|
|
|
@ -381,4 +381,53 @@ INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Concat_Test, |
|
|
|
|
std::vector<int>({}), |
|
|
|
|
std::vector<int>({1}) |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, int>> Layer_Softmax_Test; |
|
|
|
|
TEST_P(Layer_Softmax_Test, Accuracy_01D) { |
|
|
|
|
|
|
|
|
|
int axis = get<1>(GetParam()); |
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam()); |
|
|
|
|
if ((input_shape.size() == 0 && axis == 1) || |
|
|
|
|
(!input_shape.empty() && input_shape.size() == 2 && input_shape[0] > 1 && axis == 1) || |
|
|
|
|
(!input_shape.empty() && input_shape[0] > 1 && axis == 0)) // skip since not valid case
|
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.type = "Softmax"; |
|
|
|
|
lp.name = "softmaxLayer"; |
|
|
|
|
lp.set("axis", axis); |
|
|
|
|
Ptr<SoftmaxLayer> layer = SoftmaxLayer::create(lp); |
|
|
|
|
|
|
|
|
|
Mat input = Mat(input_shape.size(), input_shape.data(), CV_32F); |
|
|
|
|
cv::randn(input, 0.0, 1.0); |
|
|
|
|
|
|
|
|
|
Mat output_ref; |
|
|
|
|
cv::exp(input, output_ref); |
|
|
|
|
if (axis == 1){ |
|
|
|
|
cv::divide(output_ref, cv::sum(output_ref), output_ref); |
|
|
|
|
} else { |
|
|
|
|
cv::divide(output_ref, output_ref, output_ref); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input}; |
|
|
|
|
std::vector<Mat> outputs; |
|
|
|
|
runLayer(layer, inputs, outputs); |
|
|
|
|
ASSERT_EQ(outputs.size(), 1); |
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0])); |
|
|
|
|
normAssert(output_ref, outputs[0]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Softmax_Test, Combine( |
|
|
|
|
/*input blob shape*/ |
|
|
|
|
testing::Values( |
|
|
|
|
std::vector<int>({}), |
|
|
|
|
std::vector<int>({1}), |
|
|
|
|
std::vector<int>({4}), |
|
|
|
|
std::vector<int>({1, 4}), |
|
|
|
|
std::vector<int>({4, 1}) |
|
|
|
|
), |
|
|
|
|
/*Axis */ |
|
|
|
|
testing::Values(0, 1) |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
}} |
|
|
|
|