diff --git a/doc/Doxyfile.in b/doc/Doxyfile.in index ce7a91dbf1..ec7d7cd3b3 100644 --- a/doc/Doxyfile.in +++ b/doc/Doxyfile.in @@ -246,7 +246,7 @@ PREDEFINED = __cplusplus=1 \ CV_WRAP_PHANTOM(x)= \ CV_WRAP_DEFAULT(x)= \ CV_CDECL= \ - CV_Func = \ + CV_Func= \ CV_DO_PRAGMA(x)= \ CV_SUPPRESS_DEPRECATED_START= \ CV_SUPPRESS_DEPRECATED_END= \ diff --git a/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.markdown b/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.markdown index 17844b7e80..9851599455 100644 --- a/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.markdown +++ b/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.markdown @@ -80,7 +80,7 @@ Probabilistic Hough Transform In the hough transform, you can see that even for a line with two arguments, it takes a lot of computation. Probabilistic Hough Transform is an optimization of the Hough Transform we saw. It doesn't take all the points into consideration. Instead, it takes only a random subset of points which is -sufficient for line detection. Just we have to decrease the threshold. See image below which compares +sufficient for line detection. We just have to decrease the threshold. See image below which compares Hough Transform and Probabilistic Hough Transform in Hough space. (Image Courtesy : [Franck Bettinger's home page](http://phdfb1.free.fr/robot/mscthesis/node14.html) ) diff --git a/modules/core/include/opencv2/core/utility.hpp b/modules/core/include/opencv2/core/utility.hpp index 36aebf5996..3d2a03593f 100644 --- a/modules/core/include/opencv2/core/utility.hpp +++ b/modules/core/include/opencv2/core/utility.hpp @@ -622,6 +622,7 @@ void Mat::forEach_impl(const Functor& operation) { // or (_Tp&, void*) <- in case you don't need current idx. } + CV_Assert(!empty()); CV_Assert(this->total() / this->size[this->dims - 1] <= INT_MAX); const int LINES = static_cast(this->total() / this->size[this->dims - 1]); diff --git a/modules/dnn/src/dnn.cpp b/modules/dnn/src/dnn.cpp index 53b316940c..f7387a0c70 100644 --- a/modules/dnn/src/dnn.cpp +++ b/modules/dnn/src/dnn.cpp @@ -2228,7 +2228,11 @@ struct Net::Impl auto ieInpNode = inputNodes[i].dynamicCast(); CV_Assert(oid < ieInpNode->node->get_output_size()); +#if INF_ENGINE_VER_MAJOR_GT(2020020000) + inputNodes[i] = Ptr(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid))); +#else inputNodes[i] = Ptr(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid, false))); +#endif } if (layer->supportBackend(preferableBackend)) diff --git a/modules/imgproc/test/ocl/test_houghlines.cpp b/modules/imgproc/test/ocl/test_houghlines.cpp index e6cb439403..4e7b8917ac 100644 --- a/modules/imgproc/test/ocl/test_houghlines.cpp +++ b/modules/imgproc/test/ocl/test_houghlines.cpp @@ -173,7 +173,7 @@ OCL_TEST_P(HoughLinesP, RealImage) OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLines, Combine(Values(1, 0.5), // rhoStep Values(CV_PI / 180.0, CV_PI / 360.0), // thetaStep - Values(80, 150))); // threshold + Values(85, 150))); // threshold OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLinesP, Combine(Values(100, 150), // threshold Values(50, 100), // minLineLength