Added ResizeBilinear op for tf (#11050)
* Added ResizeBilinear op for tf Combined ResizeNearestNeighbor and ResizeBilinear layers into Resize (with an interpolation param). Minor changes to tf_importer and resize layer to save some code lines Minor changes in init.cpp Minor changes in tf_importer.cpp * Replaced implementation of a custom ResizeBilinear layer to all layers * Use Mat::ptr. Replace interpolation flagspull/11714/head
parent
60fa6bea70
commit
7175f257b5
10 changed files with 253 additions and 284 deletions
@ -0,0 +1,176 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "../precomp.hpp" |
||||
#include "layers_common.hpp" |
||||
#include "../op_inf_engine.hpp" |
||||
#include <opencv2/imgproc.hpp> |
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
class ResizeLayerImpl CV_FINAL : public ResizeLayer |
||||
{ |
||||
public: |
||||
ResizeLayerImpl(const LayerParams& params) |
||||
{ |
||||
setParamsFrom(params); |
||||
outWidth = params.get<float>("width", 0); |
||||
outHeight = params.get<float>("height", 0); |
||||
if (params.has("zoom_factor")) |
||||
{ |
||||
CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y")); |
||||
zoomFactorWidth = zoomFactorHeight = params.get<int>("zoom_factor"); |
||||
} |
||||
else if (params.has("zoom_factor_x") || params.has("zoom_factor_y")) |
||||
{ |
||||
CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y")); |
||||
zoomFactorWidth = params.get<int>("zoom_factor_x"); |
||||
zoomFactorHeight = params.get<int>("zoom_factor_y"); |
||||
} |
||||
interpolation = params.get<String>("interpolation"); |
||||
CV_Assert(interpolation == "nearest" || interpolation == "bilinear"); |
||||
|
||||
alignCorners = params.get<bool>("align_corners", false); |
||||
if (alignCorners) |
||||
CV_Error(Error::StsNotImplemented, "Resize with align_corners=true is not implemented"); |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||
{ |
||||
CV_Assert(inputs.size() == 1, inputs[0].size() == 4); |
||||
outputs.resize(1, inputs[0]); |
||||
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight); |
||||
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth); |
||||
// We can work in-place (do nothing) if input shape == output shape.
|
||||
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||
{ |
||||
return backendId == DNN_BACKEND_OPENCV || |
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && interpolation == "nearest"; |
||||
} |
||||
|
||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE |
||||
{ |
||||
if (!outWidth && !outHeight) |
||||
{ |
||||
outHeight = outputs[0].size[2]; |
||||
outWidth = outputs[0].size[3]; |
||||
} |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
} |
||||
|
||||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3]) |
||||
return; |
||||
|
||||
Mat& inp = *inputs[0]; |
||||
Mat& out = outputs[0]; |
||||
if (interpolation == "nearest") |
||||
{ |
||||
for (size_t n = 0; n < inputs[0]->size[0]; ++n) |
||||
{ |
||||
for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch) |
||||
{ |
||||
resize(getPlane(inp, n, ch), getPlane(out, n, ch), |
||||
Size(outWidth, outHeight), 0, 0, INTER_NEAREST); |
||||
} |
||||
} |
||||
} |
||||
else if (interpolation == "bilinear") |
||||
{ |
||||
const int inpHeight = inp.size[2]; |
||||
const int inpWidth = inp.size[3]; |
||||
const int inpSpatialSize = inpHeight * inpWidth; |
||||
const int outSpatialSize = outHeight * outWidth; |
||||
const float heightScale = static_cast<float>(inpHeight) / (outHeight); |
||||
const float widthScale = static_cast<float>(inpWidth) / (outWidth); |
||||
const int numPlanes = inp.size[0] * inp.size[1]; |
||||
CV_Assert(inp.isContinuous(), out.isContinuous()); |
||||
|
||||
Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight); |
||||
Mat outPlanes = out.reshape(1, numPlanes * outHeight); |
||||
for (int y = 0; y < outHeight; ++y) |
||||
{ |
||||
float input_y = y * heightScale; |
||||
int y0 = static_cast<int>(input_y); |
||||
const float* inpData_row0 = inpPlanes.ptr<float>(y0); |
||||
const float* inpData_row1 = inpPlanes.ptr<float>(std::min(y0 + 1, inpHeight - 1)); |
||||
for (int x = 0; x < outWidth; ++x) |
||||
{ |
||||
float input_x = x * widthScale; |
||||
int x0 = static_cast<int>(input_x); |
||||
int x1 = std::min(x0 + 1, inpWidth - 1); |
||||
|
||||
float* outData = outPlanes.ptr<float>(y, x); |
||||
const float* inpData_row0_c = inpData_row0; |
||||
const float* inpData_row1_c = inpData_row1; |
||||
for (int c = 0; c < numPlanes; ++c) |
||||
{ |
||||
*outData = inpData_row0_c[x0] + |
||||
(input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) + |
||||
(input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] + |
||||
(input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0])); |
||||
|
||||
inpData_row0_c += inpSpatialSize; |
||||
inpData_row1_c += inpSpatialSize; |
||||
outData += outSpatialSize; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
else |
||||
CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation); |
||||
} |
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
||||
{ |
||||
#ifdef HAVE_INF_ENGINE |
||||
InferenceEngine::LayerParams lp; |
||||
lp.name = name; |
||||
lp.type = "Resample"; |
||||
lp.precision = InferenceEngine::Precision::FP32; |
||||
|
||||
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp)); |
||||
ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST"; |
||||
ieLayer->params["antialias"] = "0"; |
||||
ieLayer->params["width"] = cv::format("%d", outWidth); |
||||
ieLayer->params["height"] = cv::format("%d", outHeight); |
||||
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>(); |
||||
} |
||||
|
||||
private: |
||||
int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight; |
||||
String interpolation; |
||||
bool alignCorners; |
||||
}; |
||||
|
||||
|
||||
Ptr<ResizeLayer> ResizeLayer::create(const LayerParams& params) |
||||
{ |
||||
return Ptr<ResizeLayer>(new ResizeLayerImpl(params)); |
||||
} |
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
@ -1,117 +0,0 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "../precomp.hpp" |
||||
#include "layers_common.hpp" |
||||
#include "../op_inf_engine.hpp" |
||||
#include <opencv2/imgproc.hpp> |
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
class ResizeNearestNeighborLayerImpl CV_FINAL : public ResizeNearestNeighborLayer |
||||
{ |
||||
public: |
||||
ResizeNearestNeighborLayerImpl(const LayerParams& params) |
||||
{ |
||||
setParamsFrom(params); |
||||
CV_Assert(params.has("width") && params.has("height") || params.has("zoom_factor")); |
||||
CV_Assert(!params.has("width") && !params.has("height") || !params.has("zoom_factor")); |
||||
outWidth = params.get<float>("width", 0); |
||||
outHeight = params.get<float>("height", 0); |
||||
zoomFactor = params.get<int>("zoom_factor", 1); |
||||
alignCorners = params.get<bool>("align_corners", false); |
||||
if (alignCorners) |
||||
CV_Error(Error::StsNotImplemented, "Nearest neighborhood resize with align_corners=true is not implemented"); |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||
{ |
||||
CV_Assert(inputs.size() == 1, inputs[0].size() == 4); |
||||
outputs.resize(1, inputs[0]); |
||||
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactor); |
||||
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactor); |
||||
// We can work in-place (do nothing) if input shape == output shape.
|
||||
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||
{ |
||||
return backendId == DNN_BACKEND_OPENCV || |
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); |
||||
} |
||||
|
||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE |
||||
{ |
||||
if (!outWidth && !outHeight) |
||||
{ |
||||
outHeight = outputs[0].size[2]; |
||||
outWidth = outputs[0].size[3]; |
||||
} |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
} |
||||
|
||||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3]) |
||||
return; |
||||
|
||||
Mat& inp = *inputs[0]; |
||||
Mat& out = outputs[0]; |
||||
for (size_t n = 0; n < inputs[0]->size[0]; ++n) |
||||
{ |
||||
for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch) |
||||
{ |
||||
resize(getPlane(inp, n, ch), getPlane(out, n, ch), |
||||
Size(outWidth, outHeight), 0, 0, INTER_NEAREST); |
||||
} |
||||
} |
||||
} |
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
||||
{ |
||||
#ifdef HAVE_INF_ENGINE |
||||
InferenceEngine::LayerParams lp; |
||||
lp.name = name; |
||||
lp.type = "Resample"; |
||||
lp.precision = InferenceEngine::Precision::FP32; |
||||
|
||||
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp)); |
||||
ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST"; |
||||
ieLayer->params["antialias"] = "0"; |
||||
ieLayer->params["width"] = cv::format("%d", outWidth); |
||||
ieLayer->params["height"] = cv::format("%d", outHeight); |
||||
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>(); |
||||
} |
||||
|
||||
private: |
||||
int outWidth, outHeight, zoomFactor; |
||||
bool alignCorners; |
||||
}; |
||||
|
||||
|
||||
Ptr<ResizeNearestNeighborLayer> ResizeNearestNeighborLayer::create(const LayerParams& params) |
||||
{ |
||||
return Ptr<ResizeNearestNeighborLayer>(new ResizeNearestNeighborLayerImpl(params)); |
||||
} |
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
Loading…
Reference in new issue