diff --git a/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.markdown b/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.markdown index b0db7c56b4..a37d579944 100644 --- a/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.markdown +++ b/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.markdown @@ -46,20 +46,20 @@ Here, we will see a simple example on how to match features between two images. a queryImage and a trainImage. We will try to find the queryImage in trainImage using feature matching. ( The images are /samples/c/box.png and /samples/c/box_in_scene.png) -We are using SIFT descriptors to match features. So let's start with loading images, finding +We are using ORB descriptors to match features. So let's start with loading images, finding descriptors etc. @code{.py} import numpy as np import cv2 -from matplotlib import pyplot as plt +import matplotlib.pyplot as plt img1 = cv2.imread('box.png',0) # queryImage img2 = cv2.imread('box_in_scene.png',0) # trainImage -# Initiate SIFT detector -orb = cv2.ORB() +# Initiate ORB detector +orb = cv2.ORB_create() -# find the keypoints and descriptors with SIFT +# find the keypoints and descriptors with ORB kp1, des1 = orb.detectAndCompute(img1,None) kp2, des2 = orb.detectAndCompute(img2,None) @endcode