo->num_components; |
||||
} else if (cinfo->inputctl->has_multiple_scans) { |
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */ |
||||
nscans = cinfo->num_components; |
||||
} else { |
||||
nscans = 1; |
||||
} |
||||
cinfo->progress->pass_counter = 0L; |
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; |
||||
cinfo->progress->completed_passes = 0; |
||||
cinfo->progress->total_passes = 1; |
||||
} |
||||
} |
@ -1,253 +0,0 @@ |
||||
/*
|
||||
* jerror.c |
||||
* |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* Modified 2012-2015 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains simple error-reporting and trace-message routines. |
||||
* These are suitable for Unix-like systems and others where writing to |
||||
* stderr is the right thing to do. Many applications will want to replace |
||||
* some or all of these routines. |
||||
* |
||||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, |
||||
* you get a Windows-specific hack to display error messages in a dialog box. |
||||
* It ain't much, but it beats dropping error messages into the bit bucket, |
||||
* which is what happens to output to stderr under most Windows C compilers. |
||||
* |
||||
* These routines are used by both the compression and decompression code. |
||||
*/ |
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX |
||||
#include <windows.h> |
||||
#endif |
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jversion.h" |
||||
#include "jerror.h" |
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */ |
||||
#define EXIT_FAILURE 1 |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Create the message string table. |
||||
* We do this from the master message list in jerror.h by re-reading |
||||
* jerror.h with a suitable definition for macro JMESSAGE. |
||||
* The message table is made an external symbol just in case any applications |
||||
* want to refer to it directly. |
||||
*/ |
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES |
||||
#define jpeg_std_message_table jMsgTable |
||||
#endif |
||||
|
||||
#define JMESSAGE(code,string) string , |
||||
|
||||
const char * const jpeg_std_message_table[] = { |
||||
#include "jerror.h" |
||||
NULL |
||||
}; |
||||
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller. |
||||
* |
||||
* Applications may override this if they want to get control back after |
||||
* an error. Typically one would longjmp somewhere instead of exiting. |
||||
* The setjmp buffer can be made a private field within an expanded error |
||||
* handler object. Note that the info needed to generate an error message |
||||
* is stored in the error object, so you can generate the message now or |
||||
* later, at your convenience. |
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort |
||||
* or jpeg_destroy) at some point. |
||||
*/ |
||||
|
||||
METHODDEF(noreturn_t) |
||||
error_exit (j_common_ptr cinfo) |
||||
{ |
||||
/* Always display the message */ |
||||
(*cinfo->err->output_message) (cinfo); |
||||
|
||||
/* Let the memory manager delete any temp files before we die */ |
||||
jpeg_destroy(cinfo); |
||||
|
||||
exit(EXIT_FAILURE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Actual output of an error or trace message. |
||||
* Applications may override this method to send JPEG messages somewhere |
||||
* other than stderr. |
||||
* |
||||
* On Windows, printing to stderr is generally completely useless, |
||||
* so we provide optional code to produce an error-dialog popup. |
||||
* Most Windows applications will still prefer to override this routine, |
||||
* but if they don't, it'll do something at least marginally useful. |
||||
* |
||||
* NOTE: to use the library in an environment that doesn't support the |
||||
* C stdio library, you may have to delete the call to fprintf() entirely, |
||||
* not just not use this routine. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
output_message (j_common_ptr cinfo) |
||||
{ |
||||
char buffer[JMSG_LENGTH_MAX]; |
||||
|
||||
/* Create the message */ |
||||
(*cinfo->err->format_message) (cinfo, buffer); |
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX |
||||
/* Display it in a message dialog box */ |
||||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", |
||||
MB_OK | MB_ICONERROR); |
||||
#else |
||||
/* Send it to stderr, adding a newline */ |
||||
fprintf(stderr, "%s\n", buffer); |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message. |
||||
* msg_level is one of: |
||||
* -1: recoverable corrupt-data warning, may want to abort. |
||||
* 0: important advisory messages (always display to user). |
||||
* 1: first level of tracing detail. |
||||
* 2,3,...: successively more detailed tracing messages. |
||||
* An application might override this method if it wanted to abort on warnings |
||||
* or change the policy about which messages to display. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
emit_message (j_common_ptr cinfo, int msg_level) |
||||
{ |
||||
struct jpeg_error_mgr * err = cinfo->err; |
||||
|
||||
if (msg_level < 0) { |
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning, |
||||
* unless trace_level >= 3. |
||||
*/ |
||||
if (err->num_warnings == 0 || err->trace_level >= 3) |
||||
(*err->output_message) (cinfo); |
||||
/* Always count warnings in num_warnings. */ |
||||
err->num_warnings++; |
||||
} else { |
||||
/* It's a trace message. Show it if trace_level >= msg_level. */ |
||||
if (err->trace_level >= msg_level) |
||||
(*err->output_message) (cinfo); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message. |
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX |
||||
* characters. Note that no '\n' character is added to the string. |
||||
* Few applications should need to override this method. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
format_message (j_common_ptr cinfo, char * buffer) |
||||
{ |
||||
struct jpeg_error_mgr * err = cinfo->err; |
||||
int msg_code = err->msg_code; |
||||
const char * msgtext = NULL; |
||||
const char * msgptr; |
||||
char ch; |
||||
boolean isstring; |
||||
|
||||
/* Look up message string in proper table */ |
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) { |
||||
msgtext = err->jpeg_message_table[msg_code]; |
||||
} else if (err->addon_message_table != NULL && |
||||
msg_code >= err->first_addon_message && |
||||
msg_code <= err->last_addon_message) { |
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message]; |
||||
} |
||||
|
||||
/* Defend against bogus message number */ |
||||
if (msgtext == NULL) { |
||||
err->msg_parm.i[0] = msg_code; |
||||
msgtext = err->jpeg_message_table[0]; |
||||
} |
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */ |
||||
isstring = FALSE; |
||||
msgptr = msgtext; |
||||
while ((ch = *msgptr++) != '\0') { |
||||
if (ch == '%') { |
||||
if (*msgptr == 's') isstring = TRUE; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
/* Format the message into the passed buffer */ |
||||
if (isstring) |
||||
sprintf(buffer, msgtext, err->msg_parm.s); |
||||
else |
||||
sprintf(buffer, msgtext, |
||||
err->msg_parm.i[0], err->msg_parm.i[1], |
||||
err->msg_parm.i[2], err->msg_parm.i[3], |
||||
err->msg_parm.i[4], err->msg_parm.i[5], |
||||
err->msg_parm.i[6], err->msg_parm.i[7]); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image. |
||||
* This is called during compression startup to reset trace/error |
||||
* processing to default state, without losing any application-specific |
||||
* method pointers. An application might possibly want to override |
||||
* this method if it has additional error processing state. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
reset_error_mgr (j_common_ptr cinfo) |
||||
{ |
||||
cinfo->err->num_warnings = 0; |
||||
/* trace_level is not reset since it is an application-supplied parameter */ |
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object. |
||||
* Typical call is: |
||||
* struct jpeg_compress_struct cinfo; |
||||
* struct jpeg_error_mgr err; |
||||
* |
||||
* cinfo.err = jpeg_std_error(&err); |
||||
* after which the application may override some of the methods. |
||||
*/ |
||||
|
||||
GLOBAL(struct jpeg_error_mgr *) |
||||
jpeg_std_error (struct jpeg_error_mgr * err) |
||||
{ |
||||
err->error_exit = error_exit; |
||||
err->emit_message = emit_message; |
||||
err->output_message = output_message; |
||||
err->format_message = format_message; |
||||
err->reset_error_mgr = reset_error_mgr; |
||||
|
||||
err->trace_level = 0; /* default = no tracing */ |
||||
err->num_warnings = 0; /* no warnings emitted yet */ |
||||
err->msg_code = 0; /* may be useful as a flag for "no error" */ |
||||
|
||||
/* Initialize message table pointers */ |
||||
err->jpeg_message_table = jpeg_std_message_table; |
||||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; |
||||
|
||||
err->addon_message_table = NULL; |
||||
err->first_addon_message = 0; /* for safety */ |
||||
err->last_addon_message = 0; |
||||
|
||||
return err; |
||||
} |
@ -1,304 +0,0 @@ |
||||
/*
|
||||
* jerror.h |
||||
* |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* Modified 1997-2018 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file defines the error and message codes for the JPEG library. |
||||
* Edit this file to add new codes, or to translate the message strings to |
||||
* some other language. |
||||
* A set of error-reporting macros are defined too. Some applications using |
||||
* the JPEG library may wish to include this file to get the error codes |
||||
* and/or the macros. |
||||
*/ |
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without |
||||
* defining macro JMESSAGE. To create a message string table, include it |
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example). |
||||
*/ |
||||
#ifndef JMESSAGE |
||||
#ifndef JERROR_H |
||||
/* First time through, define the enum list */ |
||||
#define JMAKE_ENUM_LIST |
||||
#else |
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ |
||||
#define JMESSAGE(code,string) |
||||
#endif /* JERROR_H */ |
||||
#endif /* JMESSAGE */ |
||||
|
||||
#ifdef JMAKE_ENUM_LIST |
||||
|
||||
typedef enum { |
||||
|
||||
#define JMESSAGE(code,string) code , |
||||
|
||||
#endif /* JMAKE_ENUM_LIST */ |
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ |
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */ |
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") |
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") |
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") |
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") |
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") |
||||
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") |
||||
JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported") |
||||
JMESSAGE(JERR_BAD_DROP_SAMPLING, |
||||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") |
||||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") |
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") |
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") |
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") |
||||
JMESSAGE(JERR_BAD_LIB_VERSION, |
||||
"Wrong JPEG library version: library is %d, caller expects %d") |
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") |
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") |
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") |
||||
JMESSAGE(JERR_BAD_PROGRESSION, |
||||
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") |
||||
JMESSAGE(JERR_BAD_PROG_SCRIPT, |
||||
"Invalid progressive parameters at scan script entry %d") |
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") |
||||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") |
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") |
||||
JMESSAGE(JERR_BAD_STRUCT_SIZE, |
||||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") |
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") |
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") |
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") |
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") |
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") |
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") |
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") |
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") |
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") |
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") |
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") |
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed") |
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") |
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") |
||||
JMESSAGE(JERR_FILE_READ, "Input file read error") |
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") |
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") |
||||
JMESSAGE(JERR_HUFF_CLEN_OUTOFBOUNDS, "Huffman code size table out of bounds") |
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") |
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") |
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") |
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") |
||||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, |
||||
"Cannot transcode due to multiple use of quantization table %d") |
||||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") |
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") |
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet") |
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") |
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") |
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") |
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") |
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") |
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") |
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") |
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") |
||||
JMESSAGE(JERR_QUANT_COMPONENTS, |
||||
"Cannot quantize more than %d color components") |
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") |
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") |
||||
JMESSAGE(JERR_SOF_BEFORE, "Invalid JPEG file structure: %s before SOF") |
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") |
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") |
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") |
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") |
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") |
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") |
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") |
||||
JMESSAGE(JERR_TFILE_WRITE, |
||||
"Write failed on temporary file --- out of disk space?") |
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") |
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") |
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") |
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") |
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed") |
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") |
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) |
||||
JMESSAGE(JMSG_VERSION, JVERSION) |
||||
JMESSAGE(JTRC_16BIT_TABLES, |
||||
"Caution: quantization tables are too coarse for baseline JPEG") |
||||
JMESSAGE(JTRC_ADOBE, |
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") |
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") |
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") |
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") |
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") |
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") |
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u") |
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") |
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") |
||||
JMESSAGE(JTRC_EOI, "End Of Image") |
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") |
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") |
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, |
||||
"Warning: thumbnail image size does not match data length %u") |
||||
JMESSAGE(JTRC_JFIF_EXTENSION, |
||||
"JFIF extension marker: type 0x%02x, length %u") |
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") |
||||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") |
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") |
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") |
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") |
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") |
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") |
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") |
||||
JMESSAGE(JTRC_RST, "RST%d") |
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL, |
||||
"Smoothing not supported with nonstandard sampling ratios") |
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") |
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") |
||||
JMESSAGE(JTRC_SOI, "Start of Image") |
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") |
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") |
||||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") |
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") |
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") |
||||
JMESSAGE(JTRC_THUMB_JPEG, |
||||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u") |
||||
JMESSAGE(JTRC_THUMB_PALETTE, |
||||
"JFIF extension marker: palette thumbnail image, length %u") |
||||
JMESSAGE(JTRC_THUMB_RGB, |
||||
"JFIF extension marker: RGB thumbnail image, length %u") |
||||
JMESSAGE(JTRC_UNKNOWN_IDS, |
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr") |
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") |
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") |
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") |
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") |
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION, |
||||
"Inconsistent progression sequence for component %d coefficient %d") |
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA, |
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") |
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") |
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") |
||||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") |
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") |
||||
JMESSAGE(JWRN_MUST_RESYNC, |
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d") |
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") |
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") |
||||
|
||||
#ifdef JMAKE_ENUM_LIST |
||||
|
||||
JMSG_LASTMSGCODE |
||||
} J_MESSAGE_CODE; |
||||
|
||||
#undef JMAKE_ENUM_LIST |
||||
#endif /* JMAKE_ENUM_LIST */ |
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ |
||||
#undef JMESSAGE |
||||
|
||||
|
||||
#ifndef JERROR_H |
||||
#define JERROR_H |
||||
|
||||
/* Macros to simplify using the error and trace message stuff */ |
||||
/* The first parameter is either type of cinfo pointer */ |
||||
|
||||
/* Fatal errors (print message and exit) */ |
||||
#define ERREXIT(cinfo,code) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT1(cinfo,code,p1) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT2(cinfo,code,p1,p2) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT3(cinfo,code,p1,p2,p3) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(cinfo)->err->msg_parm.i[4] = (p5), \
|
||||
(cinfo)->err->msg_parm.i[5] = (p6), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXITS(cinfo,code,str) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0) |
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */ |
||||
#define WARNMS(cinfo,code) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) |
||||
#define WARNMS1(cinfo,code,p1) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) |
||||
#define WARNMS2(cinfo,code,p1,p2) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) |
||||
|
||||
/* Informational/debugging messages */ |
||||
#define TRACEMS(cinfo,lvl,code) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
#define TRACEMS1(cinfo,lvl,code,p1) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMSS(cinfo,lvl,code,str) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
|
||||
#endif /* JERROR_H */ |
@ -1,176 +0,0 @@ |
||||
/*
|
||||
* jfdctflt.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2003-2017 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains a floating-point implementation of the |
||||
* forward DCT (Discrete Cosine Transform). |
||||
* |
||||
* This implementation should be more accurate than either of the integer |
||||
* DCT implementations. However, it may not give the same results on all |
||||
* machines because of differences in roundoff behavior. Speed will depend |
||||
* on the hardware's floating point capacity. |
||||
* |
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
||||
* on each column. Direct algorithms are also available, but they are |
||||
* much more complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README). The following code |
||||
* is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with a fixed-point |
||||
* implementation, accuracy is lost due to imprecise representation of the |
||||
* scaled quantization values. However, that problem does not arise if |
||||
* we use floating point arithmetic. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples. |
||||
* |
||||
* cK represents cos(K*pi/16). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
||||
{ |
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
||||
FAST_FLOAT *dataptr; |
||||
JSAMPROW elemptr; |
||||
int ctr; |
||||
|
||||
/* Pass 1: process rows. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
||||
elemptr = sample_data[ctr] + start_col; |
||||
|
||||
/* Load data into workspace */ |
||||
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); |
||||
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); |
||||
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); |
||||
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); |
||||
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); |
||||
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); |
||||
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); |
||||
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
/* Apply unsigned->signed conversion. */ |
||||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ |
||||
dataptr[4] = tmp10 - tmp11; |
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
dataptr[2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */ |
||||
dataptr[3] = z13 - z2; |
||||
dataptr[1] = z11 + z4; |
||||
dataptr[7] = z11 - z4; |
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
|
||||
/* Pass 2: process columns. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[DCTSIZE*6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
||||
dataptr[DCTSIZE*3] = z13 - z2; |
||||
dataptr[DCTSIZE*1] = z11 + z4; |
||||
dataptr[DCTSIZE*7] = z11 - z4; |
||||
|
||||
dataptr++; /* advance pointer to next column */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */ |
@ -1,232 +0,0 @@ |
||||
/*
|
||||
* jfdctfst.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2003-2017 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains a fast, not so accurate integer implementation of the |
||||
* forward DCT (Discrete Cosine Transform). |
||||
* |
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
||||
* on each column. Direct algorithms are also available, but they are |
||||
* much more complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README). The following code |
||||
* is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with fixed-point math, |
||||
* accuracy is lost due to imprecise representation of the scaled |
||||
* quantization values. The smaller the quantization table entry, the less |
||||
* precise the scaled value, so this implementation does worse with high- |
||||
* quality-setting files than with low-quality ones. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale |
||||
* (right shift) multiplication products as soon as they are formed, |
||||
* rather than carrying additional fractional bits into subsequent additions. |
||||
* This compromises accuracy slightly, but it lets us save a few shifts. |
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
||||
* everywhere except in the multiplications proper; this saves a good deal |
||||
* of work on 16-bit-int machines. |
||||
* |
||||
* Again to save a few shifts, the intermediate results between pass 1 and |
||||
* pass 2 are not upscaled, but are represented only to integral precision. |
||||
* |
||||
* A final compromise is to represent the multiplicative constants to only |
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some |
||||
* machines, and may also reduce the cost of multiplication (since there |
||||
* are fewer one-bits in the constants). |
||||
*/ |
||||
|
||||
#define CONST_BITS 8 |
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time. |
||||
* To get around this we use the following pre-calculated constants. |
||||
* If you change CONST_BITS you may want to add appropriate values. |
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
||||
*/ |
||||
|
||||
#if CONST_BITS == 8 |
||||
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ |
||||
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ |
||||
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ |
||||
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ |
||||
#else |
||||
#define FIX_0_382683433 FIX(0.382683433) |
||||
#define FIX_0_541196100 FIX(0.541196100) |
||||
#define FIX_0_707106781 FIX(0.707106781) |
||||
#define FIX_1_306562965 FIX(1.306562965) |
||||
#endif |
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly |
||||
* rounded result half the time... |
||||
*/ |
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING |
||||
#undef DESCALE |
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) |
||||
#endif |
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result. |
||||
*/ |
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples. |
||||
* |
||||
* cK represents cos(K*pi/16). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
||||
{ |
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
DCTELEM tmp10, tmp11, tmp12, tmp13; |
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13; |
||||
DCTELEM *dataptr; |
||||
JSAMPROW elemptr; |
||||
int ctr; |
||||
SHIFT_TEMPS |
||||
|
||||
/* Pass 1: process rows. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
||||
elemptr = sample_data[ctr] + start_col; |
||||
|
||||
/* Load data into workspace */ |
||||
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
||||
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
||||
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
||||
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
||||
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
||||
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
||||
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
||||
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
/* Apply unsigned->signed conversion. */ |
||||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ |
||||
dataptr[4] = tmp10 - tmp11; |
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
||||
dataptr[2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */ |
||||
dataptr[3] = z13 - z2; |
||||
dataptr[1] = z11 + z4; |
||||
dataptr[7] = z11 - z4; |
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
|
||||
/* Pass 2: process columns. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[DCTSIZE*6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
||||
dataptr[DCTSIZE*3] = z13 - z2; |
||||
dataptr[DCTSIZE*1] = z11 + z4; |
||||
dataptr[DCTSIZE*7] = z11 - z4; |
||||
|
||||
dataptr++; /* advance pointer to next column */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */ |
File diff suppressed because it is too large
Load Diff
@ -1,238 +0,0 @@ |
||||
/*
|
||||
* jidctflt.c |
||||
* |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* Modified 2010-2017 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains a floating-point implementation of the |
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
||||
* must also perform dequantization of the input coefficients. |
||||
* |
||||
* This implementation should be more accurate than either of the integer |
||||
* IDCT implementations. However, it may not give the same results on all |
||||
* machines because of differences in roundoff behavior. Speed will depend |
||||
* on the hardware's floating point capacity. |
||||
* |
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
||||
* on each row (or vice versa, but it's more convenient to emit a row at |
||||
* a time). Direct algorithms are also available, but they are much more |
||||
* complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README). The following code |
||||
* is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with a fixed-point |
||||
* implementation, accuracy is lost due to imprecise representation of the |
||||
* scaled quantization values. However, that problem does not arise if |
||||
* we use floating point arithmetic. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result. |
||||
*/ |
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients. |
||||
* |
||||
* cK represents cos(K*pi/16). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
||||
FAST_FLOAT z5, z10, z11, z12, z13; |
||||
JCOEFPTR inptr; |
||||
FLOAT_MULT_TYPE * quantptr; |
||||
FAST_FLOAT * wsptr; |
||||
JSAMPROW outptr; |
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
||||
int ctr; |
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
||||
|
||||
/* Pass 1: process columns from input, store into work array. */ |
||||
|
||||
inptr = coef_block; |
||||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
||||
wsptr = workspace; |
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) { |
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this |
||||
* by short-circuiting the IDCT calculation for any column in which all |
||||
* the AC terms are zero. In that case each output is equal to the |
||||
* DC coefficient (with scale factor as needed). |
||||
* With typical images and quantization tables, half or more of the |
||||
* column DCT calculations can be simplified this way. |
||||
*/ |
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
||||
inptr[DCTSIZE*7] == 0) { |
||||
/* AC terms all zero */ |
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
|
||||
wsptr[DCTSIZE*0] = dcval; |
||||
wsptr[DCTSIZE*1] = dcval; |
||||
wsptr[DCTSIZE*2] = dcval; |
||||
wsptr[DCTSIZE*3] = dcval; |
||||
wsptr[DCTSIZE*4] = dcval; |
||||
wsptr[DCTSIZE*5] = dcval; |
||||
wsptr[DCTSIZE*6] = dcval; |
||||
wsptr[DCTSIZE*7] = dcval; |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
continue; |
||||
} |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */ |
||||
tmp11 = tmp0 - tmp2; |
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */ |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */ |
||||
z10 = tmp6 - tmp5; |
||||
z11 = tmp4 + tmp7; |
||||
z12 = tmp4 - tmp7; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
||||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ |
||||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 - tmp5; |
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7; |
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7; |
||||
wsptr[DCTSIZE*1] = tmp1 + tmp6; |
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6; |
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5; |
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5; |
||||
wsptr[DCTSIZE*3] = tmp3 + tmp4; |
||||
wsptr[DCTSIZE*4] = tmp3 - tmp4; |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
} |
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */ |
||||
|
||||
wsptr = workspace; |
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
||||
outptr = output_buf[ctr] + output_col; |
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so |
||||
* the simplification applies less often (typically 5% to 10% of the time). |
||||
* And testing floats for zero is relatively expensive, so we don't bother. |
||||
*/ |
||||
|
||||
/* Even part */ |
||||
|
||||
/* Prepare range-limit and float->int conversion */ |
||||
z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5)); |
||||
tmp10 = z5 + wsptr[4]; |
||||
tmp11 = z5 - wsptr[4]; |
||||
|
||||
tmp13 = wsptr[2] + wsptr[6]; |
||||
tmp12 = (wsptr[2] - wsptr[6]) * |
||||
((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
||||
|
||||
tmp0 = tmp10 + tmp13; |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
z13 = wsptr[5] + wsptr[3]; |
||||
z10 = wsptr[5] - wsptr[3]; |
||||
z11 = wsptr[1] + wsptr[7]; |
||||
z12 = wsptr[1] - wsptr[7]; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
||||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ |
||||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 - tmp5; |
||||
|
||||
/* Final output stage: float->int conversion and range-limit */ |
||||
|
||||
outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK]; |
||||
outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK]; |
||||
outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK]; |
||||
outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK]; |
||||
outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK]; |
||||
outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK]; |
||||
outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK]; |
||||
outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK]; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */ |
@ -1,351 +0,0 @@ |
||||
/*
|
||||
* jidctfst.c |
||||
* |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* Modified 2015-2017 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains a fast, not so accurate integer implementation of the |
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
||||
* must also perform dequantization of the input coefficients. |
||||
* |
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
||||
* on each row (or vice versa, but it's more convenient to emit a row at |
||||
* a time). Direct algorithms are also available, but they are much more |
||||
* complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README). The following code |
||||
* is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with fixed-point math, |
||||
* accuracy is lost due to imprecise representation of the scaled |
||||
* quantization values. The smaller the quantization table entry, the less |
||||
* precise the scaled value, so this implementation does worse with high- |
||||
* quality-setting files than with low-quality ones. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale |
||||
* (right shift) multiplication products as soon as they are formed, |
||||
* rather than carrying additional fractional bits into subsequent additions. |
||||
* This compromises accuracy slightly, but it lets us save a few shifts. |
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
||||
* everywhere except in the multiplications proper; this saves a good deal |
||||
* of work on 16-bit-int machines. |
||||
* |
||||
* The dequantized coefficients are not integers because the AA&N scaling |
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS, |
||||
* so that the first and second IDCT rounds have the same input scaling. |
||||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
||||
* avoid a descaling shift; this compromises accuracy rather drastically |
||||
* for small quantization table entries, but it saves a lot of shifts. |
||||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, |
||||
* so we use a much larger scaling factor to preserve accuracy. |
||||
* |
||||
* A final compromise is to represent the multiplicative constants to only |
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some |
||||
* machines, and may also reduce the cost of multiplication (since there |
||||
* are fewer one-bits in the constants). |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define CONST_BITS 8 |
||||
#define PASS1_BITS 2 |
||||
#else |
||||
#define CONST_BITS 8 |
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
||||
#endif |
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time. |
||||
* To get around this we use the following pre-calculated constants. |
||||
* If you change CONST_BITS you may want to add appropriate values. |
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
||||
*/ |
||||
|
||||
#if CONST_BITS == 8 |
||||
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ |
||||
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ |
||||
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ |
||||
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ |
||||
#else |
||||
#define FIX_1_082392200 FIX(1.082392200) |
||||
#define FIX_1_414213562 FIX(1.414213562) |
||||
#define FIX_1_847759065 FIX(1.847759065) |
||||
#define FIX_2_613125930 FIX(2.613125930) |
||||
#endif |
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly |
||||
* rounded result half the time... |
||||
*/ |
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING |
||||
#undef DESCALE |
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) |
||||
#endif |
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result. |
||||
*/ |
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
||||
* multiplication will do. For 12-bit data, the multiplier table is |
||||
* declared INT32, so a 32-bit multiply will be used. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) |
||||
#else |
||||
#define DEQUANTIZE(coef,quantval) \ |
||||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients. |
||||
* |
||||
* cK represents cos(K*pi/16). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
DCTELEM tmp10, tmp11, tmp12, tmp13; |
||||
DCTELEM z5, z10, z11, z12, z13; |
||||
JCOEFPTR inptr; |
||||
IFAST_MULT_TYPE * quantptr; |
||||
int * wsptr; |
||||
JSAMPROW outptr; |
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
||||
int ctr; |
||||
int workspace[DCTSIZE2]; /* buffers data between passes */ |
||||
SHIFT_TEMPS /* for DESCALE */ |
||||
ISHIFT_TEMPS /* for IRIGHT_SHIFT */ |
||||
|
||||
/* Pass 1: process columns from input, store into work array. */ |
||||
|
||||
inptr = coef_block; |
||||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; |
||||
wsptr = workspace; |
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) { |
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this |
||||
* by short-circuiting the IDCT calculation for any column in which all |
||||
* the AC terms are zero. In that case each output is equal to the |
||||
* DC coefficient (with scale factor as needed). |
||||
* With typical images and quantization tables, half or more of the |
||||
* column DCT calculations can be simplified this way. |
||||
*/ |
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
||||
inptr[DCTSIZE*7] == 0) { |
||||
/* AC terms all zero */ |
||||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
|
||||
wsptr[DCTSIZE*0] = dcval; |
||||
wsptr[DCTSIZE*1] = dcval; |
||||
wsptr[DCTSIZE*2] = dcval; |
||||
wsptr[DCTSIZE*3] = dcval; |
||||
wsptr[DCTSIZE*4] = dcval; |
||||
wsptr[DCTSIZE*5] = dcval; |
||||
wsptr[DCTSIZE*6] = dcval; |
||||
wsptr[DCTSIZE*7] = dcval; |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
continue; |
||||
} |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */ |
||||
tmp11 = tmp0 - tmp2; |
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */ |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */ |
||||
z10 = tmp6 - tmp5; |
||||
z11 = tmp4 + tmp7; |
||||
z12 = tmp4 - tmp7; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
||||
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ |
||||
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 - tmp5; |
||||
|
||||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); |
||||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); |
||||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); |
||||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); |
||||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); |
||||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); |
||||
wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4); |
||||
wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4); |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
} |
||||
|
||||
/* Pass 2: process rows from work array, store into output array.
|
||||
* Note that we must descale the results by a factor of 8 == 2**3, |
||||
* and also undo the PASS1_BITS scaling. |
||||
*/ |
||||
|
||||
wsptr = workspace; |
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
||||
outptr = output_buf[ctr] + output_col; |
||||
|
||||
/* Add range center and fudge factor for final descale and range-limit. */ |
||||
z5 = (DCTELEM) wsptr[0] + |
||||
((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) + |
||||
(1 << (PASS1_BITS+2))); |
||||
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so |
||||
* the simplification applies less often (typically 5% to 10% of the time). |
||||
* On machines with very fast multiplication, it's possible that the |
||||
* test takes more time than it's worth. In that case this section |
||||
* may be commented out. |
||||
*/ |
||||
|
||||
#ifndef NO_ZERO_ROW_TEST |
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
||||
/* AC terms all zero */ |
||||
JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
|
||||
outptr[0] = dcval; |
||||
outptr[1] = dcval; |
||||
outptr[2] = dcval; |
||||
outptr[3] = dcval; |
||||
outptr[4] = dcval; |
||||
outptr[5] = dcval; |
||||
outptr[6] = dcval; |
||||
outptr[7] = dcval; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
continue; |
||||
} |
||||
#endif |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = z5 + (DCTELEM) wsptr[4]; |
||||
tmp11 = z5 - (DCTELEM) wsptr[4]; |
||||
|
||||
tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]; |
||||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], |
||||
FIX_1_414213562) - tmp13; /* 2*c4 */ |
||||
|
||||
tmp0 = tmp10 + tmp13; |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; |
||||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; |
||||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; |
||||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
||||
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ |
||||
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 - tmp5; |
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */ |
||||
|
||||
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */ |
File diff suppressed because it is too large
Load Diff
@ -1,157 +0,0 @@ |
||||
/*
|
||||
* jinclude.h |
||||
* |
||||
* Copyright (C) 1991-1994, Thomas G. Lane. |
||||
* Modified 2017-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file exists to provide a single place to fix any problems with |
||||
* including the wrong system include files. (Common problems are taken |
||||
* care of by the standard jconfig symbols, but on really weird systems |
||||
* you may have to edit this file.) |
||||
* |
||||
* NOTE: this file is NOT intended to be included by applications using |
||||
* the JPEG library. Most applications need only include jpeglib.h. |
||||
*/ |
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */ |
||||
|
||||
#include "jconfig.h" /* auto configuration options */ |
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ |
||||
|
||||
/*
|
||||
* We need the NULL macro and size_t typedef. |
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>. |
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to |
||||
* pull in <sys/types.h> as well. |
||||
* Note that the core JPEG library does not require <stdio.h>; |
||||
* only the default error handler and data source/destination modules do. |
||||
* But we must pull it in because of the references to FILE in jpeglib.h. |
||||
* You can remove those references if you want to compile without <stdio.h>. |
||||
*/ |
||||
|
||||
#ifdef HAVE_STDDEF_H |
||||
#include <stddef.h> |
||||
#endif |
||||
|
||||
#ifdef HAVE_STDLIB_H |
||||
#include <stdlib.h> |
||||
#endif |
||||
|
||||
#ifdef NEED_SYS_TYPES_H |
||||
#include <sys/types.h> |
||||
#endif |
||||
|
||||
#include <stdio.h> |
||||
|
||||
/*
|
||||
* We need memory copying and zeroing functions, plus strncpy(). |
||||
* ANSI and System V implementations declare these in <string.h>. |
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). |
||||
* Some systems may declare memset and memcpy in <memory.h>. |
||||
* |
||||
* NOTE: we assume the size parameters to these functions are of type size_t. |
||||
* Change the casts in these macros if not! |
||||
*/ |
||||
|
||||
#ifdef NEED_BSD_STRINGS |
||||
|
||||
#include <strings.h> |
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size)) |
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size)) |
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */ |
||||
|
||||
#include <string.h> |
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) |
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) |
||||
|
||||
#endif |
||||
|
||||
/*
|
||||
* In ANSI C, and indeed any rational implementation, size_t is also the |
||||
* type returned by sizeof(). However, it seems there are some irrational |
||||
* implementations out there, in which sizeof() returns an int even though |
||||
* size_t is defined as long or unsigned long. To ensure consistent results |
||||
* we always use this SIZEOF() macro in place of using sizeof() directly. |
||||
*/ |
||||
|
||||
#define SIZEOF(object) ((size_t) sizeof(object)) |
||||
|
||||
/*
|
||||
* The modules that use fread() and fwrite() always invoke them through |
||||
* these macros. On some systems you may need to twiddle the argument casts. |
||||
* CAUTION: argument order is different from underlying functions! |
||||
* |
||||
* Furthermore, macros are provided for fflush() and ferror() in order |
||||
* to facilitate adaption by applications using an own FILE class. |
||||
* |
||||
* You can define your own custom file I/O functions in jconfig.h and |
||||
* #define JPEG_HAVE_FILE_IO_CUSTOM there to prevent redefinition here. |
||||
* |
||||
* You can #define JPEG_USE_FILE_IO_CUSTOM in jconfig.h to use custom file |
||||
* I/O functions implemented in Delphi VCL (Visual Component Library) |
||||
* in Vcl.Imaging.jpeg.pas for the TJPEGImage component utilizing |
||||
* the Delphi RTL (Run-Time Library) TMemoryStream component: |
||||
* |
||||
* procedure jpeg_stdio_src(var cinfo: jpeg_decompress_struct; |
||||
* input_file: TStream); external; |
||||
* |
||||
* procedure jpeg_stdio_dest(var cinfo: jpeg_compress_struct; |
||||
* output_file: TStream); external; |
||||
* |
||||
* function jfread(var buf; recsize, reccount: Integer; S: TStream): Integer; |
||||
* begin |
||||
* Result := S.Read(buf, recsize * reccount); |
||||
* end; |
||||
* |
||||
* function jfwrite(const buf; recsize, reccount: Integer; S: TStream): Integer; |
||||
* begin |
||||
* Result := S.Write(buf, recsize * reccount); |
||||
* end; |
||||
* |
||||
* function jfflush(S: TStream): Integer; |
||||
* begin |
||||
* Result := 0; |
||||
* end; |
||||
* |
||||
* function jferror(S: TStream): Integer; |
||||
* begin |
||||
* Result := 0; |
||||
* end; |
||||
* |
||||
* TMemoryStream of Delphi RTL has the distinctive feature to provide dynamic |
||||
* memory buffer management with a file/stream-based interface, particularly for |
||||
* the write (output) operation, which is easier to apply compared with direct |
||||
* implementations as given in jdatadst.c for memory destination. Those direct |
||||
* implementations of dynamic memory write tend to be more difficult to use, |
||||
* so providing an option like TMemoryStream may be a useful alternative. |
||||
* |
||||
* The CFile/CMemFile classes of the Microsoft Foundation Class (MFC) Library |
||||
* may be used in a similar fashion. |
||||
*/ |
||||
|
||||
#ifndef JPEG_HAVE_FILE_IO_CUSTOM |
||||
#ifdef JPEG_USE_FILE_IO_CUSTOM |
||||
extern size_t jfread(void * __ptr, size_t __size, size_t __n, FILE * __stream); |
||||
extern size_t jfwrite(const void * __ptr, size_t __size, size_t __n, FILE * __stream); |
||||
extern int jfflush(FILE * __stream); |
||||
extern int jferror(FILE * __fp); |
||||
|
||||
#define JFREAD(file,buf,sizeofbuf) \ |
||||
((size_t) jfread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
||||
#define JFWRITE(file,buf,sizeofbuf) \ |
||||
((size_t) jfwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
||||
#define JFFLUSH(file) jfflush(file) |
||||
#define JFERROR(file) jferror(file) |
||||
#else |
||||
#define JFREAD(file,buf,sizeofbuf) \ |
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
||||
#define JFWRITE(file,buf,sizeofbuf) \ |
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
||||
#define JFFLUSH(file) fflush(file) |
||||
#define JFERROR(file) ferror(file) |
||||
#endif |
||||
#endif |
@ -1,167 +0,0 @@ |
||||
/*
|
||||
* jmemansi.c |
||||
* |
||||
* Copyright (C) 1992-1996, Thomas G. Lane. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file provides a simple generic implementation of the system- |
||||
* dependent portion of the JPEG memory manager. This implementation |
||||
* assumes that you have the ANSI-standard library routine tmpfile(). |
||||
* Also, the problem of determining the amount of memory available |
||||
* is shoved onto the user. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jmemsys.h" /* import the system-dependent declarations */ |
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ |
||||
extern void * malloc JPP((size_t size)); |
||||
extern void free JPP((void *ptr)); |
||||
#endif |
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */ |
||||
#define SEEK_SET 0 /* if not, assume 0 is correct */ |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library |
||||
* routines malloc() and free(). |
||||
*/ |
||||
|
||||
GLOBAL(void *) |
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) |
||||
{ |
||||
return (void *) malloc(sizeofobject); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) |
||||
{ |
||||
free(object); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones. |
||||
* NB: although we include FAR keywords in the routine declarations, |
||||
* this file won't actually work in 80x86 small/medium model; at least, |
||||
* you probably won't be able to process useful-size images in only 64KB. |
||||
*/ |
||||
|
||||
GLOBAL(void FAR *) |
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) |
||||
{ |
||||
return (void FAR *) malloc(sizeofobject); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) |
||||
{ |
||||
free(object); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation. |
||||
* It's impossible to do this in a portable way; our current solution is |
||||
* to make the user tell us (with a default value set at compile time). |
||||
* If you can actually get the available space, it's a good idea to subtract |
||||
* a slop factor of 5% or so. |
||||
*/ |
||||
|
||||
#ifndef DEFAULT_MAX_MEM /* so can override from makefile */ |
||||
#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */ |
||||
#endif |
||||
|
||||
GLOBAL(long) |
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, |
||||
long max_bytes_needed, long already_allocated) |
||||
{ |
||||
return cinfo->mem->max_memory_to_use - already_allocated; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management. |
||||
* Backing store objects are only used when the value returned by |
||||
* jpeg_mem_available is less than the total space needed. You can dispense |
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c. |
||||
*/ |
||||
|
||||
|
||||
METHODDEF(void) |
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info, |
||||
void FAR * buffer_address, |
||||
long file_offset, long byte_count) |
||||
{ |
||||
if (fseek(info->temp_file, file_offset, SEEK_SET)) |
||||
ERREXIT(cinfo, JERR_TFILE_SEEK); |
||||
if (JFREAD(info->temp_file, buffer_address, byte_count) |
||||
!= (size_t) byte_count) |
||||
ERREXIT(cinfo, JERR_TFILE_READ); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info, |
||||
void FAR * buffer_address, |
||||
long file_offset, long byte_count) |
||||
{ |
||||
if (fseek(info->temp_file, file_offset, SEEK_SET)) |
||||
ERREXIT(cinfo, JERR_TFILE_SEEK); |
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count) |
||||
!= (size_t) byte_count) |
||||
ERREXIT(cinfo, JERR_TFILE_WRITE); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info) |
||||
{ |
||||
fclose(info->temp_file); |
||||
/* Since this implementation uses tmpfile() to create the file,
|
||||
* no explicit file deletion is needed. |
||||
*/ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. |
||||
* |
||||
* This version uses tmpfile(), which constructs a suitable file name |
||||
* behind the scenes. We don't have to use info->temp_name[] at all; |
||||
* indeed, we can't even find out the actual name of the temp file. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, |
||||
long total_bytes_needed) |
||||
{ |
||||
if ((info->temp_file = tmpfile()) == NULL) |
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, ""); |
||||
info->read_backing_store = read_backing_store; |
||||
info->write_backing_store = write_backing_store; |
||||
info->close_backing_store = close_backing_store; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and |
||||
* cleanup required. |
||||
*/ |
||||
|
||||
GLOBAL(long) |
||||
jpeg_mem_init (j_common_ptr cinfo) |
||||
{ |
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_term (j_common_ptr cinfo) |
||||
{ |
||||
/* no work */ |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -1,113 +0,0 @@ |
||||
/*
|
||||
* jmemnobs.c |
||||
* |
||||
* Copyright (C) 1992-1996, Thomas G. Lane. |
||||
* Modified 2019 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file provides a really simple implementation of the system- |
||||
* dependent portion of the JPEG memory manager. This implementation |
||||
* assumes that no backing-store files are needed: all required space |
||||
* can be obtained from malloc(). |
||||
* This is very portable in the sense that it'll compile on almost anything, |
||||
* but you'd better have lots of main memory (or virtual memory) if you want |
||||
* to process big images. |
||||
* Note that the max_memory_to_use option is respected by this implementation. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jmemsys.h" /* import the system-dependent declarations */ |
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ |
||||
extern void * malloc JPP((size_t size)); |
||||
extern void free JPP((void *ptr)); |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library |
||||
* routines malloc() and free(). |
||||
*/ |
||||
|
||||
GLOBAL(void *) |
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) |
||||
{ |
||||
return (void *) malloc(sizeofobject); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) |
||||
{ |
||||
free(object); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones. |
||||
* NB: although we include FAR keywords in the routine declarations, |
||||
* this file won't actually work in 80x86 small/medium model; at least, |
||||
* you probably won't be able to process useful-size images in only 64KB. |
||||
*/ |
||||
|
||||
GLOBAL(void FAR *) |
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) |
||||
{ |
||||
return (void FAR *) malloc(sizeofobject); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) |
||||
{ |
||||
free(object); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation. |
||||
*/ |
||||
|
||||
GLOBAL(long) |
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, |
||||
long max_bytes_needed, long already_allocated) |
||||
{ |
||||
if (cinfo->mem->max_memory_to_use) |
||||
return cinfo->mem->max_memory_to_use - already_allocated; |
||||
|
||||
/* Here we say, "we got all you want bud!" */ |
||||
return max_bytes_needed; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management. |
||||
* Since jpeg_mem_available always promised the moon, |
||||
* this should never be called and we can just error out. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, |
||||
long total_bytes_needed) |
||||
{ |
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and |
||||
* cleanup required. Here, there isn't any. |
||||
*/ |
||||
|
||||
GLOBAL(long) |
||||
jpeg_mem_init (j_common_ptr cinfo) |
||||
{ |
||||
return 0; /* just set max_memory_to_use to 0 */ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_term (j_common_ptr cinfo) |
||||
{ |
||||
/* no work */ |
||||
} |
@ -1,198 +0,0 @@ |
||||
/*
|
||||
* jmemsys.h |
||||
* |
||||
* Copyright (C) 1992-1997, Thomas G. Lane. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This include file defines the interface between the system-independent |
||||
* and system-dependent portions of the JPEG memory manager. No other |
||||
* modules need include it. (The system-independent portion is jmemmgr.c; |
||||
* there are several different versions of the system-dependent portion.) |
||||
* |
||||
* This file works as-is for the system-dependent memory managers supplied |
||||
* in the IJG distribution. You may need to modify it if you write a |
||||
* custom memory manager. If system-dependent changes are needed in |
||||
* this file, the best method is to #ifdef them based on a configuration |
||||
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR |
||||
* and USE_MAC_MEMMGR. |
||||
*/ |
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */ |
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES |
||||
#define jpeg_get_small jGetSmall |
||||
#define jpeg_free_small jFreeSmall |
||||
#define jpeg_get_large jGetLarge |
||||
#define jpeg_free_large jFreeLarge |
||||
#define jpeg_mem_available jMemAvail |
||||
#define jpeg_open_backing_store jOpenBackStore |
||||
#define jpeg_mem_init jMemInit |
||||
#define jpeg_mem_term jMemTerm |
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */ |
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of |
||||
* memory. (Typically the total amount requested through jpeg_get_small is |
||||
* no more than 20K or so; this will be requested in chunks of a few K each.) |
||||
* Behavior should be the same as for the standard library functions malloc |
||||
* and free; in particular, jpeg_get_small must return NULL on failure. |
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the |
||||
* size of the object being freed, just in case it's needed. |
||||
* On an 80x86 machine using small-data memory model, these manage near heap. |
||||
*/ |
||||
|
||||
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject)); |
||||
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object, |
||||
size_t sizeofobject)); |
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of |
||||
* memory (up to the total free space designated by jpeg_mem_available). |
||||
* The interface is the same as above, except that on an 80x86 machine, |
||||
* far pointers are used. On most other machines these are identical to |
||||
* the jpeg_get/free_small routines; but we keep them separate anyway, |
||||
* in case a different allocation strategy is desirable for large chunks. |
||||
*/ |
||||
|
||||
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo, |
||||
size_t sizeofobject)); |
||||
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object, |
||||
size_t sizeofobject)); |
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may |
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that |
||||
* matter, but that case should never come into play). This macro is needed |
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines. |
||||
* On those machines, we expect that jconfig.h will provide a proper value. |
||||
* On machines with 32-bit flat address spaces, any large constant may be used. |
||||
* |
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type |
||||
* size_t and will be a multiple of sizeof(align_type). |
||||
*/ |
||||
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ |
||||
#define MAX_ALLOC_CHUNK 1000000000L |
||||
#endif |
||||
|
||||
/*
|
||||
* This routine computes the total space still available for allocation by |
||||
* jpeg_get_large. If more space than this is needed, backing store will be |
||||
* used. NOTE: any memory already allocated must not be counted. |
||||
* |
||||
* There is a minimum space requirement, corresponding to the minimum |
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if |
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold |
||||
* all working storage in memory, is also passed in case it is useful. |
||||
* Finally, the total space already allocated is passed. If no better |
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated |
||||
* is often a suitable calculation. |
||||
* |
||||
* It is OK for jpeg_mem_available to underestimate the space available |
||||
* (that'll just lead to more backing-store access than is really necessary). |
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract |
||||
* a slop factor from the true available space. 5% should be enough. |
||||
* |
||||
* On machines with lots of virtual memory, any large constant may be returned. |
||||
* Conversely, zero may be returned to always use the minimum amount of memory. |
||||
*/ |
||||
|
||||
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo, |
||||
long min_bytes_needed, |
||||
long max_bytes_needed, |
||||
long already_allocated)); |
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single |
||||
* backing-store object. The read/write/close method pointers are called |
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields |
||||
* are private to the system-dependent backing store routines. |
||||
*/ |
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ |
||||
|
||||
|
||||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ |
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */ |
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */ |
||||
|
||||
typedef union { |
||||
short file_handle; /* DOS file handle if it's a temp file */ |
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */ |
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */ |
||||
} handle_union; |
||||
|
||||
#endif /* USE_MSDOS_MEMMGR */ |
||||
|
||||
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */ |
||||
#include <Files.h> |
||||
#endif /* USE_MAC_MEMMGR */ |
||||
|
||||
|
||||
typedef struct backing_store_struct * backing_store_ptr; |
||||
|
||||
typedef struct backing_store_struct { |
||||
/* Methods for reading/writing/closing this backing-store object */ |
||||
JMETHOD(void, read_backing_store, (j_common_ptr cinfo, |
||||
backing_store_ptr info, |
||||
void FAR * buffer_address, |
||||
long file_offset, long byte_count)); |
||||
JMETHOD(void, write_backing_store, (j_common_ptr cinfo, |
||||
backing_store_ptr info, |
||||
void FAR * buffer_address, |
||||
long file_offset, long byte_count)); |
||||
JMETHOD(void, close_backing_store, (j_common_ptr cinfo, |
||||
backing_store_ptr info)); |
||||
|
||||
/* Private fields for system-dependent backing-store management */ |
||||
#ifdef USE_MSDOS_MEMMGR |
||||
/* For the MS-DOS manager (jmemdos.c), we need: */ |
||||
handle_union handle; /* reference to backing-store storage object */ |
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ |
||||
#else |
||||
#ifdef USE_MAC_MEMMGR |
||||
/* For the Mac manager (jmemmac.c), we need: */ |
||||
short temp_file; /* file reference number to temp file */ |
||||
FSSpec tempSpec; /* the FSSpec for the temp file */ |
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ |
||||
#else |
||||
/* For a typical implementation with temp files, we need: */ |
||||
FILE * temp_file; /* stdio reference to temp file */ |
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ |
||||
#endif |
||||
#endif |
||||
} backing_store_info; |
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the |
||||
* read/write/close pointers in the object. The read/write routines |
||||
* may take an error exit if the specified maximum file size is exceeded. |
||||
* (If jpeg_mem_available always returns a large value, this routine can |
||||
* just take an error exit.) |
||||
*/ |
||||
|
||||
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo, |
||||
backing_store_ptr info, |
||||
long total_bytes_needed)); |
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and |
||||
* cleanup required. jpeg_mem_init will be called before anything is |
||||
* allocated (and, therefore, nothing in cinfo is of use except the error |
||||
* manager pointer). It should return a suitable default value for |
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding |
||||
* application. (Note that max_memory_to_use is only important if |
||||
* jpeg_mem_available chooses to consult it ... no one else will.) |
||||
* jpeg_mem_term may assume that all requested memory has been freed and that |
||||
* all opened backing-store objects have been closed. |
||||
*/ |
||||
|
||||
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo)); |
||||
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo)); |
@ -1,457 +0,0 @@ |
||||
/*
|
||||
* jmorecfg.h |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 1997-2022 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains additional configuration options that customize the |
||||
* JPEG software for special applications or support machine-dependent |
||||
* optimizations. Most users will not need to touch this file. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Define BITS_IN_JSAMPLE as either |
||||
* 8 for 8-bit sample values (the usual setting) |
||||
* 9 for 9-bit sample values |
||||
* 10 for 10-bit sample values |
||||
* 11 for 11-bit sample values |
||||
* 12 for 12-bit sample values |
||||
* Only 8, 9, 10, 11, and 12 bits sample data precision are supported for |
||||
* full-feature DCT processing. Further depths up to 16-bit may be added |
||||
* later for the lossless modes of operation. |
||||
* Run-time selection and conversion of data precision will be added later |
||||
* and are currently not supported, sorry. |
||||
* Exception: The transcoding part (jpegtran) supports all settings in a |
||||
* single instance, since it operates on the level of DCT coefficients and |
||||
* not sample values. The DCT coefficients are of the same type (16 bits) |
||||
* in all cases (see below). |
||||
*/ |
||||
|
||||
#define BITS_IN_JSAMPLE 8 /* use 8, 9, 10, 11, or 12 */ |
||||
|
||||
|
||||
/*
|
||||
* Maximum number of components (color channels) allowed in JPEG image. |
||||
* To meet the letter of the JPEG spec, set this to 255. However, darn |
||||
* few applications need more than 4 channels (maybe 5 for CMYK + alpha |
||||
* mask). We recommend 10 as a reasonable compromise; use 4 if you are |
||||
* really short on memory. (Each allowed component costs a hundred or so |
||||
* bytes of storage, whether actually used in an image or not.) |
||||
*/ |
||||
|
||||
#define MAX_COMPONENTS 10 /* maximum number of image components */ |
||||
|
||||
|
||||
/*
|
||||
* Basic data types. |
||||
* You may need to change these if you have a machine with unusual data |
||||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits, |
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, |
||||
* but it had better be at least 16. |
||||
*/ |
||||
|
||||
/* Representation of a single sample (pixel element value).
|
||||
* We frequently allocate large arrays of these, so it's important to keep |
||||
* them small. But if you have memory to burn and access to char or short |
||||
* arrays is very slow on your hardware, you might want to change these. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF. |
||||
*/ |
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR |
||||
|
||||
typedef unsigned char JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */ |
||||
|
||||
typedef char JSAMPLE; |
||||
#ifdef CHAR_IS_UNSIGNED |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
#else |
||||
#define GETJSAMPLE(value) ((int) (value) & 0xFF) |
||||
#endif /* CHAR_IS_UNSIGNED */ |
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */ |
||||
|
||||
#define MAXJSAMPLE 255 |
||||
#define CENTERJSAMPLE 128 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */ |
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 9 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..511.
|
||||
* On nearly all machines "short" will do nicely. |
||||
*/ |
||||
|
||||
typedef short JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#define MAXJSAMPLE 511 |
||||
#define CENTERJSAMPLE 256 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 9 */ |
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 10 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..1023.
|
||||
* On nearly all machines "short" will do nicely. |
||||
*/ |
||||
|
||||
typedef short JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#define MAXJSAMPLE 1023 |
||||
#define CENTERJSAMPLE 512 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 10 */ |
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 11 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..2047.
|
||||
* On nearly all machines "short" will do nicely. |
||||
*/ |
||||
|
||||
typedef short JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#define MAXJSAMPLE 2047 |
||||
#define CENTERJSAMPLE 1024 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 11 */ |
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 12 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
|
||||
* On nearly all machines "short" will do nicely. |
||||
*/ |
||||
|
||||
typedef short JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#define MAXJSAMPLE 4095 |
||||
#define CENTERJSAMPLE 2048 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 12 */ |
||||
|
||||
|
||||
/* Representation of a DCT frequency coefficient.
|
||||
* This should be a signed value of at least 16 bits; "short" is usually OK. |
||||
* Again, we allocate large arrays of these, but you can change to int |
||||
* if you have memory to burn and "short" is really slow. |
||||
*/ |
||||
|
||||
typedef short JCOEF; |
||||
|
||||
|
||||
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||
* These must be EXACTLY 8 bits wide, at least once they are written to |
||||
* external storage. Note that when using the stdio data source/destination |
||||
* managers, this is also the data type passed to fread/fwrite. |
||||
*/ |
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR |
||||
|
||||
typedef unsigned char JOCTET; |
||||
#define GETJOCTET(value) (value) |
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */ |
||||
|
||||
typedef char JOCTET; |
||||
#ifdef CHAR_IS_UNSIGNED |
||||
#define GETJOCTET(value) (value) |
||||
#else |
||||
#define GETJOCTET(value) ((value) & 0xFF) |
||||
#endif /* CHAR_IS_UNSIGNED */ |
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */ |
||||
|
||||
|
||||
/* These typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big |
||||
* won't cost a huge amount of memory, so we don't provide special |
||||
* extraction code like we did for JSAMPLE. (In other words, these |
||||
* typedefs live at a different point on the speed/space tradeoff curve.) |
||||
*/ |
||||
|
||||
/* UINT8 must hold at least the values 0..255. */ |
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR |
||||
typedef unsigned char UINT8; |
||||
#else /* not HAVE_UNSIGNED_CHAR */ |
||||
#ifdef CHAR_IS_UNSIGNED |
||||
typedef char UINT8; |
||||
#else /* not CHAR_IS_UNSIGNED */ |
||||
typedef short UINT8; |
||||
#endif /* CHAR_IS_UNSIGNED */ |
||||
#endif /* HAVE_UNSIGNED_CHAR */ |
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */ |
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT |
||||
typedef unsigned short UINT16; |
||||
#else /* not HAVE_UNSIGNED_SHORT */ |
||||
typedef unsigned int UINT16; |
||||
#endif /* HAVE_UNSIGNED_SHORT */ |
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */ |
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ |
||||
typedef short INT16; |
||||
#endif |
||||
|
||||
/* INT32 must hold at least signed 32-bit values. */ |
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ |
||||
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */ |
||||
#ifndef _BASETSD_H /* MinGW is slightly different */ |
||||
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */ |
||||
typedef long INT32; |
||||
#endif |
||||
#endif |
||||
#endif |
||||
#endif |
||||
|
||||
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore |
||||
* "unsigned int" is sufficient on all machines. However, if you need to |
||||
* handle larger images and you don't mind deviating from the spec, you |
||||
* can change this datatype. |
||||
*/ |
||||
|
||||
typedef unsigned int JDIMENSION; |
||||
|
||||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ |
||||
|
||||
|
||||
/* These macros are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions; |
||||
* in particular, you'll need to do that to make the library a Windows DLL. |
||||
* Another application is to make all functions global for use with debuggers |
||||
* or code profilers that require it. |
||||
*/ |
||||
|
||||
/* a function called through method pointers: */ |
||||
#define METHODDEF(type) static type |
||||
/* a function used only in its module: */ |
||||
#define LOCAL(type) static type |
||||
/* a function referenced thru EXTERNs: */ |
||||
#define GLOBAL(type) type |
||||
/* a reference to a GLOBAL function: */ |
||||
#define EXTERN(type) extern type |
||||
|
||||
|
||||
/* This macro is used to declare a "method", that is, a function pointer.
|
||||
* We want to supply prototype parameters if the compiler can cope. |
||||
* Note that the arglist parameter must be parenthesized! |
||||
* Again, you can customize this if you need special linkage keywords. |
||||
*/ |
||||
|
||||
#ifdef HAVE_PROTOTYPES |
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist |
||||
#else |
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) () |
||||
#endif |
||||
|
||||
|
||||
/* The noreturn type identifier is used to declare functions
|
||||
* which cannot return. |
||||
* Compilers can thus create more optimized code and perform |
||||
* better checks for warnings and errors. |
||||
* Static analyzer tools can make improved inferences about |
||||
* execution paths and are prevented from giving false alerts. |
||||
* |
||||
* Unfortunately, the proposed specifications of corresponding |
||||
* extensions in the Dec 2011 ISO C standard revision (C11), |
||||
* GCC, MSVC, etc. are not viable. |
||||
* Thus we introduce a user defined type to declare noreturn |
||||
* functions at least for clarity. A proper compiler would |
||||
* have a suitable noreturn type to match in place of void. |
||||
*/ |
||||
|
||||
#ifndef HAVE_NORETURN_T |
||||
typedef void noreturn_t; |
||||
#endif |
||||
|
||||
|
||||
/* Here is the pseudo-keyword for declaring pointers that must be "far"
|
||||
* on 80x86 machines. Most of the specialized coding for 80x86 is handled |
||||
* by just saying "FAR *" where such a pointer is needed. In a few places |
||||
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. |
||||
*/ |
||||
|
||||
#ifndef FAR |
||||
#ifdef NEED_FAR_POINTERS |
||||
#define FAR far |
||||
#else |
||||
#define FAR |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear |
||||
* in standard header files. Or you may have conflicts with application- |
||||
* specific header files that you want to include together with these files. |
||||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work. |
||||
*/ |
||||
|
||||
#ifndef HAVE_BOOLEAN |
||||
#if defined FALSE || defined TRUE || defined QGLOBAL_H |
||||
/* Qt3 defines FALSE and TRUE as "const" variables in qglobal.h */ |
||||
typedef int boolean; |
||||
#ifndef FALSE /* in case these macros already exist */ |
||||
#define FALSE 0 /* values of boolean */ |
||||
#endif |
||||
#ifndef TRUE |
||||
#define TRUE 1 |
||||
#endif |
||||
#else |
||||
typedef enum { FALSE = 0, TRUE = 1 } boolean; |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* The remaining options affect code selection within the JPEG library, |
||||
* but they don't need to be visible to most applications using the library. |
||||
* To minimize application namespace pollution, the symbols won't be |
||||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. |
||||
*/ |
||||
|
||||
#ifdef JPEG_INTERNALS |
||||
#define JPEG_INTERNAL_OPTIONS |
||||
#endif |
||||
|
||||
#ifdef JPEG_INTERNAL_OPTIONS |
||||
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions. |
||||
* Undefining some of these symbols will produce a smaller but less capable |
||||
* library. Note that you can leave certain source files out of the |
||||
* compilation/linking process if you've #undef'd the corresponding symbols. |
||||
* (You may HAVE to do that if your compiler doesn't like null source files.) |
||||
*/ |
||||
|
||||
/* Capability options common to encoder and decoder: */ |
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ |
||||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ |
||||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ |
||||
|
||||
/* Encoder capability options: */ |
||||
|
||||
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ |
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ |
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN) */ |
||||
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW) */ |
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ |
||||
/* Note: if you selected more than 8-bit data precision, it is dangerous to
|
||||
* turn off ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only |
||||
* good for 8-bit precision, so arithmetic coding is recommended for higher |
||||
* precision. The Huffman encoder normally uses entropy optimization to |
||||
* compute usable tables for higher precision. Otherwise, you'll have to |
||||
* supply different default Huffman tables. |
||||
* The exact same statements apply for progressive JPEG: the default tables |
||||
* don't work for progressive mode. (This may get fixed, however.) |
||||
*/ |
||||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ |
||||
|
||||
/* Decoder capability options: */ |
||||
|
||||
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ |
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ |
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN) */ |
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? (Requires DCT_ISLOW) */ |
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ |
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ |
||||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ |
||||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ |
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ |
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ |
||||
|
||||
/* more capability options later, no doubt */ |
||||
|
||||
|
||||
/*
|
||||
* Ordering of RGB data in scanlines passed to or from the application. |
||||
* If your application wants to deal with data in the order B,G,R, just |
||||
* #define JPEG_USE_RGB_CUSTOM in jconfig.h, or define your own custom |
||||
* order in jconfig.h and #define JPEG_HAVE_RGB_CUSTOM. |
||||
* You can also deal with formats such as R,G,B,X (one extra byte per pixel) |
||||
* by changing RGB_PIXELSIZE. |
||||
* Note that changing the offsets will also change |
||||
* the order in which colormap data is organized. |
||||
* RESTRICTIONS: |
||||
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. |
||||
* 2. The color quantizer modules will not behave desirably if RGB_PIXELSIZE |
||||
* is not 3 (they don't understand about dummy color components!). |
||||
* So you can't use color quantization if you change that value. |
||||
*/ |
||||
|
||||
#ifndef JPEG_HAVE_RGB_CUSTOM |
||||
#ifdef JPEG_USE_RGB_CUSTOM |
||||
#define RGB_RED 2 /* Offset of Red in an RGB scanline element */ |
||||
#define RGB_GREEN 1 /* Offset of Green */ |
||||
#define RGB_BLUE 0 /* Offset of Blue */ |
||||
#else |
||||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */ |
||||
#define RGB_GREEN 1 /* Offset of Green */ |
||||
#define RGB_BLUE 2 /* Offset of Blue */ |
||||
#endif |
||||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ |
||||
#endif |
||||
|
||||
|
||||
/* Definitions for speed-related optimizations. */ |
||||
|
||||
|
||||
/* If your compiler supports inline functions, define INLINE
|
||||
* as the inline keyword; otherwise define it as empty. |
||||
*/ |
||||
|
||||
#ifndef INLINE |
||||
#ifdef __GNUC__ /* for instance, GNU C knows about inline */ |
||||
#define INLINE __inline__ |
||||
#endif |
||||
#ifndef INLINE |
||||
#define INLINE /* default is to define it as empty */ |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER |
||||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide. |
||||
*/ |
||||
|
||||
#ifndef MULTIPLIER |
||||
#define MULTIPLIER int /* type for fastest integer multiply */ |
||||
#endif |
||||
|
||||
|
||||
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||
* by your compiler. (Note that this type is only used in the floating point |
||||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) |
||||
* Typically, float is faster in ANSI C compilers, while double is faster in |
||||
* pre-ANSI compilers (because they insist on converting to double anyway). |
||||
* The code below therefore chooses float if we have ANSI-style prototypes. |
||||
*/ |
||||
|
||||
#ifndef FAST_FLOAT |
||||
#ifdef HAVE_PROTOTYPES |
||||
#define FAST_FLOAT float |
||||
#else |
||||
#define FAST_FLOAT double |
||||
#endif |
||||
#endif |
||||
|
||||
#endif /* JPEG_INTERNAL_OPTIONS */ |
@ -1,445 +0,0 @@ |
||||
/*
|
||||
* jpegint.h |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 1997-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file provides common declarations for the various JPEG modules. |
||||
* These declarations are considered internal to the JPEG library; most |
||||
* applications using the library shouldn't need to include this file. |
||||
*/ |
||||
|
||||
|
||||
/* Declarations for both compression & decompression */ |
||||
|
||||
typedef enum { /* Operating modes for buffer controllers */ |
||||
JBUF_PASS_THRU, /* Plain stripwise operation */ |
||||
/* Remaining modes require a full-image buffer to have been created */ |
||||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ |
||||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ |
||||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ |
||||
} J_BUF_MODE; |
||||
|
||||
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */ |
||||
#define CSTATE_START 100 /* after create_compress */ |
||||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ |
||||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ |
||||
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ |
||||
#define DSTATE_START 200 /* after create_decompress */ |
||||
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ |
||||
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */ |
||||
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ |
||||
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ |
||||
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ |
||||
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ |
||||
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ |
||||
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ |
||||
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ |
||||
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ |
||||
|
||||
|
||||
/* Declarations for compression modules */ |
||||
|
||||
/* Master control module */ |
||||
struct jpeg_comp_master { |
||||
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, pass_startup, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); |
||||
|
||||
/* State variables made visible to other modules */ |
||||
boolean call_pass_startup; /* True if pass_startup must be called */ |
||||
boolean is_last_pass; /* True during last pass */ |
||||
}; |
||||
|
||||
/* Main buffer control (downsampled-data buffer) */ |
||||
struct jpeg_c_main_controller { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); |
||||
JMETHOD(void, process_data, (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail)); |
||||
}; |
||||
|
||||
/* Compression preprocessing (downsampling input buffer control) */ |
||||
struct jpeg_c_prep_controller { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); |
||||
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, |
||||
JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail, |
||||
JSAMPIMAGE output_buf, |
||||
JDIMENSION *out_row_group_ctr, |
||||
JDIMENSION out_row_groups_avail)); |
||||
}; |
||||
|
||||
/* Coefficient buffer control */ |
||||
struct jpeg_c_coef_controller { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); |
||||
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo, |
||||
JSAMPIMAGE input_buf)); |
||||
}; |
||||
|
||||
/* Colorspace conversion */ |
||||
struct jpeg_color_converter { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, color_convert, (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows)); |
||||
}; |
||||
|
||||
/* Downsampling */ |
||||
struct jpeg_downsampler { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, downsample, (j_compress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
||||
JSAMPIMAGE output_buf, |
||||
JDIMENSION out_row_group_index)); |
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */ |
||||
}; |
||||
|
||||
/* Forward DCT (also controls coefficient quantization) */ |
||||
typedef JMETHOD(void, forward_DCT_ptr, |
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr, |
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
||||
JDIMENSION start_col, JDIMENSION num_blocks)); |
||||
|
||||
struct jpeg_forward_dct { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo)); |
||||
/* It is useful to allow each component to have a separate FDCT method. */ |
||||
forward_DCT_ptr forward_DCT[MAX_COMPONENTS]; |
||||
}; |
||||
|
||||
/* Entropy encoding */ |
||||
struct jpeg_entropy_encoder { |
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics)); |
||||
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)); |
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); |
||||
}; |
||||
|
||||
/* Marker writing */ |
||||
struct jpeg_marker_writer { |
||||
JMETHOD(void, write_file_header, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo)); |
||||
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo)); |
||||
/* These routines are exported to allow insertion of extra markers */ |
||||
/* Probably only COM and APPn markers should be written this way */ |
||||
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker, |
||||
unsigned int datalen)); |
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val)); |
||||
}; |
||||
|
||||
|
||||
/* Declarations for decompression modules */ |
||||
|
||||
/* Master control module */ |
||||
struct jpeg_decomp_master { |
||||
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo)); |
||||
|
||||
/* State variables made visible to other modules */ |
||||
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ |
||||
}; |
||||
|
||||
/* Input control module */ |
||||
struct jpeg_input_controller { |
||||
JMETHOD(int, consume_input, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo)); |
||||
|
||||
/* State variables made visible to other modules */ |
||||
boolean has_multiple_scans; /* True if file has multiple scans */ |
||||
boolean eoi_reached; /* True when EOI has been consumed */ |
||||
}; |
||||
|
||||
/* Main buffer control (downsampled-data buffer) */ |
||||
struct jpeg_d_main_controller { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); |
||||
JMETHOD(void, process_data, (j_decompress_ptr cinfo, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail)); |
||||
}; |
||||
|
||||
/* Coefficient buffer control */ |
||||
struct jpeg_d_coef_controller { |
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(int, consume_data, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE output_buf)); |
||||
/* Pointer to array of coefficient virtual arrays, or NULL if none */ |
||||
jvirt_barray_ptr *coef_arrays; |
||||
}; |
||||
|
||||
/* Decompression postprocessing (color quantization buffer control) */ |
||||
struct jpeg_d_post_controller { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); |
||||
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail)); |
||||
}; |
||||
|
||||
/* Marker reading & parsing */ |
||||
struct jpeg_marker_reader { |
||||
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo)); |
||||
/* Read markers until SOS or EOI.
|
||||
* Returns same codes as are defined for jpeg_consume_input: |
||||
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. |
||||
*/ |
||||
JMETHOD(int, read_markers, (j_decompress_ptr cinfo)); |
||||
/* Read a restart marker --- exported for use by entropy decoder only */ |
||||
jpeg_marker_parser_method read_restart_marker; |
||||
|
||||
/* State of marker reader --- nominally internal, but applications
|
||||
* supplying COM or APPn handlers might like to know the state. |
||||
*/ |
||||
boolean saw_SOI; /* found SOI? */ |
||||
boolean saw_SOF; /* found SOF? */ |
||||
int next_restart_num; /* next restart number expected (0-7) */ |
||||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ |
||||
}; |
||||
|
||||
/* Entropy decoding */ |
||||
struct jpeg_entropy_decoder { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)); |
||||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); |
||||
}; |
||||
|
||||
/* Inverse DCT (also performs dequantization) */ |
||||
typedef JMETHOD(void, inverse_DCT_method_ptr, |
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col)); |
||||
|
||||
struct jpeg_inverse_dct { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); |
||||
/* It is useful to allow each component to have a separate IDCT method. */ |
||||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; |
||||
}; |
||||
|
||||
/* Upsampling (note that upsampler must also call color converter) */ |
||||
struct jpeg_upsampler { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, upsample, (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail)); |
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */ |
||||
}; |
||||
|
||||
/* Colorspace conversion */ |
||||
struct jpeg_color_deconverter { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, color_convert, (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows)); |
||||
}; |
||||
|
||||
/* Color quantization or color precision reduction */ |
||||
struct jpeg_color_quantizer { |
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan)); |
||||
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPARRAY output_buf, |
||||
int num_rows)); |
||||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); |
||||
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); |
||||
}; |
||||
|
||||
|
||||
/* Definition of range extension bits for decompression processes.
|
||||
* See the comments with prepare_range_limit_table (in jdmaster.c) |
||||
* for more info. |
||||
* The recommended default value for normal applications is 2. |
||||
* Applications with special requirements may use a different value. |
||||
* For example, Ghostscript wants to use 3 for proper handling of |
||||
* wacky images with oversize coefficient values. |
||||
*/ |
||||
|
||||
#define RANGE_BITS 2 |
||||
#define RANGE_CENTER (CENTERJSAMPLE << RANGE_BITS) |
||||
|
||||
|
||||
/* Miscellaneous useful macros */ |
||||
|
||||
#undef MAX |
||||
#define MAX(a,b) ((a) > (b) ? (a) : (b)) |
||||
#undef MIN |
||||
#define MIN(a,b) ((a) < (b) ? (a) : (b)) |
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic |
||||
* shift" instructions that shift in copies of the sign bit. But some |
||||
* C compilers implement >> with an unsigned shift. For these machines you |
||||
* must define RIGHT_SHIFT_IS_UNSIGNED. |
||||
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. |
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be |
||||
* included in the variables of any routine using RIGHT_SHIFT. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define SHIFT_TEMPS INT32 shift_temp; |
||||
#define RIGHT_SHIFT(x,shft) \ |
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
|
||||
(shift_temp >> (shft))) |
||||
#else |
||||
#define SHIFT_TEMPS |
||||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
||||
|
||||
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
||||
* the fudge factor is correct for either sign of X. |
||||
*/ |
||||
|
||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + ((INT32) 1 << ((n)-1)), n) |
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */ |
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES |
||||
#define jinit_compress_master jICompress |
||||
#define jinit_c_master_control jICMaster |
||||
#define jinit_c_main_controller jICMainC |
||||
#define jinit_c_prep_controller jICPrepC |
||||
#define jinit_c_coef_controller jICCoefC |
||||
#define jinit_color_converter jICColor |
||||
#define jinit_downsampler jIDownsampler |
||||
#define jinit_forward_dct jIFDCT |
||||
#define jinit_huff_encoder jIHEncoder |
||||
#define jinit_arith_encoder jIAEncoder |
||||
#define jinit_marker_writer jIMWriter |
||||
#define jinit_master_decompress jIDMaster |
||||
#define jinit_d_main_controller jIDMainC |
||||
#define jinit_d_coef_controller jIDCoefC |
||||
#define jinit_d_post_controller jIDPostC |
||||
#define jinit_input_controller jIInCtlr |
||||
#define jinit_marker_reader jIMReader |
||||
#define jinit_huff_decoder jIHDecoder |
||||
#define jinit_arith_decoder jIADecoder |
||||
#define jinit_inverse_dct jIIDCT |
||||
#define jinit_upsampler jIUpsampler |
||||
#define jinit_color_deconverter jIDColor |
||||
#define jinit_1pass_quantizer jI1Quant |
||||
#define jinit_2pass_quantizer jI2Quant |
||||
#define jinit_merged_upsampler jIMUpsampler |
||||
#define jinit_memory_mgr jIMemMgr |
||||
#define jdiv_round_up jDivRound |
||||
#define jround_up jRound |
||||
#define jzero_far jZeroFar |
||||
#define jcopy_sample_rows jCopySamples |
||||
#define jcopy_block_row jCopyBlocks |
||||
#define jpeg_zigzag_order jZIGTable |
||||
#define jpeg_natural_order jZAGTable |
||||
#define jpeg_natural_order7 jZAG7Table |
||||
#define jpeg_natural_order6 jZAG6Table |
||||
#define jpeg_natural_order5 jZAG5Table |
||||
#define jpeg_natural_order4 jZAG4Table |
||||
#define jpeg_natural_order3 jZAG3Table |
||||
#define jpeg_natural_order2 jZAG2Table |
||||
#define jpeg_aritab jAriTab |
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */ |
||||
|
||||
|
||||
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
||||
* and coefficient-block arrays. This won't work on 80x86 because the arrays |
||||
* are FAR and we're assuming a small-pointer memory model. However, some |
||||
* DOS compilers provide far-pointer versions of memcpy() and memset() even |
||||
* in the small-model libraries. These will be used if USE_FMEM is defined. |
||||
* Otherwise, the routines in jutils.c do it the hard way. |
||||
*/ |
||||
|
||||
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */ |
||||
#define FMEMZERO(target,size) MEMZERO(target,size) |
||||
#else /* 80x86 case */ |
||||
#ifdef USE_FMEM |
||||
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size)) |
||||
#else |
||||
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero)); |
||||
#define FMEMZERO(target,size) jzero_far(target, size) |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/* Compression module initialization routines */ |
||||
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo)); |
||||
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo, |
||||
boolean transcode_only)); |
||||
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo, |
||||
boolean need_full_buffer)); |
||||
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo, |
||||
boolean need_full_buffer)); |
||||
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo, |
||||
boolean need_full_buffer)); |
||||
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo)); |
||||
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo)); |
||||
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo)); |
||||
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo)); |
||||
EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo)); |
||||
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo)); |
||||
/* Decompression module initialization routines */ |
||||
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo, |
||||
boolean need_full_buffer)); |
||||
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo, |
||||
boolean need_full_buffer)); |
||||
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo, |
||||
boolean need_full_buffer)); |
||||
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo)); |
||||
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo)); |
||||
/* Memory manager initialization */ |
||||
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo)); |
||||
|
||||
/* Utility routines in jutils.c */ |
||||
EXTERN(long) jdiv_round_up JPP((long a, long b)); |
||||
EXTERN(long) jround_up JPP((long a, long b)); |
||||
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, |
||||
JSAMPARRAY output_array, |
||||
int num_rows, JDIMENSION num_cols)); |
||||
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row, |
||||
JDIMENSION num_blocks)); |
||||
/* Constant tables in jutils.c */ |
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ |
||||
#endif |
||||
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ |
||||
extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */ |
||||
extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */ |
||||
extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */ |
||||
extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */ |
||||
extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */ |
||||
extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */ |
||||
|
||||
/* Arithmetic coding probability estimation tables in jaricom.c */ |
||||
extern const INT32 jpeg_aritab[]; |
||||
|
||||
/* Suppress undefined-structure complaints if necessary. */ |
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN |
||||
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */ |
||||
struct jvirt_sarray_control { long dummy; }; |
||||
struct jvirt_barray_control { long dummy; }; |
||||
#endif |
||||
#endif /* INCOMPLETE_TYPES_BROKEN */ |
File diff suppressed because it is too large
Load Diff
@ -1,851 +0,0 @@ |
||||
/*
|
||||
* jquant1.c |
||||
* |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* Modified 2011-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains 1-pass color quantization (color mapping) routines. |
||||
* These routines provide mapping to a fixed color map using equally spaced |
||||
* color values. Optional Floyd-Steinberg or ordered dithering is available. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
#ifdef QUANT_1PASS_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* The main purpose of 1-pass quantization is to provide a fast, if not very |
||||
* high quality, colormapped output capability. A 2-pass quantizer usually |
||||
* gives better visual quality; however, for quantized grayscale output this |
||||
* quantizer is perfectly adequate. Dithering is highly recommended with this |
||||
* quantizer, though you can turn it off if you really want to. |
||||
* |
||||
* In 1-pass quantization the colormap must be chosen in advance of seeing the |
||||
* image. We use a map consisting of all combinations of Ncolors[i] color |
||||
* values for the i'th component. The Ncolors[] values are chosen so that |
||||
* their product, the total number of colors, is no more than that requested. |
||||
* (In most cases, the product will be somewhat less.) |
||||
* |
||||
* Since the colormap is orthogonal, the representative value for each color |
||||
* component can be determined without considering the other components; |
||||
* then these indexes can be combined into a colormap index by a standard |
||||
* N-dimensional-array-subscript calculation. Most of the arithmetic involved |
||||
* can be precalculated and stored in the lookup table colorindex[]. |
||||
* colorindex[i][j] maps pixel value j in component i to the nearest |
||||
* representative value (grid plane) for that component; this index is |
||||
* multiplied by the array stride for component i, so that the |
||||
* index of the colormap entry closest to a given pixel value is just |
||||
* sum( colorindex[component-number][pixel-component-value] ) |
||||
* Aside from being fast, this scheme allows for variable spacing between |
||||
* representative values with no additional lookup cost. |
||||
* |
||||
* If gamma correction has been applied in color conversion, it might be wise |
||||
* to adjust the color grid spacing so that the representative colors are |
||||
* equidistant in linear space. At this writing, gamma correction is not |
||||
* implemented by jdcolor, so nothing is done here. |
||||
*/ |
||||
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
* |
||||
* We use a standard 16x16 ordered dither array. The basic concept of ordered |
||||
* dithering is described in many references, for instance Dale Schumacher's |
||||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
||||
* In place of Schumacher's comparisons against a "threshold" value, we add a |
||||
* "dither" value to the input pixel and then round the result to the nearest |
||||
* output value. The dither value is equivalent to (0.5 - threshold) times |
||||
* the distance between output values. For ordered dithering, we assume that |
||||
* the output colors are equally spaced; if not, results will probably be |
||||
* worse, since the dither may be too much or too little at a given point. |
||||
* |
||||
* The normal calculation would be to form pixel value + dither, range-limit |
||||
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
||||
* We can skip the separate range-limiting step by extending the colorindex |
||||
* table in both directions. |
||||
*/ |
||||
|
||||
#define ODITHER_SIZE 16 /* dimension of dither matrix */ |
||||
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
||||
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
||||
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
||||
|
||||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
||||
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
||||
|
||||
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
||||
/* Bayer's order-4 dither array. Generated by the code given in
|
||||
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
||||
* The values in this array must range from 0 to ODITHER_CELLS-1. |
||||
*/ |
||||
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
||||
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
||||
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
||||
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
||||
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
||||
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
||||
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
||||
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
||||
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
||||
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
||||
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
||||
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
||||
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
||||
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
||||
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
||||
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
||||
}; |
||||
|
||||
|
||||
/* Declarations for Floyd-Steinberg dithering.
|
||||
* |
||||
* Errors are accumulated into the array fserrors[], at a resolution of |
||||
* 1/16th of a pixel count. The error at a given pixel is propagated |
||||
* to its not-yet-processed neighbors using the standard F-S fractions, |
||||
* ... (here) 7/16 |
||||
* 3/16 5/16 1/16 |
||||
* We work left-to-right on even rows, right-to-left on odd rows. |
||||
* |
||||
* We can get away with a single array (holding one row's worth of errors) |
||||
* by using it to store the current row's errors at pixel columns not yet |
||||
* processed, but the next row's errors at columns already processed. We |
||||
* need only a few extra variables to hold the errors immediately around the |
||||
* current column. (If we are lucky, those variables are in registers, but |
||||
* even if not, they're probably cheaper to access than array elements are.) |
||||
* |
||||
* The fserrors[] array is indexed [component#][position]. |
||||
* We provide (#columns + 2) entries per component; the extra entry at each |
||||
* end saves us from special-casing the first and last pixels. |
||||
* |
||||
* Note: on a wide image, we might not have enough room in a PC's near data |
||||
* segment to hold the error array; so it is allocated with alloc_large. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
typedef INT16 FSERROR; /* 16 bits should be enough */ |
||||
typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
||||
#else |
||||
typedef INT32 FSERROR; /* may need more than 16 bits */ |
||||
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
||||
#endif |
||||
|
||||
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
#define MAX_Q_COMPS 4 /* max components I can handle */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_color_quantizer pub; /* public fields */ |
||||
|
||||
/* Initially allocated colormap is saved here */ |
||||
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
||||
int sv_actual; /* number of entries in use */ |
||||
|
||||
JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into |
||||
* JSAMPLEs, the entries of this array will too. |
||||
*/ |
||||
boolean is_padded; /* is the colorindex padded for odither? */ |
||||
|
||||
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
||||
|
||||
/* Variables for ordered dithering */ |
||||
int row_index; /* cur row's vertical index in dither matrix */ |
||||
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
||||
|
||||
/* Variables for Floyd-Steinberg dithering */ |
||||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
||||
boolean on_odd_row; /* flag to remember which row we are on */ |
||||
} my_cquantizer; |
||||
|
||||
typedef my_cquantizer * my_cquantize_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Policy-making subroutines for create_colormap and create_colorindex. |
||||
* These routines determine the colormap to be used. The rest of the module |
||||
* only assumes that the colormap is orthogonal. |
||||
* |
||||
* * select_ncolors decides how to divvy up the available colors |
||||
* among the components. |
||||
* * output_value defines the set of representative values for a component. |
||||
* * largest_input_value defines the mapping from input values to |
||||
* representative values for a component. |
||||
* Note that the latter two routines may impose different policies for |
||||
* different components, though this is not currently done. |
||||
*/ |
||||
|
||||
|
||||
LOCAL(int) |
||||
select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
||||
/* Determine allocation of desired colors to components, */ |
||||
/* and fill in Ncolors[] array to indicate choice. */ |
||||
/* Return value is total number of colors (product of Ncolors[] values). */ |
||||
{ |
||||
int nc = cinfo->out_color_components; /* number of color components */ |
||||
int max_colors = cinfo->desired_number_of_colors; |
||||
int total_colors, iroot, i, j; |
||||
boolean changed; |
||||
long temp; |
||||
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
||||
|
||||
/* We can allocate at least the nc'th root of max_colors per component. */ |
||||
/* Compute floor(nc'th root of max_colors). */ |
||||
iroot = 1; |
||||
do { |
||||
iroot++; |
||||
temp = iroot; /* set temp = iroot ** nc */ |
||||
for (i = 1; i < nc; i++) |
||||
temp *= iroot; |
||||
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
||||
iroot--; /* now iroot = floor(root) */ |
||||
|
||||
/* Must have at least 2 color values per component */ |
||||
if (iroot < 2) |
||||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
||||
|
||||
/* Initialize to iroot color values for each component */ |
||||
total_colors = 1; |
||||
for (i = 0; i < nc; i++) { |
||||
Ncolors[i] = iroot; |
||||
total_colors *= iroot; |
||||
} |
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented. |
||||
* Sometimes, the first component can be incremented more than once! |
||||
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
||||
* In RGB colorspace, try to increment G first, then R, then B. |
||||
*/ |
||||
do { |
||||
changed = FALSE; |
||||
for (i = 0; i < nc; i++) { |
||||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
||||
/* calculate new total_colors if Ncolors[j] is incremented */ |
||||
temp = total_colors / Ncolors[j]; |
||||
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
||||
if (temp > (long) max_colors) |
||||
break; /* won't fit, done with this pass */ |
||||
Ncolors[j]++; /* OK, apply the increment */ |
||||
total_colors = (int) temp; |
||||
changed = TRUE; |
||||
} |
||||
} while (changed); |
||||
|
||||
return total_colors; |
||||
} |
||||
|
||||
|
||||
LOCAL(int) |
||||
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
||||
/* Return j'th output value, where j will range from 0 to maxj */ |
||||
/* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
||||
{ |
||||
/* We always provide values 0 and MAXJSAMPLE for each component;
|
||||
* any additional values are equally spaced between these limits. |
||||
* (Forcing the upper and lower values to the limits ensures that |
||||
* dithering can't produce a color outside the selected gamut.) |
||||
*/ |
||||
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
||||
} |
||||
|
||||
|
||||
LOCAL(int) |
||||
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
||||
/* Return largest input value that should map to j'th output value */ |
||||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
||||
{ |
||||
/* Breakpoints are halfway between values returned by output_value */ |
||||
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the colormap. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_colormap (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
JSAMPARRAY colormap; /* Created colormap */ |
||||
int total_colors; /* Number of distinct output colors */ |
||||
int i,j,k, nci, blksize, blkdist, ptr, val; |
||||
|
||||
/* Select number of colors for each component */ |
||||
total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
||||
|
||||
/* Report selected color counts */ |
||||
if (cinfo->out_color_components == 3) |
||||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
||||
total_colors, cquantize->Ncolors[0], |
||||
cquantize->Ncolors[1], cquantize->Ncolors[2]); |
||||
else |
||||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
||||
|
||||
/* Allocate and fill in the colormap. */ |
||||
/* The colors are ordered in the map in standard row-major order, */ |
||||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
||||
|
||||
colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */ |
||||
/* blkdist is distance between groups of identical entries for a component */ |
||||
blkdist = total_colors; |
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
/* fill in colormap entries for i'th color component */ |
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
||||
blksize = blkdist / nci; |
||||
for (j = 0; j < nci; j++) { |
||||
/* Compute j'th output value (out of nci) for component */ |
||||
val = output_value(cinfo, i, j, nci-1); |
||||
/* Fill in all colormap entries that have this value of this component */ |
||||
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
||||
/* fill in blksize entries beginning at ptr */ |
||||
for (k = 0; k < blksize; k++) |
||||
colormap[i][ptr+k] = (JSAMPLE) val; |
||||
} |
||||
} |
||||
blkdist = blksize; /* blksize of this color is blkdist of next */ |
||||
} |
||||
|
||||
/* Save the colormap in private storage,
|
||||
* where it will survive color quantization mode changes. |
||||
*/ |
||||
cquantize->sv_colormap = colormap; |
||||
cquantize->sv_actual = total_colors; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the color index table. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_colorindex (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
JSAMPROW indexptr; |
||||
int i,j,k, nci, blksize, val, pad; |
||||
|
||||
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||||
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
||||
* This is not necessary in the other dithering modes. However, we |
||||
* flag whether it was done in case user changes dithering mode. |
||||
*/ |
||||
if (cinfo->dither_mode == JDITHER_ORDERED) { |
||||
pad = MAXJSAMPLE*2; |
||||
cquantize->is_padded = TRUE; |
||||
} else { |
||||
pad = 0; |
||||
cquantize->is_padded = FALSE; |
||||
} |
||||
|
||||
cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) (MAXJSAMPLE+1 + pad), |
||||
(JDIMENSION) cinfo->out_color_components); |
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */ |
||||
blksize = cquantize->sv_actual; |
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
/* fill in colorindex entries for i'th color component */ |
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
||||
blksize = blksize / nci; |
||||
|
||||
/* adjust colorindex pointers to provide padding at negative indexes. */ |
||||
if (pad) |
||||
cquantize->colorindex[i] += MAXJSAMPLE; |
||||
|
||||
/* in loop, val = index of current output value, */ |
||||
/* and k = largest j that maps to current val */ |
||||
indexptr = cquantize->colorindex[i]; |
||||
val = 0; |
||||
k = largest_input_value(cinfo, i, 0, nci-1); |
||||
for (j = 0; j <= MAXJSAMPLE; j++) { |
||||
while (j > k) /* advance val if past boundary */ |
||||
k = largest_input_value(cinfo, i, ++val, nci-1); |
||||
/* premultiply so that no multiplication needed in main processing */ |
||||
indexptr[j] = (JSAMPLE) (val * blksize); |
||||
} |
||||
/* Pad at both ends if necessary */ |
||||
if (pad) |
||||
for (j = 1; j <= MAXJSAMPLE; j++) { |
||||
indexptr[-j] = indexptr[0]; |
||||
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create an ordered-dither array for a component having ncolors |
||||
* distinct output values. |
||||
*/ |
||||
|
||||
LOCAL(ODITHER_MATRIX_PTR) |
||||
make_odither_array (j_decompress_ptr cinfo, int ncolors) |
||||
{ |
||||
ODITHER_MATRIX_PTR odither; |
||||
int j,k; |
||||
INT32 num,den; |
||||
|
||||
odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX)); |
||||
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
||||
* Hence the dither value for the matrix cell with fill order f |
||||
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
||||
* On 16-bit-int machine, be careful to avoid overflow. |
||||
*/ |
||||
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
||||
for (j = 0; j < ODITHER_SIZE; j++) { |
||||
for (k = 0; k < ODITHER_SIZE; k++) { |
||||
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
||||
* MAXJSAMPLE; |
||||
/* Ensure round towards zero despite C's lack of consistency
|
||||
* about rounding negative values in integer division... |
||||
*/ |
||||
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
||||
} |
||||
} |
||||
return odither; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the ordered-dither tables. |
||||
* Components having the same number of representative colors may
|
||||
* share a dither table. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_odither_tables (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
ODITHER_MATRIX_PTR odither; |
||||
int i, j, nci; |
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
||||
odither = NULL; /* search for matching prior component */ |
||||
for (j = 0; j < i; j++) { |
||||
if (nci == cquantize->Ncolors[j]) { |
||||
odither = cquantize->odither[j]; |
||||
break; |
||||
} |
||||
} |
||||
if (odither == NULL) /* need a new table? */ |
||||
odither = make_odither_array(cinfo, nci); |
||||
cquantize->odither[i] = odither; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Map some rows of pixels to the output colormapped representation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* General case, no dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
JSAMPARRAY colorindex = cquantize->colorindex; |
||||
register int pixcode, ci; |
||||
register JSAMPROW ptrin, ptrout; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
register int nc = cinfo->out_color_components; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
ptrin = input_buf[row]; |
||||
ptrout = output_buf[row]; |
||||
for (col = width; col > 0; col--) { |
||||
pixcode = 0; |
||||
for (ci = 0; ci < nc; ci++) { |
||||
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
||||
} |
||||
*ptrout++ = (JSAMPLE) pixcode; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* Fast path for out_color_components==3, no dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register int pixcode; |
||||
register JSAMPROW ptrin, ptrout; |
||||
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
||||
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
||||
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
ptrin = input_buf[row]; |
||||
ptrout = output_buf[row]; |
||||
for (col = width; col > 0; col--) { |
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
||||
*ptrout++ = (JSAMPLE) pixcode; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* General case, with ordered dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register JSAMPROW input_ptr; |
||||
register JSAMPROW output_ptr; |
||||
JSAMPROW colorindex_ci; |
||||
int * dither; /* points to active row of dither matrix */ |
||||
int row_index, col_index; /* current indexes into dither matrix */ |
||||
int nc = cinfo->out_color_components; |
||||
int ci; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
/* Initialize output values to 0 so can process components separately */ |
||||
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE)); |
||||
row_index = cquantize->row_index; |
||||
for (ci = 0; ci < nc; ci++) { |
||||
input_ptr = input_buf[row] + ci; |
||||
output_ptr = output_buf[row]; |
||||
colorindex_ci = cquantize->colorindex[ci]; |
||||
dither = cquantize->odither[ci][row_index]; |
||||
col_index = 0; |
||||
|
||||
for (col = width; col > 0; col--) { |
||||
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||||
* select output value, accumulate into output code for this pixel. |
||||
* Range-limiting need not be done explicitly, as we have extended |
||||
* the colorindex table to produce the right answers for out-of-range |
||||
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
||||
* required amount of padding. |
||||
*/ |
||||
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
||||
input_ptr += nc; |
||||
output_ptr++; |
||||
col_index = (col_index + 1) & ODITHER_MASK; |
||||
} |
||||
} |
||||
/* Advance row index for next row */ |
||||
row_index = (row_index + 1) & ODITHER_MASK; |
||||
cquantize->row_index = row_index; |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* Fast path for out_color_components==3, with ordered dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register int pixcode; |
||||
register JSAMPROW input_ptr; |
||||
register JSAMPROW output_ptr; |
||||
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
||||
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
||||
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
||||
int * dither0; /* points to active row of dither matrix */ |
||||
int * dither1; |
||||
int * dither2; |
||||
int row_index, col_index; /* current indexes into dither matrix */ |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
row_index = cquantize->row_index; |
||||
input_ptr = input_buf[row]; |
||||
output_ptr = output_buf[row]; |
||||
dither0 = cquantize->odither[0][row_index]; |
||||
dither1 = cquantize->odither[1][row_index]; |
||||
dither2 = cquantize->odither[2][row_index]; |
||||
col_index = 0; |
||||
|
||||
for (col = width; col > 0; col--) { |
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
||||
dither0[col_index]]); |
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
||||
dither1[col_index]]); |
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
||||
dither2[col_index]]); |
||||
*output_ptr++ = (JSAMPLE) pixcode; |
||||
col_index = (col_index + 1) & ODITHER_MASK; |
||||
} |
||||
row_index = (row_index + 1) & ODITHER_MASK; |
||||
cquantize->row_index = row_index; |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* General case, with Floyd-Steinberg dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register LOCFSERROR cur; /* current error or pixel value */ |
||||
LOCFSERROR belowerr; /* error for pixel below cur */ |
||||
LOCFSERROR bpreverr; /* error for below/prev col */ |
||||
LOCFSERROR bnexterr; /* error for below/next col */ |
||||
LOCFSERROR delta; |
||||
register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
||||
register JSAMPROW input_ptr; |
||||
register JSAMPROW output_ptr; |
||||
JSAMPROW colorindex_ci; |
||||
JSAMPROW colormap_ci; |
||||
int pixcode; |
||||
int nc = cinfo->out_color_components; |
||||
int dir; /* 1 for left-to-right, -1 for right-to-left */ |
||||
int dirnc; /* dir * nc */ |
||||
int ci; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
JSAMPLE *range_limit = cinfo->sample_range_limit; |
||||
SHIFT_TEMPS |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
/* Initialize output values to 0 so can process components separately */ |
||||
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE)); |
||||
for (ci = 0; ci < nc; ci++) { |
||||
input_ptr = input_buf[row] + ci; |
||||
output_ptr = output_buf[row]; |
||||
if (cquantize->on_odd_row) { |
||||
/* work right to left in this row */ |
||||
input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
||||
output_ptr += width-1; |
||||
dir = -1; |
||||
dirnc = -nc; |
||||
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
||||
} else { |
||||
/* work left to right in this row */ |
||||
dir = 1; |
||||
dirnc = nc; |
||||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
||||
} |
||||
colorindex_ci = cquantize->colorindex[ci]; |
||||
colormap_ci = cquantize->sv_colormap[ci]; |
||||
/* Preset error values: no error propagated to first pixel from left */ |
||||
cur = 0; |
||||
/* and no error propagated to row below yet */ |
||||
belowerr = bpreverr = 0; |
||||
|
||||
for (col = width; col > 0; col--) { |
||||
/* cur holds the error propagated from the previous pixel on the
|
||||
* current line. Add the error propagated from the previous line |
||||
* to form the complete error correction term for this pixel, and |
||||
* round the error term (which is expressed * 16) to an integer. |
||||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
||||
* for either sign of the error value. |
||||
* Note: errorptr points to *previous* column's array entry. |
||||
*/ |
||||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
||||
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||||
* The maximum error is +- MAXJSAMPLE; this sets the required size |
||||
* of the range_limit array. |
||||
*/ |
||||
cur += GETJSAMPLE(*input_ptr); |
||||
cur = GETJSAMPLE(range_limit[cur]); |
||||
/* Select output value, accumulate into output code for this pixel */ |
||||
pixcode = GETJSAMPLE(colorindex_ci[cur]); |
||||
*output_ptr += (JSAMPLE) pixcode; |
||||
/* Compute actual representation error at this pixel */ |
||||
/* Note: we can do this even though we don't have the final */ |
||||
/* pixel code, because the colormap is orthogonal. */ |
||||
cur -= GETJSAMPLE(colormap_ci[pixcode]); |
||||
/* Compute error fractions to be propagated to adjacent pixels.
|
||||
* Add these into the running sums, and simultaneously shift the |
||||
* next-line error sums left by 1 column. |
||||
*/ |
||||
bnexterr = cur; |
||||
delta = cur * 2; |
||||
cur += delta; /* form error * 3 */ |
||||
errorptr[0] = (FSERROR) (bpreverr + cur); |
||||
cur += delta; /* form error * 5 */ |
||||
bpreverr = belowerr + cur; |
||||
belowerr = bnexterr; |
||||
cur += delta; /* form error * 7 */ |
||||
/* At this point cur contains the 7/16 error value to be propagated
|
||||
* to the next pixel on the current line, and all the errors for the |
||||
* next line have been shifted over. We are therefore ready to move on. |
||||
*/ |
||||
input_ptr += dirnc; /* advance input ptr to next column */ |
||||
output_ptr += dir; /* advance output ptr to next column */ |
||||
errorptr += dir; /* advance errorptr to current column */ |
||||
} |
||||
/* Post-loop cleanup: we must unload the final error value into the
|
||||
* final fserrors[] entry. Note we need not unload belowerr because |
||||
* it is for the dummy column before or after the actual array. |
||||
*/ |
||||
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
||||
} |
||||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Allocate workspace for Floyd-Steinberg errors. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
alloc_fs_workspace (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
size_t arraysize; |
||||
int i; |
||||
|
||||
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR); |
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for one-pass color quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
size_t arraysize; |
||||
int i; |
||||
|
||||
/* Install my colormap. */ |
||||
cinfo->colormap = cquantize->sv_colormap; |
||||
cinfo->actual_number_of_colors = cquantize->sv_actual; |
||||
|
||||
/* Initialize for desired dithering mode. */ |
||||
switch (cinfo->dither_mode) { |
||||
case JDITHER_NONE: |
||||
if (cinfo->out_color_components == 3) |
||||
cquantize->pub.color_quantize = color_quantize3; |
||||
else |
||||
cquantize->pub.color_quantize = color_quantize; |
||||
break; |
||||
case JDITHER_ORDERED: |
||||
if (cinfo->out_color_components == 3) |
||||
cquantize->pub.color_quantize = quantize3_ord_dither; |
||||
else |
||||
cquantize->pub.color_quantize = quantize_ord_dither; |
||||
cquantize->row_index = 0; /* initialize state for ordered dither */ |
||||
/* If user changed to ordered dither from another mode,
|
||||
* we must recreate the color index table with padding. |
||||
* This will cost extra space, but probably isn't very likely. |
||||
*/ |
||||
if (! cquantize->is_padded) |
||||
create_colorindex(cinfo); |
||||
/* Create ordered-dither tables if we didn't already. */ |
||||
if (cquantize->odither[0] == NULL) |
||||
create_odither_tables(cinfo); |
||||
break; |
||||
case JDITHER_FS: |
||||
cquantize->pub.color_quantize = quantize_fs_dither; |
||||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
||||
/* Allocate Floyd-Steinberg workspace if didn't already. */ |
||||
if (cquantize->fserrors[0] == NULL) |
||||
alloc_fs_workspace(cinfo); |
||||
/* Initialize the propagated errors to zero. */ |
||||
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR); |
||||
for (i = 0; i < cinfo->out_color_components; i++) |
||||
FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize); |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass_1_quant (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work in 1-pass case */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes. |
||||
* Shouldn't get to this module! |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
new_color_map_1_quant (j_decompress_ptr cinfo) |
||||
{ |
||||
ERREXIT(cinfo, JERR_MODE_CHANGE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for 1-pass color quantization. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_1pass_quantizer (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize; |
||||
|
||||
cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer)); |
||||
cinfo->cquantize = &cquantize->pub; |
||||
cquantize->pub.start_pass = start_pass_1_quant; |
||||
cquantize->pub.finish_pass = finish_pass_1_quant; |
||||
cquantize->pub.new_color_map = new_color_map_1_quant; |
||||
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
||||
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
||||
|
||||
/* Make sure my internal arrays won't overflow */ |
||||
if (cinfo->out_color_components > MAX_Q_COMPS) |
||||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
||||
/* Make sure colormap indexes can be represented by JSAMPLEs */ |
||||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
||||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
||||
|
||||
/* Create the colormap and color index table. */ |
||||
create_colormap(cinfo); |
||||
create_colorindex(cinfo); |
||||
|
||||
/* Allocate Floyd-Steinberg workspace now if requested.
|
||||
* We do this now since it is FAR storage and may affect the memory |
||||
* manager's space calculations. If the user changes to FS dither |
||||
* mode in a later pass, we will allocate the space then, and will |
||||
* possibly overrun the max_memory_to_use setting. |
||||
*/ |
||||
if (cinfo->dither_mode == JDITHER_FS) |
||||
alloc_fs_workspace(cinfo); |
||||
} |
||||
|
||||
#endif /* QUANT_1PASS_SUPPORTED */ |
File diff suppressed because it is too large
Load Diff
@ -1,224 +0,0 @@ |
||||
/*
|
||||
* jutils.c |
||||
* |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* Modified 2009-2020 by Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains tables and miscellaneous utility routines needed |
||||
* for both compression and decompression. |
||||
* Note we prefix all global names with "j" to minimize conflicts with |
||||
* a surrounding application. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element |
||||
* of a DCT block read in natural order (left to right, top to bottom). |
||||
*/ |
||||
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
|
||||
const int jpeg_zigzag_order[DCTSIZE2] = { |
||||
0, 1, 5, 6, 14, 15, 27, 28, |
||||
2, 4, 7, 13, 16, 26, 29, 42, |
||||
3, 8, 12, 17, 25, 30, 41, 43, |
||||
9, 11, 18, 24, 31, 40, 44, 53, |
||||
10, 19, 23, 32, 39, 45, 52, 54, |
||||
20, 22, 33, 38, 46, 51, 55, 60, |
||||
21, 34, 37, 47, 50, 56, 59, 61, |
||||
35, 36, 48, 49, 57, 58, 62, 63 |
||||
}; |
||||
|
||||
#endif |
||||
|
||||
/*
|
||||
* jpeg_natural_order[i] is the natural-order position of the i'th element |
||||
* of zigzag order. |
||||
* |
||||
* When reading corrupted data, the Huffman decoders could attempt |
||||
* to reference an entry beyond the end of this array (if the decoded |
||||
* zero run length reaches past the end of the block). To prevent |
||||
* wild stores without adding an inner-loop test, we put some extra |
||||
* "63"s after the real entries. This will cause the extra coefficient |
||||
* to be stored in location 63 of the block, not somewhere random. |
||||
* The worst case would be a run-length of 15, which means we need 16 |
||||
* fake entries. |
||||
*/ |
||||
|
||||
const int jpeg_natural_order[DCTSIZE2+16] = { |
||||
0, 1, 8, 16, 9, 2, 3, 10, |
||||
17, 24, 32, 25, 18, 11, 4, 5, |
||||
12, 19, 26, 33, 40, 48, 41, 34, |
||||
27, 20, 13, 6, 7, 14, 21, 28, |
||||
35, 42, 49, 56, 57, 50, 43, 36, |
||||
29, 22, 15, 23, 30, 37, 44, 51, |
||||
58, 59, 52, 45, 38, 31, 39, 46, |
||||
53, 60, 61, 54, 47, 55, 62, 63, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
const int jpeg_natural_order7[7*7+16] = { |
||||
0, 1, 8, 16, 9, 2, 3, 10, |
||||
17, 24, 32, 25, 18, 11, 4, 5, |
||||
12, 19, 26, 33, 40, 48, 41, 34, |
||||
27, 20, 13, 6, 14, 21, 28, 35, |
||||
42, 49, 50, 43, 36, 29, 22, 30, |
||||
37, 44, 51, 52, 45, 38, 46, 53, |
||||
54, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
const int jpeg_natural_order6[6*6+16] = { |
||||
0, 1, 8, 16, 9, 2, 3, 10, |
||||
17, 24, 32, 25, 18, 11, 4, 5, |
||||
12, 19, 26, 33, 40, 41, 34, 27, |
||||
20, 13, 21, 28, 35, 42, 43, 36, |
||||
29, 37, 44, 45, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
const int jpeg_natural_order5[5*5+16] = { |
||||
0, 1, 8, 16, 9, 2, 3, 10, |
||||
17, 24, 32, 25, 18, 11, 4, 12, |
||||
19, 26, 33, 34, 27, 20, 28, 35, |
||||
36, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
const int jpeg_natural_order4[4*4+16] = { |
||||
0, 1, 8, 16, 9, 2, 3, 10, |
||||
17, 24, 25, 18, 11, 19, 26, 27, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
const int jpeg_natural_order3[3*3+16] = { |
||||
0, 1, 8, 16, 9, 2, 10, 17, |
||||
18, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
const int jpeg_natural_order2[2*2+16] = { |
||||
0, 1, 8, 9, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
|
||||
/*
|
||||
* Arithmetic utilities |
||||
*/ |
||||
|
||||
GLOBAL(long) |
||||
jdiv_round_up (long a, long b) |
||||
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */ |
||||
/* Assumes a >= 0, b > 0 */ |
||||
{ |
||||
return (a + b - 1L) / b; |
||||
} |
||||
|
||||
|
||||
GLOBAL(long) |
||||
jround_up (long a, long b) |
||||
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ |
||||
/* Assumes a >= 0, b > 0 */ |
||||
{ |
||||
a += b - 1L; |
||||
return a - (a % b); |
||||
} |
||||
|
||||
|
||||
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
||||
* and coefficient-block arrays. This won't work on 80x86 because the arrays |
||||
* are FAR and we're assuming a small-pointer memory model. However, some |
||||
* DOS compilers provide far-pointer versions of memcpy() and memset() even |
||||
* in the small-model libraries. These will be used if USE_FMEM is defined. |
||||
* Otherwise, the routines below do it the hard way. (The performance cost |
||||
* is not all that great, because these routines aren't very heavily used.) |
||||
*/ |
||||
|
||||
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */ |
||||
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size) |
||||
#else /* 80x86 case, define if we can */ |
||||
#ifdef USE_FMEM |
||||
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) |
||||
#else |
||||
/* This function is for use by the FMEMZERO macro defined in jpegint.h.
|
||||
* Do not call this function directly, use the FMEMZERO macro instead. |
||||
*/ |
||||
GLOBAL(void) |
||||
jzero_far (void FAR * target, size_t bytestozero) |
||||
/* Zero out a chunk of FAR memory. */ |
||||
/* This might be sample-array data, block-array data, or alloc_large data. */ |
||||
{ |
||||
register char FAR * ptr = (char FAR *) target; |
||||
register size_t count; |
||||
|
||||
for (count = bytestozero; count > 0; count--) { |
||||
*ptr++ = 0; |
||||
} |
||||
} |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jcopy_sample_rows (JSAMPARRAY input_array, |
||||
JSAMPARRAY output_array, |
||||
int num_rows, JDIMENSION num_cols) |
||||
/* Copy some rows of samples from one place to another.
|
||||
* num_rows rows are copied from *input_array++ to *output_array++; |
||||
* these areas may overlap for duplication. |
||||
* The source and destination arrays must be at least as wide as num_cols. |
||||
*/ |
||||
{ |
||||
register JSAMPROW inptr, outptr; |
||||
#ifdef FMEMCOPY |
||||
register size_t count = (size_t) num_cols * SIZEOF(JSAMPLE); |
||||
#else |
||||
register JDIMENSION count; |
||||
#endif |
||||
register int row; |
||||
|
||||
for (row = num_rows; row > 0; row--) { |
||||
inptr = *input_array++; |
||||
outptr = *output_array++; |
||||
#ifdef FMEMCOPY |
||||
FMEMCOPY(outptr, inptr, count); |
||||
#else |
||||
for (count = num_cols; count > 0; count--) |
||||
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */ |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, |
||||
JDIMENSION num_blocks) |
||||
/* Copy a row of coefficient blocks from one place to another. */ |
||||
{ |
||||
#ifdef FMEMCOPY |
||||
FMEMCOPY(output_row, input_row, (size_t) num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); |
||||
#else |
||||
register JCOEFPTR inptr, outptr; |
||||
register long count; |
||||
|
||||
inptr = (JCOEFPTR) input_row; |
||||
outptr = (JCOEFPTR) output_row; |
||||
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { |
||||
*outptr++ = *inptr++; |
||||
} |
||||
#endif |
||||
} |
@ -1,14 +0,0 @@ |
||||
/*
|
||||
* jversion.h |
||||
* |
||||
* Copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README file. |
||||
* |
||||
* This file contains software version identification. |
||||
*/ |
||||
|
||||
|
||||
#define JVERSION "9f 14-Jan-2024" |
||||
|
||||
#define JCOPYRIGHT "Copyright (C) 2024, Thomas G. Lane, Guido Vollbeding" |
Loading…
Reference in new issue