Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/18738/head
Alexander Alekhin 4 years ago
commit 7459613623
  1. 7
      cmake/OpenCVFindLibsPerf.cmake
  2. 389
      modules/core/src/dxt.cpp
  3. 6
      modules/features2d/src/keypoint.cpp
  4. 20
      modules/videoio/src/cap_mfx_reader.cpp
  5. 1
      modules/videoio/src/cap_mfx_reader.hpp
  6. 2
      modules/videoio/test/test_mfx.cpp

@ -51,7 +51,12 @@ endif(WITH_CUDA)
# --- Eigen ---
if(WITH_EIGEN AND NOT HAVE_EIGEN)
find_package(Eigen3 QUIET)
if(NOT OPENCV_SKIP_EIGEN_FIND_PACKAGE_CONFIG)
find_package(Eigen3 CONFIG QUIET) # Ceres 2.0.0 CMake scripts doesn't work with CMake's FindEigen3.cmake module (due to missing EIGEN3_VERSION_STRING)
endif()
if(NOT Eigen3_FOUND)
find_package(Eigen3 QUIET)
endif()
if(Eigen3_FOUND)
if(TARGET Eigen3::Eigen)

@ -122,6 +122,33 @@ static const double DFTTab[][2] =
{ 1.00000000000000000, 0.00000000292583616 }
};
namespace {
template <typename T>
struct Constants {
static const T sin_120;
static const T fft5_2;
static const T fft5_3;
static const T fft5_4;
static const T fft5_5;
};
template <typename T>
const T Constants<T>::sin_120 = (T)0.86602540378443864676372317075294;
template <typename T>
const T Constants<T>::fft5_2 = (T)0.559016994374947424102293417182819;
template <typename T>
const T Constants<T>::fft5_3 = (T)-0.951056516295153572116439333379382;
template <typename T>
const T Constants<T>::fft5_4 = (T)-1.538841768587626701285145288018455;
template <typename T>
const T Constants<T>::fft5_5 = (T)0.363271264002680442947733378740309;
} //namespace
#define BitRev(i,shift) \
((int)((((unsigned)bitrevTab[(i)&255] << 24)+ \
((unsigned)bitrevTab[((i)>> 8)&255] << 16)+ \
@ -372,6 +399,149 @@ DFTInit( int n0, int nf, const int* factors, int* itab, int elem_size, void* _wa
}
}
// Reference radix-2 implementation.
template<typename T> struct DFT_R2
{
void operator()(Complex<T>* dst, const int c_n, const int n, const int dw0, const Complex<T>* wave) const {
const int nx = n/2;
for(int i = 0 ; i < c_n; i += n)
{
Complex<T>* v = dst + i;
T r0 = v[0].re + v[nx].re;
T i0 = v[0].im + v[nx].im;
T r1 = v[0].re - v[nx].re;
T i1 = v[0].im - v[nx].im;
v[0].re = r0; v[0].im = i0;
v[nx].re = r1; v[nx].im = i1;
for( int j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v = dst + i + j;
r1 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
i1 = v[nx].im*wave[dw].re + v[nx].re*wave[dw].im;
r0 = v[0].re; i0 = v[0].im;
v[0].re = r0 + r1; v[0].im = i0 + i1;
v[nx].re = r0 - r1; v[nx].im = i0 - i1;
}
}
}
};
// Reference radix-3 implementation.
template<typename T> struct DFT_R3
{
void operator()(Complex<T>* dst, const int c_n, const int n, const int dw0, const Complex<T>* wave) const {
const int nx = n / 3;
for(int i = 0; i < c_n; i += n )
{
{
Complex<T>* v = dst + i;
T r1 = v[nx].re + v[nx*2].re;
T i1 = v[nx].im + v[nx*2].im;
T r0 = v[0].re;
T i0 = v[0].im;
T r2 = Constants<T>::sin_120*(v[nx].im - v[nx*2].im);
T i2 = Constants<T>::sin_120*(v[nx*2].re - v[nx].re);
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
}
for(int j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
Complex<T>* v = dst + i + j;
T r0 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
T i0 = v[nx].re*wave[dw].im + v[nx].im*wave[dw].re;
T i2 = v[nx*2].re*wave[dw*2].re - v[nx*2].im*wave[dw*2].im;
T r2 = v[nx*2].re*wave[dw*2].im + v[nx*2].im*wave[dw*2].re;
T r1 = r0 + i2; T i1 = i0 + r2;
r2 = Constants<T>::sin_120*(i0 - r2); i2 = Constants<T>::sin_120*(i2 - r0);
r0 = v[0].re; i0 = v[0].im;
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
}
}
}
};
// Reference radix-5 implementation.
template<typename T> struct DFT_R5
{
void operator()(Complex<T>* dst, const int c_n, const int n, const int dw0, const Complex<T>* wave) const {
const int nx = n / 5;
for(int i = 0; i < c_n; i += n )
{
for(int j = 0, dw = 0; j < nx; j++, dw += dw0 )
{
Complex<T>* v0 = dst + i + j;
Complex<T>* v1 = v0 + nx*2;
Complex<T>* v2 = v1 + nx*2;
T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4, r5, i5;
r3 = v0[nx].re*wave[dw].re - v0[nx].im*wave[dw].im;
i3 = v0[nx].re*wave[dw].im + v0[nx].im*wave[dw].re;
r2 = v2[0].re*wave[dw*4].re - v2[0].im*wave[dw*4].im;
i2 = v2[0].re*wave[dw*4].im + v2[0].im*wave[dw*4].re;
r1 = r3 + r2; i1 = i3 + i2;
r3 -= r2; i3 -= i2;
r4 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;
i4 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
r0 = v1[0].re*wave[dw*2].re - v1[0].im*wave[dw*2].im;
i0 = v1[0].re*wave[dw*2].im + v1[0].im*wave[dw*2].re;
r2 = r4 + r0; i2 = i4 + i0;
r4 -= r0; i4 -= i0;
r0 = v0[0].re; i0 = v0[0].im;
r5 = r1 + r2; i5 = i1 + i2;
v0[0].re = r0 + r5; v0[0].im = i0 + i5;
r0 -= (T)0.25*r5; i0 -= (T)0.25*i5;
r1 = Constants<T>::fft5_2*(r1 - r2); i1 = Constants<T>::fft5_2*(i1 - i2);
r2 = -Constants<T>::fft5_3*(i3 + i4); i2 = Constants<T>::fft5_3*(r3 + r4);
i3 *= -Constants<T>::fft5_5; r3 *= Constants<T>::fft5_5;
i4 *= -Constants<T>::fft5_4; r4 *= Constants<T>::fft5_4;
r5 = r2 + i3; i5 = i2 + r3;
r2 -= i4; i2 -= r4;
r3 = r0 + r1; i3 = i0 + i1;
r0 -= r1; i0 -= i1;
v0[nx].re = r3 + r2; v0[nx].im = i3 + i2;
v2[0].re = r3 - r2; v2[0].im = i3 - i2;
v1[0].re = r0 + r5; v1[0].im = i0 + i5;
v1[nx].re = r0 - r5; v1[nx].im = i0 - i5;
}
}
}
};
template<typename T> struct DFT_VecR2
{
void operator()(Complex<T>* dst, const int c_n, const int n, const int dw0, const Complex<T>* wave) const {
return DFT_R2<T>()(dst, c_n, n, dw0, wave);
}
};
template<typename T> struct DFT_VecR3
{
void operator()(Complex<T>* dst, const int c_n, const int n, const int dw0, const Complex<T>* wave) const {
return DFT_R3<T>()(dst, c_n, n, dw0, wave);
}
};
template<typename T> struct DFT_VecR4
{
int operator()(Complex<T>*, int, int, int&, const Complex<T>*) const { return 1; }
@ -379,6 +549,98 @@ template<typename T> struct DFT_VecR4
#if CV_SSE3
// multiplies *a and *b:
// r_re + i*r_im = (a_re + i*a_im)*(b_re + i*b_im)
// r_re and r_im are placed respectively in bits 31:0 and 63:32 of the resulting
// vector register.
inline __m128 complexMul(const Complex<float>* const a, const Complex<float>* const b) {
const __m128 z = _mm_setzero_ps();
const __m128 neg_elem0 = _mm_set_ps(0.0f,0.0f,0.0f,-0.0f);
// v_a[31:0] is a->re and v_a[63:32] is a->im.
const __m128 v_a = _mm_loadl_pi(z, (const __m64*)a);
const __m128 v_b = _mm_loadl_pi(z, (const __m64*)b);
// x_1 = v[nx] * wave[dw].
const __m128 v_a_riri = _mm_shuffle_ps(v_a, v_a, _MM_SHUFFLE(0, 1, 0, 1));
const __m128 v_b_irri = _mm_shuffle_ps(v_b, v_b, _MM_SHUFFLE(1, 0, 0, 1));
const __m128 mul = _mm_mul_ps(v_a_riri, v_b_irri);
const __m128 xored = _mm_xor_ps(mul, neg_elem0);
return _mm_hadd_ps(xored, z);
}
// optimized radix-2 transform
template<> struct DFT_VecR2<float> {
void operator()(Complex<float>* dst, const int c_n, const int n, const int dw0, const Complex<float>* wave) const {
const __m128 z = _mm_setzero_ps();
const int nx = n/2;
for(int i = 0 ; i < c_n; i += n)
{
{
Complex<float>* v = dst + i;
float r0 = v[0].re + v[nx].re;
float i0 = v[0].im + v[nx].im;
float r1 = v[0].re - v[nx].re;
float i1 = v[0].im - v[nx].im;
v[0].re = r0; v[0].im = i0;
v[nx].re = r1; v[nx].im = i1;
}
for( int j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
Complex<float>* v = dst + i + j;
const __m128 x_1 = complexMul(&v[nx], &wave[dw]);
const __m128 v_0 = _mm_loadl_pi(z, (const __m64*)&v[0]);
_mm_storel_pi((__m64*)&v[0], _mm_add_ps(v_0, x_1));
_mm_storel_pi((__m64*)&v[nx], _mm_sub_ps(v_0, x_1));
}
}
}
};
// Optimized radix-3 implementation.
template<> struct DFT_VecR3<float> {
void operator()(Complex<float>* dst, const int c_n, const int n, const int dw0, const Complex<float>* wave) const {
const int nx = n / 3;
const __m128 z = _mm_setzero_ps();
const __m128 neg_elem1 = _mm_set_ps(0.0f,0.0f,-0.0f,0.0f);
const __m128 sin_120 = _mm_set1_ps(Constants<float>::sin_120);
const __m128 one_half = _mm_set1_ps(0.5f);
for(int i = 0; i < c_n; i += n )
{
{
Complex<float>* v = dst + i;
float r1 = v[nx].re + v[nx*2].re;
float i1 = v[nx].im + v[nx*2].im;
float r0 = v[0].re;
float i0 = v[0].im;
float r2 = Constants<float>::sin_120*(v[nx].im - v[nx*2].im);
float i2 = Constants<float>::sin_120*(v[nx*2].re - v[nx].re);
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (float)0.5*r1; i0 -= (float)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
}
for(int j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
Complex<float>* v = dst + i + j;
const __m128 x_0 = complexMul(&v[nx], &wave[dw]);
const __m128 x_2 = complexMul(&v[nx*2], &wave[dw*2]);
const __m128 x_1 = _mm_add_ps(x_0, x_2);
const __m128 v_0 = _mm_loadl_pi(z, (const __m64*)&v[0]);
_mm_storel_pi((__m64*)&v[0], _mm_add_ps(v_0, x_1));
const __m128 x_3 = _mm_mul_ps(sin_120, _mm_xor_ps(_mm_sub_ps(x_2, x_0), neg_elem1));
const __m128 x_3s = _mm_shuffle_ps(x_3, x_3, _MM_SHUFFLE(0, 1, 0, 1));
const __m128 x_4 = _mm_sub_ps(v_0, _mm_mul_ps(one_half, x_1));
_mm_storel_pi((__m64*)&v[nx], _mm_add_ps(x_4, x_3s));
_mm_storel_pi((__m64*)&v[nx*2], _mm_sub_ps(x_4, x_3s));
}
}
}
};
// optimized radix-4 transform
template<> struct DFT_VecR4<float>
{
@ -573,12 +835,6 @@ struct OcvDftOptions {
template<typename T> static void
DFT(const OcvDftOptions & c, const Complex<T>* src, Complex<T>* dst)
{
static const T sin_120 = (T)0.86602540378443864676372317075294;
static const T fft5_2 = (T)0.559016994374947424102293417182819;
static const T fft5_3 = (T)-0.951056516295153572116439333379382;
static const T fft5_4 = (T)-1.538841768587626701285145288018455;
static const T fft5_5 = (T)0.363271264002680442947733378740309;
const Complex<T>* wave = (Complex<T>*)c.wave;
const int * itab = c.itab;
@ -775,30 +1031,18 @@ DFT(const OcvDftOptions & c, const Complex<T>* src, Complex<T>* dst)
for( ; n < c.factors[0]; )
{
// do the remaining radix-2 transform
nx = n;
n *= 2;
dw0 /= 2;
for( i = 0; i < c.n; i += n )
if(c.haveSSE3)
{
Complex<T>* v = dst + i;
T r0 = v[0].re + v[nx].re;
T i0 = v[0].im + v[nx].im;
T r1 = v[0].re - v[nx].re;
T i1 = v[0].im - v[nx].im;
v[0].re = r0; v[0].im = i0;
v[nx].re = r1; v[nx].im = i1;
for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v = dst + i + j;
r1 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
i1 = v[nx].im*wave[dw].re + v[nx].re*wave[dw].im;
r0 = v[0].re; i0 = v[0].im;
v[0].re = r0 + r1; v[0].im = i0 + i1;
v[nx].re = r0 - r1; v[nx].im = i0 - i1;
}
DFT_VecR2<T> vr2;
vr2(dst, c.n, n, dw0, wave);
}
else
{
DFT_R2<T> vr2;
vr2(dst, c.n, n, dw0, wave);
}
}
}
@ -813,94 +1057,21 @@ DFT(const OcvDftOptions & c, const Complex<T>* src, Complex<T>* dst)
if( factor == 3 )
{
// radix-3
for( i = 0; i < c.n; i += n )
if(c.haveSSE3)
{
Complex<T>* v = dst + i;
T r1 = v[nx].re + v[nx*2].re;
T i1 = v[nx].im + v[nx*2].im;
T r0 = v[0].re;
T i0 = v[0].im;
T r2 = sin_120*(v[nx].im - v[nx*2].im);
T i2 = sin_120*(v[nx*2].re - v[nx].re);
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v = dst + i + j;
r0 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
i0 = v[nx].re*wave[dw].im + v[nx].im*wave[dw].re;
i2 = v[nx*2].re*wave[dw*2].re - v[nx*2].im*wave[dw*2].im;
r2 = v[nx*2].re*wave[dw*2].im + v[nx*2].im*wave[dw*2].re;
r1 = r0 + i2; i1 = i0 + r2;
r2 = sin_120*(i0 - r2); i2 = sin_120*(i2 - r0);
r0 = v[0].re; i0 = v[0].im;
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
}
DFT_VecR3<T> vr3;
vr3(dst, c.n, n, dw0, wave);
}
else
{
DFT_R3<T> vr3;
vr3(dst, c.n, n, dw0, wave);
}
}
else if( factor == 5 )
{
// radix-5
for( i = 0; i < c.n; i += n )
{
for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
{
Complex<T>* v0 = dst + i + j;
Complex<T>* v1 = v0 + nx*2;
Complex<T>* v2 = v1 + nx*2;
T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4, r5, i5;
r3 = v0[nx].re*wave[dw].re - v0[nx].im*wave[dw].im;
i3 = v0[nx].re*wave[dw].im + v0[nx].im*wave[dw].re;
r2 = v2[0].re*wave[dw*4].re - v2[0].im*wave[dw*4].im;
i2 = v2[0].re*wave[dw*4].im + v2[0].im*wave[dw*4].re;
r1 = r3 + r2; i1 = i3 + i2;
r3 -= r2; i3 -= i2;
r4 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;
i4 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
r0 = v1[0].re*wave[dw*2].re - v1[0].im*wave[dw*2].im;
i0 = v1[0].re*wave[dw*2].im + v1[0].im*wave[dw*2].re;
r2 = r4 + r0; i2 = i4 + i0;
r4 -= r0; i4 -= i0;
r0 = v0[0].re; i0 = v0[0].im;
r5 = r1 + r2; i5 = i1 + i2;
v0[0].re = r0 + r5; v0[0].im = i0 + i5;
r0 -= (T)0.25*r5; i0 -= (T)0.25*i5;
r1 = fft5_2*(r1 - r2); i1 = fft5_2*(i1 - i2);
r2 = -fft5_3*(i3 + i4); i2 = fft5_3*(r3 + r4);
i3 *= -fft5_5; r3 *= fft5_5;
i4 *= -fft5_4; r4 *= fft5_4;
r5 = r2 + i3; i5 = i2 + r3;
r2 -= i4; i2 -= r4;
r3 = r0 + r1; i3 = i0 + i1;
r0 -= r1; i0 -= i1;
v0[nx].re = r3 + r2; v0[nx].im = i3 + i2;
v2[0].re = r3 - r2; v2[0].im = i3 - i2;
v1[0].re = r0 + r5; v1[0].im = i0 + i5;
v1[nx].re = r0 - r5; v1[nx].im = i0 - i5;
}
}
DFT_R5<T> vr5;
vr5(dst, c.n, n, dw0, wave);
}
else
{

@ -44,9 +44,9 @@
namespace cv
{
struct KeypointResponseGreaterThanThreshold
struct KeypointResponseGreaterThanOrEqualToThreshold
{
KeypointResponseGreaterThanThreshold(float _value) :
KeypointResponseGreaterThanOrEqualToThreshold(float _value) :
value(_value)
{
}
@ -83,7 +83,7 @@ void KeyPointsFilter::retainBest(std::vector<KeyPoint>& keypoints, int n_points)
//use std::partition to grab all of the keypoints with the boundary response.
std::vector<KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanThreshold(ambiguous_response));
KeypointResponseGreaterThanOrEqualToThreshold(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
}

@ -112,6 +112,7 @@ VideoCapture_IntelMFX::VideoCapture_IntelMFX(const cv::String &filename)
return;
}
frameSize = Size(params.mfx.FrameInfo.CropW, params.mfx.FrameInfo.CropH);
good = true;
}
@ -127,10 +128,23 @@ VideoCapture_IntelMFX::~VideoCapture_IntelMFX()
cleanup(deviceHandler);
}
double VideoCapture_IntelMFX::getProperty(int) const
double VideoCapture_IntelMFX::getProperty(int prop) const
{
MSG(cerr << "MFX: getProperty() is not implemented" << endl);
return 0;
if (!good)
{
MSG(cerr << "MFX: can not call getProperty(), backend has not been initialized" << endl);
return 0;
}
switch (prop)
{
case CAP_PROP_FRAME_WIDTH:
return frameSize.width;
case CAP_PROP_FRAME_HEIGHT:
return frameSize.height;
default:
MSG(cerr << "MFX: unsupported property" << endl);
return 0;
}
}
bool VideoCapture_IntelMFX::setProperty(int, double)

@ -34,6 +34,7 @@ private:
MFXVideoDECODE *decoder;
SurfacePool *pool;
void *outSurface;
cv::Size frameSize;
bool good;
};

@ -118,6 +118,8 @@ TEST_P(videoio_mfx, read_write_raw)
VideoCapture cap;
cap.open(filename, CAP_INTEL_MFX);
ASSERT_TRUE(cap.isOpened());
EXPECT_EQ(FRAME_SIZE.width, cap.get(CAP_PROP_FRAME_WIDTH));
EXPECT_EQ(FRAME_SIZE.height, cap.get(CAP_PROP_FRAME_HEIGHT));
for (int i = 0; i < FRAME_COUNT; ++i)
{
ASSERT_TRUE(cap.read(frame));

Loading…
Cancel
Save