|
|
@ -46,28 +46,26 @@ |
|
|
|
#include <vector> |
|
|
|
#include <vector> |
|
|
|
#include <algorithm> |
|
|
|
#include <algorithm> |
|
|
|
|
|
|
|
|
|
|
|
//#define DEBUG_WINDOWS
|
|
|
|
using namespace cv; |
|
|
|
|
|
|
|
using namespace std; |
|
|
|
|
|
|
|
|
|
|
|
#if defined(DEBUG_WINDOWS) |
|
|
|
static void icvGetQuadrangleHypotheses(const std::vector<std::vector< cv::Point > > & contours, const std::vector< cv::Vec4i > & hierarchy, std::vector<std::pair<float, int> >& quads, int class_id) |
|
|
|
# include "opencv2/opencv_modules.hpp" |
|
|
|
|
|
|
|
# ifdef HAVE_OPENCV_HIGHGUI |
|
|
|
|
|
|
|
# include "opencv2/highgui.hpp" |
|
|
|
|
|
|
|
# else |
|
|
|
|
|
|
|
# undef DEBUG_WINDOWS |
|
|
|
|
|
|
|
# endif |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int cvCheckChessboardBinary(IplImage* src, CvSize size); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void icvGetQuadrangleHypotheses(CvSeq* contours, std::vector<std::pair<float, int> >& quads, int class_id) |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
const float min_aspect_ratio = 0.3f; |
|
|
|
const float min_aspect_ratio = 0.3f; |
|
|
|
const float max_aspect_ratio = 3.0f; |
|
|
|
const float max_aspect_ratio = 3.0f; |
|
|
|
const float min_box_size = 10.0f; |
|
|
|
const float min_box_size = 10.0f; |
|
|
|
|
|
|
|
|
|
|
|
for(CvSeq* seq = contours; seq != NULL; seq = seq->h_next) |
|
|
|
typedef std::vector< std::vector< cv::Point > >::const_iterator iter_t; |
|
|
|
|
|
|
|
iter_t i; |
|
|
|
|
|
|
|
for (i = contours.begin(); i != contours.end(); ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|
CvBox2D box = cvMinAreaRect2(seq); |
|
|
|
const iter_t::difference_type idx = i - contours.begin(); |
|
|
|
|
|
|
|
if (hierarchy.at(idx)[3] != -1) |
|
|
|
|
|
|
|
continue; // skip holes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const std::vector< cv::Point > & c = *i; |
|
|
|
|
|
|
|
cv::RotatedRect box = cv::minAreaRect(c); |
|
|
|
|
|
|
|
|
|
|
|
float box_size = MAX(box.size.width, box.size.height); |
|
|
|
float box_size = MAX(box.size.width, box.size.height); |
|
|
|
if(box_size < min_box_size) |
|
|
|
if(box_size < min_box_size) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -98,113 +96,98 @@ inline bool less_pred(const std::pair<float, int>& p1, const std::pair<float, in |
|
|
|
return p1.first < p2.first; |
|
|
|
return p1.first < p2.first; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// does a fast check if a chessboard is in the input image. This is a workaround to
|
|
|
|
static void fillQuads(Mat & white, Mat & black, double white_thresh, double black_thresh, vector<pair<float, int> > & quads) |
|
|
|
// a problem of cvFindChessboardCorners being slow on images with no chessboard
|
|
|
|
|
|
|
|
// - src: input image
|
|
|
|
|
|
|
|
// - size: chessboard size
|
|
|
|
|
|
|
|
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
|
|
|
|
|
|
|
// 0 if there is no chessboard, -1 in case of error
|
|
|
|
|
|
|
|
int cvCheckChessboard(IplImage* src, CvSize size) |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
if(src->nChannels > 1) |
|
|
|
Mat thresh; |
|
|
|
{ |
|
|
|
{ |
|
|
|
cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only", |
|
|
|
vector< vector<Point> > contours; |
|
|
|
__FILE__, __LINE__); |
|
|
|
vector< Vec4i > hierarchy; |
|
|
|
|
|
|
|
threshold(white, thresh, white_thresh, 255, THRESH_BINARY); |
|
|
|
|
|
|
|
findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); |
|
|
|
|
|
|
|
icvGetQuadrangleHypotheses(contours, hierarchy, quads, 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(src->depth != 8) |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only", |
|
|
|
vector< vector<Point> > contours; |
|
|
|
__FILE__, __LINE__); |
|
|
|
vector< Vec4i > hierarchy; |
|
|
|
|
|
|
|
threshold(black, thresh, black_thresh, 255, THRESH_BINARY_INV); |
|
|
|
|
|
|
|
findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); |
|
|
|
|
|
|
|
icvGetQuadrangleHypotheses(contours, hierarchy, quads, 0); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
const int erosion_count = 1; |
|
|
|
static bool checkQuads(vector<pair<float, int> > & quads, const cv::Size & size) |
|
|
|
const float black_level = 20.f; |
|
|
|
{ |
|
|
|
const float white_level = 130.f; |
|
|
|
const size_t min_quads_count = size.width*size.height/2; |
|
|
|
const float black_white_gap = 70.f; |
|
|
|
std::sort(quads.begin(), quads.end(), less_pred); |
|
|
|
|
|
|
|
|
|
|
|
#if defined(DEBUG_WINDOWS) |
|
|
|
|
|
|
|
cvNamedWindow("1", 1); |
|
|
|
|
|
|
|
cvShowImage("1", src); |
|
|
|
|
|
|
|
cvWaitKey(0); |
|
|
|
|
|
|
|
#endif //DEBUG_WINDOWS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvMemStorage* storage = cvCreateMemStorage(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IplImage* white = cvCloneImage(src); |
|
|
|
|
|
|
|
IplImage* black = cvCloneImage(src); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cvErode(white, white, NULL, erosion_count); |
|
|
|
// now check if there are many hypotheses with similar sizes
|
|
|
|
cvDilate(black, black, NULL, erosion_count); |
|
|
|
// do this by floodfill-style algorithm
|
|
|
|
IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); |
|
|
|
const float size_rel_dev = 0.4f; |
|
|
|
|
|
|
|
|
|
|
|
int result = 0; |
|
|
|
for(size_t i = 0; i < quads.size(); i++) |
|
|
|
for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f) |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
cvThreshold(white, thresh, thresh_level + black_white_gap, 255, CV_THRESH_BINARY); |
|
|
|
size_t j = i + 1; |
|
|
|
|
|
|
|
for(; j < quads.size(); j++) |
|
|
|
#if defined(DEBUG_WINDOWS) |
|
|
|
|
|
|
|
cvShowImage("1", thresh); |
|
|
|
|
|
|
|
cvWaitKey(0); |
|
|
|
|
|
|
|
#endif //DEBUG_WINDOWS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvSeq* first = 0; |
|
|
|
|
|
|
|
std::vector<std::pair<float, int> > quads; |
|
|
|
|
|
|
|
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP); |
|
|
|
|
|
|
|
icvGetQuadrangleHypotheses(first, quads, 1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cvThreshold(black, thresh, thresh_level, 255, CV_THRESH_BINARY_INV); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(DEBUG_WINDOWS) |
|
|
|
|
|
|
|
cvShowImage("1", thresh); |
|
|
|
|
|
|
|
cvWaitKey(0); |
|
|
|
|
|
|
|
#endif //DEBUG_WINDOWS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP); |
|
|
|
|
|
|
|
icvGetQuadrangleHypotheses(first, quads, 0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const size_t min_quads_count = size.width*size.height/2; |
|
|
|
|
|
|
|
std::sort(quads.begin(), quads.end(), less_pred); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// now check if there are many hypotheses with similar sizes
|
|
|
|
|
|
|
|
// do this by floodfill-style algorithm
|
|
|
|
|
|
|
|
const float size_rel_dev = 0.4f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for(size_t i = 0; i < quads.size(); i++) |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
size_t j = i + 1; |
|
|
|
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev) |
|
|
|
for(; j < quads.size(); j++) |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev) |
|
|
|
break; |
|
|
|
{ |
|
|
|
|
|
|
|
break; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(j + 1 > min_quads_count + i) |
|
|
|
if(j + 1 > min_quads_count + i) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
// check the number of black and white squares
|
|
|
|
|
|
|
|
std::vector<int> counts; |
|
|
|
|
|
|
|
countClasses(quads, i, j, counts); |
|
|
|
|
|
|
|
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0)); |
|
|
|
|
|
|
|
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0)); |
|
|
|
|
|
|
|
if(counts[0] < black_count*0.75 || |
|
|
|
|
|
|
|
counts[1] < white_count*0.75) |
|
|
|
{ |
|
|
|
{ |
|
|
|
// check the number of black and white squares
|
|
|
|
continue; |
|
|
|
std::vector<int> counts; |
|
|
|
|
|
|
|
countClasses(quads, i, j, counts); |
|
|
|
|
|
|
|
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0)); |
|
|
|
|
|
|
|
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0)); |
|
|
|
|
|
|
|
if(counts[0] < black_count*0.75 || |
|
|
|
|
|
|
|
counts[1] < white_count*0.75) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
continue; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
result = 1; |
|
|
|
|
|
|
|
break; |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return true; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return false; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// does a fast check if a chessboard is in the input image. This is a workaround to
|
|
|
|
|
|
|
|
// a problem of cvFindChessboardCorners being slow on images with no chessboard
|
|
|
|
|
|
|
|
// - src: input image
|
|
|
|
|
|
|
|
// - size: chessboard size
|
|
|
|
|
|
|
|
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
|
|
|
|
|
|
|
// 0 if there is no chessboard, -1 in case of error
|
|
|
|
|
|
|
|
int cvCheckChessboard(IplImage* src, CvSize size) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
cv::Mat img = cv::cvarrToMat(src); |
|
|
|
|
|
|
|
return checkChessboard(img, size); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int checkChessboard(const cv::Mat & img, const cv::Size & size) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
CV_Assert(img.channels() == 1 && img.depth() == CV_8U); |
|
|
|
|
|
|
|
|
|
|
|
cvReleaseImage(&thresh); |
|
|
|
const int erosion_count = 1; |
|
|
|
cvReleaseImage(&white); |
|
|
|
const float black_level = 20.f; |
|
|
|
cvReleaseImage(&black); |
|
|
|
const float white_level = 130.f; |
|
|
|
cvReleaseMemStorage(&storage); |
|
|
|
const float black_white_gap = 70.f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat white; |
|
|
|
|
|
|
|
Mat black; |
|
|
|
|
|
|
|
erode(img, white, Mat(), Point(-1, -1), erosion_count); |
|
|
|
|
|
|
|
dilate(img, black, Mat(), Point(-1, -1), erosion_count); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int result = 0; |
|
|
|
|
|
|
|
for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
vector<pair<float, int> > quads; |
|
|
|
|
|
|
|
fillQuads(white, black, thresh_level + black_white_gap, thresh_level, quads); |
|
|
|
|
|
|
|
if (checkQuads(quads, size)) |
|
|
|
|
|
|
|
result = 1; |
|
|
|
|
|
|
|
} |
|
|
|
return result; |
|
|
|
return result; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -214,90 +197,29 @@ int cvCheckChessboard(IplImage* src, CvSize size) |
|
|
|
// - size: chessboard size
|
|
|
|
// - size: chessboard size
|
|
|
|
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
|
|
|
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
|
|
|
// 0 if there is no chessboard, -1 in case of error
|
|
|
|
// 0 if there is no chessboard, -1 in case of error
|
|
|
|
int cvCheckChessboardBinary(IplImage* src, CvSize size) |
|
|
|
int checkChessboardBinary(const cv::Mat & img, const cv::Size & size) |
|
|
|
{ |
|
|
|
{ |
|
|
|
if(src->nChannels > 1) |
|
|
|
CV_Assert(img.channels() == 1 && img.depth() == CV_8U); |
|
|
|
{ |
|
|
|
|
|
|
|
cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only", |
|
|
|
|
|
|
|
__FILE__, __LINE__); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(src->depth != 8) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only", |
|
|
|
|
|
|
|
__FILE__, __LINE__); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvMemStorage* storage = cvCreateMemStorage(); |
|
|
|
Mat white = img.clone(); |
|
|
|
|
|
|
|
Mat black = img.clone(); |
|
|
|
IplImage* white = cvCloneImage(src); |
|
|
|
|
|
|
|
IplImage* black = cvCloneImage(src); |
|
|
|
|
|
|
|
IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int result = 0; |
|
|
|
int result = 0; |
|
|
|
|
|
|
|
|
|
|
|
for ( int erosion_count = 0; erosion_count <= 3; erosion_count++ ) |
|
|
|
for ( int erosion_count = 0; erosion_count <= 3; erosion_count++ ) |
|
|
|
{ |
|
|
|
{ |
|
|
|
if ( 1 == result ) |
|
|
|
if ( 1 == result ) |
|
|
|
break; |
|
|
|
break; |
|
|
|
|
|
|
|
|
|
|
|
if ( 0 != erosion_count ) // first iteration keeps original images
|
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
cvErode(white, white, NULL, 1); |
|
|
|
|
|
|
|
cvDilate(black, black, NULL, 1); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cvThreshold(white, thresh, 128, 255, CV_THRESH_BINARY); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvSeq* first = 0; |
|
|
|
if ( 0 != erosion_count ) // first iteration keeps original images
|
|
|
|
std::vector<std::pair<float, int> > quads; |
|
|
|
{ |
|
|
|
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP); |
|
|
|
erode(white, white, Mat(), Point(-1, -1), 1); |
|
|
|
icvGetQuadrangleHypotheses(first, quads, 1); |
|
|
|
dilate(black, black, Mat(), Point(-1, -1), 1); |
|
|
|
|
|
|
|
} |
|
|
|
cvThreshold(black, thresh, 128, 255, CV_THRESH_BINARY_INV); |
|
|
|
|
|
|
|
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP); |
|
|
|
|
|
|
|
icvGetQuadrangleHypotheses(first, quads, 0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const size_t min_quads_count = size.width*size.height/2; |
|
|
|
|
|
|
|
std::sort(quads.begin(), quads.end(), less_pred); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// now check if there are many hypotheses with similar sizes
|
|
|
|
|
|
|
|
// do this by floodfill-style algorithm
|
|
|
|
|
|
|
|
const float size_rel_dev = 0.4f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for(size_t i = 0; i < quads.size(); i++) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
size_t j = i + 1; |
|
|
|
|
|
|
|
for(; j < quads.size(); j++) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
break; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(j + 1 > min_quads_count + i) |
|
|
|
vector<pair<float, int> > quads; |
|
|
|
{ |
|
|
|
fillQuads(white, black, 128, 128, quads); |
|
|
|
// check the number of black and white squares
|
|
|
|
if (checkQuads(quads, size)) |
|
|
|
std::vector<int> counts; |
|
|
|
result = 1; |
|
|
|
countClasses(quads, i, j, counts); |
|
|
|
|
|
|
|
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0)); |
|
|
|
|
|
|
|
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0)); |
|
|
|
|
|
|
|
if(counts[0] < black_count*0.75 || |
|
|
|
|
|
|
|
counts[1] < white_count*0.75) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
continue; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
result = 1; |
|
|
|
|
|
|
|
break; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
cvReleaseImage(&thresh); |
|
|
|
|
|
|
|
cvReleaseImage(&white); |
|
|
|
|
|
|
|
cvReleaseImage(&black); |
|
|
|
|
|
|
|
cvReleaseMemStorage(&storage); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return result; |
|
|
|
return result; |
|
|
|
} |
|
|
|
} |