Code tutorial

pull/3042/head
edgarriba 11 years ago
parent 7334e54a63
commit 74e52df3cd
  1. 461
      samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/main_detection.cpp

@ -0,0 +1,461 @@
#include <iostream>
#include <time.h>
#include <boost/lexical_cast.hpp>
#include "cv.h"
#include "highgui.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/video/tracking.hpp>
#include "Mesh.h"
#include "Model.h"
#include "PnPProblem.h"
#include "RobustMatcher.h"
#include "ModelRegistration.h"
#include "Utils.h"
// COOKIES BOX - ORB
std::string yml_read_path = "../Data/cookies_ORB.yml"; // 3dpts + descriptors
// COOKIES BOX MESH
std::string ply_read_path = "../Data/box.ply"; // mesh
/*
* Set up the intrinsic camera parameters: UVC WEBCAM
*/
double f = 55; // focal length in mm
double sx = 22.3, sy = 14.9; // sensor size
double width = 640, height = 480; // image size
double params_WEBCAM[] = { width*f/sx, // fx
height*f/sy, // fy
width/2, // cx
height/2}; // cy
/*
* Set up some basic colors
*/
cv::Scalar red(0, 0, 255);
cv::Scalar green(0,255,0);
cv::Scalar blue(255,0,0);
cv::Scalar yellow(0,255,255);
// Robust Matcher parameters
int numKeyPoints = 2000; // number of detected keypoints
float ratio = 0.70f; // ratio test
bool fast_match = true; // fastRobustMatch() or robustMatch()
// RANSAC parameters
int iterationsCount = 500; // number of Ransac iterations.
float reprojectionError = 2.0; // maximum allowed distance to consider it an inlier.
float confidence = 0.95; // ransac successful confidence.
// Kalman Filter parameters
int minInliersKalman = 30; // Kalman threshold updating
/**********************************************************************************************************/
void initKalmanFilter( cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt);
/**********************************************************************************************************/
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurements,
cv::Mat &translation_estimated, cv::Mat &rotation_estimated );
/**********************************************************************************************************/
void fillMeasurements( cv::Mat &measurements,
const cv::Mat &translation_measured, const cv::Mat &rotation_measured);
/**********************************************************************************************************/
int main(int argc, char *argv[])
{
std::cout << "!!!Hello Detection!!!" << std::endl;
PnPProblem pnp_detection(params_WEBCAM);
PnPProblem pnp_detection_est(params_WEBCAM);
Model model; // instantiate Model object
model.load(yml_read_path); // load a 3D textured object model
Mesh mesh; // instantiate Mesh object
mesh.load(ply_read_path); // load an object mesh
RobustMatcher rmatcher; // instantiate RobustMatcher
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints); // instatiate ORB feature detector
cv::DescriptorExtractor * extractor = new cv::OrbDescriptorExtractor(); // instatiate ORB descriptor extractor
rmatcher.setFeatureDetector(detector); // set feature detector
rmatcher.setDescriptorExtractor(extractor); // set descriptor extractor
cv::Ptr<cv::flann::IndexParams> indexParams = cv::makePtr<cv::flann::LshIndexParams>(6, 12, 1); // instantiate LSH index parameters
cv::Ptr<cv::flann::SearchParams> searchParams = cv::makePtr<cv::flann::SearchParams>(50); // instantiate flann search parameters
cv::DescriptorMatcher * matcher = new cv::FlannBasedMatcher(indexParams, searchParams); // instantiate FlannBased matcher
rmatcher.setDescriptorMatcher(matcher); // set matcher
rmatcher.setRatio(ratio); // set ratio test parameter
cv::KalmanFilter KF; // instantiate Kalman Filter
int nStates = 18; // the number of states
int nMeasurements = 6; // the number of measured states
int nInputs = 0; // the number of action control
double dt = 0.125; // time between measurements (1/FPS)
initKalmanFilter(KF, nStates, nMeasurements, nInputs, dt); // init function
cv::Mat measurements(nMeasurements, 1, CV_64F); measurements.setTo(cv::Scalar(0));
bool good_measurement = false;
// Get the MODEL INFO
std::vector<cv::Point3f> list_points3d_model = model.get_points3d(); // list with model 3D coordinates
cv::Mat descriptors_model = model.get_descriptors(); // list with descriptors of each 3D coordinate
// Create & Open Window
cv::namedWindow("REAL TIME DEMO", CV_WINDOW_KEEPRATIO);
cv::VideoCapture cap; // instantiate VideoCapture
(argc < 2) ? cap.open(0) : cap.open(argv[1]); // open the default camera device
// or a recorder video
if(!cap.isOpened()) // check if we succeeded
{
std::cout << "Could not open the camera device" << std::endl;
return -1;
}
// start and end times
time_t start, end;
// fps calculated using number of frames / seconds
double fps;
// frame counter
int counter = 0;
// floating point seconds elapsed since start
double sec;
// start the clock
time(&start);
double tstart2, tstop2, ttime2; // algorithm metrics
double tstart, tstop, ttime; // algorithm metrics
cv::Mat frame, frame_vis;
while(cap.read(frame) && cv::waitKey(30) != 27) // capture frame until ESC is pressed
{
frame_vis = frame.clone(); // refresh visualisation frame
// -- Step 1: Robust matching between model descriptors and scene descriptors
std::vector<cv::DMatch> good_matches; // to obtain the 3D points of the model
std::vector<cv::KeyPoint> keypoints_scene; // to obtain the 2D points of the scene
if(fast_match)
{
rmatcher.fastRobustMatch(frame, good_matches, keypoints_scene, descriptors_model);
}
else
{
rmatcher.robustMatch(frame, good_matches, keypoints_scene, descriptors_model);
}
// -- Step 2: Find out the 2D/3D correspondences
std::vector<cv::Point3f> list_points3d_model_match; // container for the model 3D coordinates found in the scene
std::vector<cv::Point2f> list_points2d_scene_match; // container for the model 2D coordinates found in the scene
for(unsigned int match_index = 0; match_index < good_matches.size(); ++match_index)
{
cv::Point3f point3d_model = list_points3d_model[ good_matches[match_index].trainIdx ]; // 3D point from model
cv::Point2f point2d_scene = keypoints_scene[ good_matches[match_index].queryIdx ].pt; // 2D point from the scene
list_points3d_model_match.push_back(point3d_model); // add 3D point
list_points2d_scene_match.push_back(point2d_scene); // add 2D point
}
// Draw outliers
draw2DPoints(frame_vis, list_points2d_scene_match, red);
cv::Mat inliers_idx;
std::vector<cv::Point2f> list_points2d_inliers;
if(good_matches.size() > 0) // None matches, then RANSAC crashes
{
// -- Step 3: Estimate the pose using RANSAC approach
pnp_detection.estimatePoseRANSAC( list_points3d_model_match, list_points2d_scene_match,
cv::ITERATIVE, inliers_idx,
iterationsCount, reprojectionError, confidence );
// -- Step 4: Catch the inliers keypoints to draw
for(int inliers_index = 0; inliers_index < inliers_idx.rows; ++inliers_index)
{
int n = inliers_idx.at<int>(inliers_index); // i-inlier
cv::Point2f point2d = list_points2d_scene_match[n]; // i-inlier point 2D
list_points2d_inliers.push_back(point2d); // add i-inlier to list
}
// Draw inliers points 2D
draw2DPoints(frame_vis, list_points2d_inliers, blue);
// -- Step 5: Kalman Filter
good_measurement = false;
// GOOD MEASUREMENT
if( inliers_idx.rows >= minInliersKalman )
{
// Get the measured translation
cv::Mat translation_measured(3, 1, CV_64F);
translation_measured = pnp_detection.get_t_matrix();
// Get the measured rotation
cv::Mat rotation_measured(3, 3, CV_64F);
rotation_measured = pnp_detection.get_R_matrix();
// fill the measurements vector
fillMeasurements(measurements, translation_measured, rotation_measured);
good_measurement = true;
}
// Instantiate estimated translation and rotation
cv::Mat translation_estimated(3, 1, CV_64F);
cv::Mat rotation_estimated(3, 3, CV_64F);
// update the Kalman filter with good measurements
updateKalmanFilter( KF, measurements,
translation_estimated, rotation_estimated);
// -- Step 6: Set estimated projection matrix
pnp_detection_est.set_P_matrix(rotation_estimated, translation_estimated);
}
// -- Step X: Draw pose
if(good_measurement)
{
drawObjectMesh(frame_vis, &mesh, &pnp_detection, green); // draw current pose
}
else
{
drawObjectMesh(frame_vis, &mesh, &pnp_detection_est, yellow); // draw estimated pose
}
double l = 5;
std::vector<cv::Point2f> pose_points2d;
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,0,0))); // axis center
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(l,0,0))); // axis x
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,l,0))); // axis y
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,0,l))); // axis z
draw3DCoordinateAxes(frame_vis, pose_points2d); // draw axes
// FRAME RATE
// see how much time has elapsed
time(&end);
// calculate current FPS
++counter;
sec = difftime (end, start);
fps = counter / sec;
drawFPS(frame_vis, fps, yellow); // frame ratio
double ratio = ((double)inliers_idx.rows/(double)good_matches.size())*100;
drawConfidence(frame_vis, ratio, yellow);
// -- Step X: Draw some debugging text
// Draw some debug text
int inliers_int = inliers_idx.rows;
int outliers_int = good_matches.size() - inliers_int;
std::string inliers_str = boost::lexical_cast< std::string >(inliers_int);
std::string outliers_str = boost::lexical_cast< std::string >(outliers_int);
std::string n = boost::lexical_cast< std::string >(good_matches.size());
std::string text = "Found " + inliers_str + " of " + n + " matches";
std::string text2 = "Inliers: " + inliers_str + " - Outliers: " + outliers_str;
drawText(frame_vis, text, green);
drawText2(frame_vis, text2, red);
cv::imshow("REAL TIME DEMO", frame_vis);
//cv::waitKey(0);
}
// Close and Destroy Window
cv::destroyWindow("REAL TIME DEMO");
std::cout << "GOODBYE ..." << std::endl;
}
/**********************************************************************************************************/
void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt)
{
KF.init(nStates, nMeasurements, nInputs, CV_64F); // init Kalman Filter
cv::setIdentity(KF.processNoiseCov, cv::Scalar::all(1e-5)); // set process noise
cv::setIdentity(KF.measurementNoiseCov, cv::Scalar::all(1e-2)); // set measurement noise
cv::setIdentity(KF.errorCovPost, cv::Scalar::all(1)); // error covariance
/** DYNAMIC MODEL **/
// [1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0 0]
// [0 1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0]
// [0 0 1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0]
// [0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2 0 0]
// [0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2 0]
// [0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2]
// [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
// position
KF.transitionMatrix.at<double>(0,3) = dt;
KF.transitionMatrix.at<double>(1,4) = dt;
KF.transitionMatrix.at<double>(2,5) = dt;
KF.transitionMatrix.at<double>(3,6) = dt;
KF.transitionMatrix.at<double>(4,7) = dt;
KF.transitionMatrix.at<double>(5,8) = dt;
KF.transitionMatrix.at<double>(0,6) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(1,7) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(2,8) = 0.5*pow(dt,2);
// orientation
KF.transitionMatrix.at<double>(9,12) = dt;
KF.transitionMatrix.at<double>(10,13) = dt;
KF.transitionMatrix.at<double>(11,14) = dt;
KF.transitionMatrix.at<double>(12,15) = dt;
KF.transitionMatrix.at<double>(13,16) = dt;
KF.transitionMatrix.at<double>(14,17) = dt;
KF.transitionMatrix.at<double>(9,15) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(10,16) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(11,17) = 0.5*pow(dt,2);
/** MEASUREMENT MODEL **/
// [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
// [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
KF.measurementMatrix.at<double>(0,0) = 1; // x
KF.measurementMatrix.at<double>(1,1) = 1; // y
KF.measurementMatrix.at<double>(2,2) = 1; // z
KF.measurementMatrix.at<double>(3,9) = 1; // roll
KF.measurementMatrix.at<double>(4,10) = 1; // pitch
KF.measurementMatrix.at<double>(5,11) = 1; // yaw
//std::cout << "A " << std::endl << KF.transitionMatrix << std::endl;
//std::cout << "C " << std::endl << KF.measurementMatrix << std::endl;
}
/**********************************************************************************************************/
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurement,
cv::Mat &translation_estimated, cv::Mat &rotation_estimated )
{
// First predict, to update the internal statePre variable
cv::Mat prediction = KF.predict();
// The "correct" phase that is going to use the predicted value and our measurement
cv::Mat estimated = KF.correct(measurement);
// Estimated translation
translation_estimated.at<double>(0) = estimated.at<double>(0);
translation_estimated.at<double>(1) = estimated.at<double>(1);
translation_estimated.at<double>(2) = estimated.at<double>(2);
// Estimated euler angles
cv::Mat eulers_estimated(3, 1, CV_64F);
eulers_estimated.at<double>(0) = estimated.at<double>(9);
eulers_estimated.at<double>(1) = estimated.at<double>(10);
eulers_estimated.at<double>(2) = estimated.at<double>(11);
// Convert estimated quaternion to rotation matrix
rotation_estimated = euler2rot(eulers_estimated);
}
/**********************************************************************************************************/
void fillMeasurements( cv::Mat &measurements,
const cv::Mat &translation_measured, const cv::Mat &rotation_measured)
{
// Convert rotation matrix to euler angles
cv::Mat measured_eulers(3, 1, CV_64F);
measured_eulers = rot2euler(rotation_measured);
// Set measurement to predict
measurements.at<double>(0) = translation_measured.at<double>(0); // x
measurements.at<double>(1) = translation_measured.at<double>(1); // y
measurements.at<double>(2) = translation_measured.at<double>(2); // z
measurements.at<double>(3) = measured_eulers.at<double>(0); // roll
measurements.at<double>(4) = measured_eulers.at<double>(1); // pitch
measurements.at<double>(5) = measured_eulers.at<double>(2); // yaw
}
Loading…
Cancel
Save