Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/16996/head
Alexander Alekhin 5 years ago
commit 763a1d7392
  1. 2
      doc/Doxyfile.in
  2. 2
      doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.markdown
  3. 1
      modules/core/include/opencv2/core/utility.hpp
  4. 4
      modules/dnn/src/dnn.cpp
  5. 2
      modules/imgproc/test/ocl/test_houghlines.cpp

@ -246,7 +246,7 @@ PREDEFINED = __cplusplus=1 \
CV_WRAP_PHANTOM(x)= \
CV_WRAP_DEFAULT(x)= \
CV_CDECL= \
CV_Func = \
CV_Func= \
CV_DO_PRAGMA(x)= \
CV_SUPPRESS_DEPRECATED_START= \
CV_SUPPRESS_DEPRECATED_END= \

@ -80,7 +80,7 @@ Probabilistic Hough Transform
In the hough transform, you can see that even for a line with two arguments, it takes a lot of
computation. Probabilistic Hough Transform is an optimization of the Hough Transform we saw. It doesn't
take all the points into consideration. Instead, it takes only a random subset of points which is
sufficient for line detection. Just we have to decrease the threshold. See image below which compares
sufficient for line detection. We just have to decrease the threshold. See image below which compares
Hough Transform and Probabilistic Hough Transform in Hough space. (Image Courtesy :
[Franck Bettinger's home page](http://phdfb1.free.fr/robot/mscthesis/node14.html) )

@ -622,6 +622,7 @@ void Mat::forEach_impl(const Functor& operation) {
// or (_Tp&, void*) <- in case you don't need current idx.
}
CV_Assert(!empty());
CV_Assert(this->total() / this->size[this->dims - 1] <= INT_MAX);
const int LINES = static_cast<int>(this->total() / this->size[this->dims - 1]);

@ -2228,7 +2228,11 @@ struct Net::Impl
auto ieInpNode = inputNodes[i].dynamicCast<InfEngineNgraphNode>();
CV_Assert(oid < ieInpNode->node->get_output_size());
#if INF_ENGINE_VER_MAJOR_GT(2020020000)
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid)));
#else
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid, false)));
#endif
}
if (layer->supportBackend(preferableBackend))

@ -173,7 +173,7 @@ OCL_TEST_P(HoughLinesP, RealImage)
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLines, Combine(Values(1, 0.5), // rhoStep
Values(CV_PI / 180.0, CV_PI / 360.0), // thetaStep
Values(80, 150))); // threshold
Values(85, 150))); // threshold
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLinesP, Combine(Values(100, 150), // threshold
Values(50, 100), // minLineLength

Loading…
Cancel
Save