After Width: | Height: | Size: 78 KiB |
@ -0,0 +1,97 @@ |
|||||||
|
Object detection with Generalized Ballard and Guil Hough Transform {#tutorial_generalized_hough_ballard_guil} |
||||||
|
================================================================== |
||||||
|
|
||||||
|
@tableofcontents |
||||||
|
|
||||||
|
@prev_tutorial{tutorial_hough_circle} |
||||||
|
@next_tutorial{tutorial_remap} |
||||||
|
|
||||||
|
| | | |
||||||
|
| -: | :- | |
||||||
|
| Original author | Markus Heck | |
||||||
|
| Compatibility | OpenCV >= 3.4 | |
||||||
|
|
||||||
|
Goal |
||||||
|
---- |
||||||
|
|
||||||
|
In this tutorial you will learn how to: |
||||||
|
|
||||||
|
- Use @ref cv::GeneralizedHoughBallard and @ref cv::GeneralizedHoughGuil to detect an object |
||||||
|
|
||||||
|
Example |
||||||
|
------- |
||||||
|
|
||||||
|
### What does this program do? |
||||||
|
|
||||||
|
1. Load the image and template |
||||||
|
|
||||||
|
 |
||||||
|
 |
||||||
|
|
||||||
|
2. Instantiate @ref cv::GeneralizedHoughBallard with the help of `createGeneralizedHoughBallard()` |
||||||
|
3. Instantiate @ref cv::GeneralizedHoughGuil with the help of `createGeneralizedHoughGuil()` |
||||||
|
4. Set the required parameters for both GeneralizedHough variants |
||||||
|
5. Detect and show found results |
||||||
|
|
||||||
|
@note |
||||||
|
- Both variants can't be instantiated directly. Using the create methods is required. |
||||||
|
- Guil Hough is very slow. Calculating the results for the "mini" files used in this tutorial |
||||||
|
takes only a few seconds. With image and template in a higher resolution, as shown below, |
||||||
|
my notebook requires about 5 minutes to calculate a result. |
||||||
|
|
||||||
|
 |
||||||
|
 |
||||||
|
|
||||||
|
### Code |
||||||
|
|
||||||
|
The complete code for this tutorial is shown below. |
||||||
|
@include samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp |
||||||
|
|
||||||
|
Explanation |
||||||
|
----------- |
||||||
|
|
||||||
|
### Load image, template and setup variables |
||||||
|
|
||||||
|
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-load-and-setup |
||||||
|
|
||||||
|
The position vectors will contain the matches the detectors will find. |
||||||
|
Every entry contains four floating point values: |
||||||
|
position vector |
||||||
|
|
||||||
|
- *[0]*: x coordinate of center point |
||||||
|
- *[1]*: y coordinate of center point |
||||||
|
- *[2]*: scale of detected object compared to template |
||||||
|
- *[3]*: rotation of detected object in degree in relation to template |
||||||
|
|
||||||
|
An example could look as follows: `[200, 100, 0.9, 120]` |
||||||
|
|
||||||
|
### Setup parameters |
||||||
|
|
||||||
|
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-setup-parameters |
||||||
|
|
||||||
|
Finding the optimal values can end up in trial and error and depends on many factors, such as the image resolution. |
||||||
|
|
||||||
|
### Run detection |
||||||
|
|
||||||
|
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-run |
||||||
|
|
||||||
|
As mentioned above, this step will take some time, especially with larger images and when using Guil. |
||||||
|
|
||||||
|
### Draw results and show image |
||||||
|
|
||||||
|
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-draw-results |
||||||
|
|
||||||
|
Result |
||||||
|
------ |
||||||
|
|
||||||
|
 |
||||||
|
|
||||||
|
The blue rectangle shows the result of @ref cv::GeneralizedHoughBallard and the green rectangles the results of @ref |
||||||
|
cv::GeneralizedHoughGuil. |
||||||
|
|
||||||
|
Getting perfect results like in this example is unlikely if the parameters are not perfectly adapted to the sample. |
||||||
|
An example with less perfect parameters is shown below. |
||||||
|
For the Ballard variant, only the center of the result is marked as a black dot on this image. The rectangle would be |
||||||
|
the same as on the previous image. |
||||||
|
|
||||||
|
 |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 35 KiB |
After Width: | Height: | Size: 39 KiB |
After Width: | Height: | Size: 31 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 42 KiB |
@ -0,0 +1,108 @@ |
|||||||
|
/**
|
||||||
|
@file generalizedHoughTransform.cpp |
||||||
|
@author Markus Heck |
||||||
|
@brief Detects an object, given by a template, in an image using GeneralizedHoughBallard and GeneralizedHoughGuil. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include "opencv2/highgui.hpp" |
||||||
|
#include "opencv2/imgproc.hpp" |
||||||
|
|
||||||
|
using namespace cv; |
||||||
|
using namespace std; |
||||||
|
|
||||||
|
int main() { |
||||||
|
//! [generalized-hough-transform-load-and-setup]
|
||||||
|
// load source image and grayscale template
|
||||||
|
Mat image = imread("images/generalized_hough_mini_image.jpg"); |
||||||
|
Mat templ = imread("images/generalized_hough_mini_template.jpg", IMREAD_GRAYSCALE); |
||||||
|
|
||||||
|
// create grayscale image
|
||||||
|
Mat grayImage; |
||||||
|
cvtColor(image, grayImage, COLOR_RGB2GRAY); |
||||||
|
|
||||||
|
// create variable for location, scale and rotation of detected templates
|
||||||
|
vector<Vec4f> positionBallard, positionGuil; |
||||||
|
|
||||||
|
// template width and height
|
||||||
|
int w = templ.cols; |
||||||
|
int h = templ.rows; |
||||||
|
//! [generalized-hough-transform-load-and-setup]
|
||||||
|
|
||||||
|
|
||||||
|
//! [generalized-hough-transform-setup-parameters]
|
||||||
|
// create ballard and set options
|
||||||
|
Ptr<GeneralizedHoughBallard> ballard = createGeneralizedHoughBallard(); |
||||||
|
ballard->setMinDist(10); |
||||||
|
ballard->setLevels(360); |
||||||
|
ballard->setDp(2); |
||||||
|
ballard->setMaxBufferSize(1000); |
||||||
|
ballard->setVotesThreshold(40); |
||||||
|
|
||||||
|
ballard->setCannyLowThresh(30); |
||||||
|
ballard->setCannyHighThresh(110); |
||||||
|
ballard->setTemplate(templ); |
||||||
|
|
||||||
|
|
||||||
|
// create guil and set options
|
||||||
|
Ptr<GeneralizedHoughGuil> guil = createGeneralizedHoughGuil(); |
||||||
|
guil->setMinDist(10); |
||||||
|
guil->setLevels(360); |
||||||
|
guil->setDp(3); |
||||||
|
guil->setMaxBufferSize(1000); |
||||||
|
|
||||||
|
guil->setMinAngle(0); |
||||||
|
guil->setMaxAngle(360); |
||||||
|
guil->setAngleStep(1); |
||||||
|
guil->setAngleThresh(1500); |
||||||
|
|
||||||
|
guil->setMinScale(0.5); |
||||||
|
guil->setMaxScale(2.0); |
||||||
|
guil->setScaleStep(0.05); |
||||||
|
guil->setScaleThresh(50); |
||||||
|
|
||||||
|
guil->setPosThresh(10); |
||||||
|
|
||||||
|
guil->setCannyLowThresh(30); |
||||||
|
guil->setCannyHighThresh(110); |
||||||
|
|
||||||
|
guil->setTemplate(templ); |
||||||
|
//! [generalized-hough-transform-setup-parameters]
|
||||||
|
|
||||||
|
|
||||||
|
//! [generalized-hough-transform-run]
|
||||||
|
// execute ballard detection
|
||||||
|
ballard->detect(grayImage, positionBallard); |
||||||
|
// execute guil detection
|
||||||
|
guil->detect(grayImage, positionGuil); |
||||||
|
//! [generalized-hough-transform-run]
|
||||||
|
|
||||||
|
|
||||||
|
//! [generalized-hough-transform-draw-results]
|
||||||
|
// draw ballard
|
||||||
|
for (vector<Vec4f>::iterator iter = positionBallard.begin(); iter != positionBallard.end(); ++iter) { |
||||||
|
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]), |
||||||
|
Size2f(w * (*iter)[2], h * (*iter)[2]), |
||||||
|
(*iter)[3]); |
||||||
|
Point2f vertices[4]; |
||||||
|
rRect.points(vertices); |
||||||
|
for (int i = 0; i < 4; i++) |
||||||
|
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255, 0, 0), 6); |
||||||
|
} |
||||||
|
|
||||||
|
// draw guil
|
||||||
|
for (vector<Vec4f>::iterator iter = positionGuil.begin(); iter != positionGuil.end(); ++iter) { |
||||||
|
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]), |
||||||
|
Size2f(w * (*iter)[2], h * (*iter)[2]), |
||||||
|
(*iter)[3]); |
||||||
|
Point2f vertices[4]; |
||||||
|
rRect.points(vertices); |
||||||
|
for (int i = 0; i < 4; i++) |
||||||
|
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0), 2); |
||||||
|
} |
||||||
|
|
||||||
|
imshow("result_img", image); |
||||||
|
waitKey(); |
||||||
|
//! [generalized-hough-transform-draw-results]
|
||||||
|
|
||||||
|
return EXIT_SUCCESS; |
||||||
|
} |