|
|
|
@ -44,7 +44,7 @@ |
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
const double minEigenValue = DBL_MIN; |
|
|
|
|
const double minEigenValue = DBL_EPSILON; |
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
@ -67,7 +67,6 @@ void EM::clear() |
|
|
|
|
trainProbs.release(); |
|
|
|
|
trainLogLikelihoods.release(); |
|
|
|
|
trainLabels.release(); |
|
|
|
|
trainCounts.release(); |
|
|
|
|
|
|
|
|
|
weights.release(); |
|
|
|
|
means.release(); |
|
|
|
@ -469,7 +468,6 @@ bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArr |
|
|
|
|
trainProbs.release(); |
|
|
|
|
trainLabels.release(); |
|
|
|
|
trainLogLikelihoods.release(); |
|
|
|
|
trainCounts.release(); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
@ -556,97 +554,114 @@ void EM::eStep() |
|
|
|
|
|
|
|
|
|
void EM::mStep() |
|
|
|
|
{ |
|
|
|
|
trainCounts.create(1, nclusters, CV_32SC1); |
|
|
|
|
trainCounts = Scalar(0); |
|
|
|
|
// Update means_k, covs_k and weights_k from probs_ik
|
|
|
|
|
int dim = trainSamples.cols; |
|
|
|
|
|
|
|
|
|
for(int sampleIndex = 0; sampleIndex < trainLabels.rows; sampleIndex++) |
|
|
|
|
trainCounts.at<int>(trainLabels.at<int>(sampleIndex))++; |
|
|
|
|
// Update weights
|
|
|
|
|
// not normalized first
|
|
|
|
|
reduce(trainProbs, weights, 0, CV_REDUCE_SUM); |
|
|
|
|
|
|
|
|
|
if(countNonZero(trainCounts) != (int)trainCounts.total()) |
|
|
|
|
{ |
|
|
|
|
clusterTrainSamples(); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
// Update means_k, covs_k and weights_k from probs_ik
|
|
|
|
|
int dim = trainSamples.cols; |
|
|
|
|
// Update means
|
|
|
|
|
means.create(nclusters, dim, CV_64FC1); |
|
|
|
|
means = Scalar(0); |
|
|
|
|
|
|
|
|
|
// Update weights
|
|
|
|
|
// not normalized first
|
|
|
|
|
reduce(trainProbs, weights, 0, CV_REDUCE_SUM); |
|
|
|
|
const double minPosWeight = trainSamples.rows * DBL_EPSILON; |
|
|
|
|
double minWeight = DBL_MAX; |
|
|
|
|
int minWeightClusterIndex = -1; |
|
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
|
|
|
{ |
|
|
|
|
if(weights.at<double>(clusterIndex) <= minPosWeight) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
// Update means
|
|
|
|
|
means.create(nclusters, dim, CV_64FC1); |
|
|
|
|
means = Scalar(0); |
|
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
|
|
|
if(weights.at<double>(clusterIndex) < minWeight) |
|
|
|
|
{ |
|
|
|
|
Mat clusterMean = means.row(clusterIndex); |
|
|
|
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
|
|
|
clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex); |
|
|
|
|
clusterMean /= weights.at<double>(clusterIndex); |
|
|
|
|
minWeight = weights.at<double>(clusterIndex); |
|
|
|
|
minWeightClusterIndex = clusterIndex; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Update covsEigenValues and invCovsEigenValues
|
|
|
|
|
covs.resize(nclusters); |
|
|
|
|
covsEigenValues.resize(nclusters); |
|
|
|
|
Mat clusterMean = means.row(clusterIndex); |
|
|
|
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
|
|
|
clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex); |
|
|
|
|
clusterMean /= weights.at<double>(clusterIndex); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Update covsEigenValues and invCovsEigenValues
|
|
|
|
|
covs.resize(nclusters); |
|
|
|
|
covsEigenValues.resize(nclusters); |
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
covsRotateMats.resize(nclusters); |
|
|
|
|
invCovsEigenValues.resize(nclusters); |
|
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
|
|
|
{ |
|
|
|
|
if(weights.at<double>(clusterIndex) <= minPosWeight) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
if(covMatType != EM::COV_MAT_SPHERICAL) |
|
|
|
|
covsEigenValues[clusterIndex].create(1, dim, CV_64FC1); |
|
|
|
|
else |
|
|
|
|
covsEigenValues[clusterIndex].create(1, 1, CV_64FC1); |
|
|
|
|
|
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
covsRotateMats.resize(nclusters); |
|
|
|
|
invCovsEigenValues.resize(nclusters); |
|
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
|
|
|
{ |
|
|
|
|
if(covMatType != EM::COV_MAT_SPHERICAL) |
|
|
|
|
covsEigenValues[clusterIndex].create(1, dim, CV_64FC1); |
|
|
|
|
else |
|
|
|
|
covsEigenValues[clusterIndex].create(1, 1, CV_64FC1); |
|
|
|
|
covs[clusterIndex].create(dim, dim, CV_64FC1); |
|
|
|
|
|
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
covs[clusterIndex].create(dim, dim, CV_64FC1); |
|
|
|
|
Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ? |
|
|
|
|
covsEigenValues[clusterIndex] : covs[clusterIndex]; |
|
|
|
|
|
|
|
|
|
Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ? |
|
|
|
|
covsEigenValues[clusterIndex] : covs[clusterIndex]; |
|
|
|
|
clusterCov = Scalar(0); |
|
|
|
|
|
|
|
|
|
clusterCov = Scalar(0); |
|
|
|
|
Mat centeredSample; |
|
|
|
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
|
|
|
{ |
|
|
|
|
centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex); |
|
|
|
|
|
|
|
|
|
Mat centeredSample; |
|
|
|
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex); |
|
|
|
|
|
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample; |
|
|
|
|
else |
|
|
|
|
double p = trainProbs.at<double>(sampleIndex, clusterIndex); |
|
|
|
|
for(int di = 0; di < dim; di++ ) |
|
|
|
|
{ |
|
|
|
|
double p = trainProbs.at<double>(sampleIndex, clusterIndex); |
|
|
|
|
for(int di = 0; di < dim; di++ ) |
|
|
|
|
{ |
|
|
|
|
double val = centeredSample.at<double>(di); |
|
|
|
|
clusterCov.at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0) += p*val*val; |
|
|
|
|
} |
|
|
|
|
double val = centeredSample.at<double>(di); |
|
|
|
|
clusterCov.at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0) += p*val*val; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(covMatType == EM::COV_MAT_SPHERICAL) |
|
|
|
|
clusterCov /= dim; |
|
|
|
|
if(covMatType == EM::COV_MAT_SPHERICAL) |
|
|
|
|
clusterCov /= dim; |
|
|
|
|
|
|
|
|
|
clusterCov /= weights.at<double>(clusterIndex); |
|
|
|
|
clusterCov /= weights.at<double>(clusterIndex); |
|
|
|
|
|
|
|
|
|
// Update covsRotateMats for EM::COV_MAT_GENERIC only
|
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
{ |
|
|
|
|
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV); |
|
|
|
|
covsEigenValues[clusterIndex] = svd.w; |
|
|
|
|
covsRotateMats[clusterIndex] = svd.u; |
|
|
|
|
} |
|
|
|
|
// Update covsRotateMats for EM::COV_MAT_GENERIC only
|
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
{ |
|
|
|
|
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV); |
|
|
|
|
covsEigenValues[clusterIndex] = svd.w; |
|
|
|
|
covsRotateMats[clusterIndex] = svd.u; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]); |
|
|
|
|
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]); |
|
|
|
|
|
|
|
|
|
// update invCovsEigenValues
|
|
|
|
|
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex]; |
|
|
|
|
} |
|
|
|
|
// update invCovsEigenValues
|
|
|
|
|
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Normalize weights
|
|
|
|
|
weights /= trainSamples.rows; |
|
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
|
|
|
{ |
|
|
|
|
if(weights.at<double>(clusterIndex) <= minPosWeight) |
|
|
|
|
{ |
|
|
|
|
Mat clusterMean = means.row(clusterIndex); |
|
|
|
|
means.row(minWeightClusterIndex).copyTo(clusterMean); |
|
|
|
|
covs[minWeightClusterIndex].copyTo(covs[clusterIndex]); |
|
|
|
|
covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]); |
|
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
|
|
|
covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]); |
|
|
|
|
invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Normalize weights
|
|
|
|
|
weights /= trainSamples.rows; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void EM::read(const FileNode& fn) |
|
|
|
|