Move cv::Mat out of core.hpp

pull/747/head
Andrey Kamaev 12 years ago
parent 135c0b6cb5
commit 715fa3303e
  1. 8
      modules/calib3d/test/test_posit.cpp
  2. 4
      modules/calib3d/test/test_undistort.cpp
  3. 54
      modules/calib3d/test/test_undistort_badarg.cpp
  4. 13
      modules/contrib/src/ba.cpp
  5. 1364
      modules/core/include/opencv2/core.hpp
  6. 9
      modules/core/include/opencv2/core/base.hpp
  7. 1428
      modules/core/include/opencv2/core/mat.hpp
  8. 29
      modules/core/include/opencv2/core/mat.inl.hpp
  9. 37
      modules/core/include/opencv2/core/types_c.h
  10. 3
      modules/core/src/array.cpp
  11. 6
      modules/core/src/gpumat.cpp
  12. 1
      modules/core/src/lapack.cpp
  13. 8
      modules/core/src/mathfuncs.cpp
  14. 288
      modules/core/src/matrix.cpp
  15. 8
      modules/core/src/persistence.cpp
  16. 26
      modules/core/test/test_arithm.cpp
  17. 10
      modules/core/test/test_io.cpp
  18. 2
      modules/core/test/test_mat.cpp
  19. 4
      modules/core/test/test_math.cpp
  20. 4
      modules/gpu/perf/perf_video.cpp
  21. 4
      modules/highgui/src/cap.cpp
  22. 2
      modules/highgui/src/window_QT.cpp
  23. 4
      modules/highgui/test/test_video_io.cpp
  24. 13
      modules/imgproc/src/histogram.cpp
  25. 13
      modules/imgproc/test/test_histograms.cpp
  26. 2
      modules/legacy/src/calonder.cpp
  27. 8
      modules/legacy/src/em.cpp
  28. 108
      modules/legacy/src/levmarprojbandle.cpp
  29. 2
      modules/legacy/src/oneway.cpp
  30. 24
      modules/legacy/src/trifocal.cpp
  31. 4
      modules/ml/src/boost.cpp
  32. 2
      modules/ml/src/rtrees.cpp
  33. 2
      modules/ml/src/tree.cpp
  34. 2
      modules/ml/test/test_emknearestkmeans.cpp
  35. 2
      modules/objdetect/src/datamatrix.cpp
  36. 6
      modules/objdetect/src/haar.cpp
  37. 2
      modules/python/src2/cv2.cv.hpp
  38. 2
      modules/ts/src/ts_func.cpp
  39. 3
      samples/c/facedetect.cpp
  40. 3
      samples/c/smiledetect.cpp
  41. 5
      samples/c/tree_engine.cpp
  42. 4
      samples/cpp/Qt_sample/main.cpp
  43. 3
      samples/cpp/image.cpp
  44. 3
      samples/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp
  45. 3
      samples/cpp/tutorial_code/objectDetection/objectDetection.cpp
  46. 3
      samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp

@ -189,13 +189,13 @@ void CV_POSITTest::run( int start_from )
rotation->data.fl, translation->data.fl );
cvReleasePOSITObject( &object );
//Mat _rotation = cvarrToMat(rotation), _true_rotation = cvarrToMat(true_rotation);
//Mat _translation = cvarrToMat(translation), _true_translation = cvarrToMat(true_translation);
code = cvtest::cmpEps2( ts, rotation, true_rotation, flEpsilon, false, "rotation matrix" );
Mat _rotation = cvarrToMat(rotation), _true_rotation = cvarrToMat(true_rotation);
Mat _translation = cvarrToMat(translation), _true_translation = cvarrToMat(true_translation);
code = cvtest::cmpEps2( ts, _rotation, _true_rotation, flEpsilon, false, "rotation matrix" );
if( code < 0 )
break;
code = cvtest::cmpEps2( ts, translation, true_translation, flEpsilon, false, "translation vector" );
code = cvtest::cmpEps2( ts, _translation, _true_translation, flEpsilon, false, "translation vector" );
if( code < 0 )
break;
}

@ -855,8 +855,8 @@ void CV_InitUndistortRectifyMapTest::prepare_to_validation(int/* test_case_idx*/
//Applying precalculated undistort rectify map
if (!useCPlus)
{
mapx = cv::Mat(_mapx);
mapy = cv::Mat(_mapy);
mapx = cv::cvarrToMat(_mapx);
mapy = cv::cvarrToMat(_mapy);
}
cv::Mat map1,map2;
cv::convertMaps(mapx,mapy,map1,map2,CV_32FC1);

@ -243,27 +243,27 @@ void CV_UndistortPointsBadArgTest::run(int)
//C++ tests
useCPlus = true;
camera_mat = cv::Mat(&_camera_mat_orig);
distortion_coeffs = cv::Mat(&_distortion_coeffs_orig);
P = cv::Mat(&_P_orig);
R = cv::Mat(&_R_orig);
src_points = cv::Mat(&_src_points_orig);
camera_mat = cv::cvarrToMat(&_camera_mat_orig);
distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig);
P = cv::cvarrToMat(&_P_orig);
R = cv::cvarrToMat(&_R_orig);
src_points = cv::cvarrToMat(&_src_points_orig);
temp = cvCreateMat(2,2,CV_32FC2);
src_points = cv::Mat(temp);
src_points = cv::cvarrToMat(temp);
errcount += run_test_case( CV_StsAssert, "Invalid input data matrix size" );
src_points = cv::Mat(&_src_points_orig);
src_points = cv::cvarrToMat(&_src_points_orig);
cvReleaseMat(&temp);
temp = cvCreateMat(1,4,CV_64FC2);
src_points = cv::Mat(temp);
src_points = cv::cvarrToMat(temp);
errcount += run_test_case( CV_StsAssert, "Invalid input data matrix type" );
src_points = cv::Mat(&_src_points_orig);
src_points = cv::cvarrToMat(&_src_points_orig);
cvReleaseMat(&temp);
src_points = cv::Mat();
errcount += run_test_case( CV_StsAssert, "Input data matrix is not continuous" );
src_points = cv::Mat(&_src_points_orig);
src_points = cv::cvarrToMat(&_src_points_orig);
cvReleaseMat(&temp);
@ -360,12 +360,12 @@ void CV_InitUndistortRectifyMapBadArgTest::run(int)
//C++ tests
useCPlus = true;
camera_mat = cv::Mat(&_camera_mat_orig);
distortion_coeffs = cv::Mat(&_distortion_coeffs_orig);
new_camera_mat = cv::Mat(&_new_camera_mat_orig);
R = cv::Mat(&_R_orig);
mapx = cv::Mat(&_mapx_orig);
mapy = cv::Mat(&_mapy_orig);
camera_mat = cv::cvarrToMat(&_camera_mat_orig);
distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig);
new_camera_mat = cv::cvarrToMat(&_new_camera_mat_orig);
R = cv::cvarrToMat(&_R_orig);
mapx = cv::cvarrToMat(&_mapx_orig);
mapy = cv::cvarrToMat(&_mapy_orig);
mat_type = CV_64F;
@ -373,21 +373,21 @@ void CV_InitUndistortRectifyMapBadArgTest::run(int)
mat_type = mat_type_orig;
temp = cvCreateMat(3,2,CV_32FC1);
camera_mat = cv::Mat(temp);
camera_mat = cv::cvarrToMat(temp);
errcount += run_test_case( CV_StsAssert, "Invalid camera data matrix size" );
camera_mat = cv::Mat(&_camera_mat_orig);
camera_mat = cv::cvarrToMat(&_camera_mat_orig);
cvReleaseMat(&temp);
temp = cvCreateMat(4,3,CV_32FC1);
R = cv::Mat(temp);
R = cv::cvarrToMat(temp);
errcount += run_test_case( CV_StsAssert, "Invalid R data matrix size" );
R = cv::Mat(&_R_orig);
R = cv::cvarrToMat(&_R_orig);
cvReleaseMat(&temp);
temp = cvCreateMat(6,1,CV_32FC1);
distortion_coeffs = cv::Mat(temp);
distortion_coeffs = cv::cvarrToMat(temp);
errcount += run_test_case( CV_StsAssert, "Invalid distortion coefficients data matrix size" );
distortion_coeffs = cv::Mat(&_distortion_coeffs_orig);
distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig);
cvReleaseMat(&temp);
//------------
@ -499,11 +499,11 @@ void CV_UndistortBadArgTest::run(int)
//C++ tests
useCPlus = true;
camera_mat = cv::Mat(&_camera_mat_orig);
distortion_coeffs = cv::Mat(&_distortion_coeffs_orig);
new_camera_mat = cv::Mat(&_new_camera_mat_orig);
src = cv::Mat(&_src_orig);
dst = cv::Mat(&_dst_orig);
camera_mat = cv::cvarrToMat(&_camera_mat_orig);
distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig);
new_camera_mat = cv::cvarrToMat(&_new_camera_mat_orig);
src = cv::cvarrToMat(&_src_orig);
dst = cv::cvarrToMat(&_dst_orig);
//------------
delete[] arr_src;

@ -359,7 +359,7 @@ void LevMarqSparse::ask_for_proj(CvMat &/*_vis*/,bool once) {
cvGetSubRect( P, &cam_mat, cvRect( 0, j * num_cam_param, 1, num_cam_param ));
CvMat measur_mat;
cvGetSubRect( hX, &measur_mat, cvRect( 0, ind * num_err_param, 1, num_err_param ));
Mat _point_mat(&point_mat), _cam_mat(&cam_mat), _measur_mat(&measur_mat);
Mat _point_mat = cv::cvarrToMat(&point_mat), _cam_mat = cv::cvarrToMat(&cam_mat), _measur_mat = cv::cvarrToMat(&measur_mat);
func( i, j, _point_mat, _cam_mat, _measur_mat, data);
assert( ind*num_err_param == ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j]);
ind+=1;
@ -398,7 +398,7 @@ void LevMarqSparse::ask_for_projac(CvMat &/*_vis*/) //should be evaluated at p
//CvMat* Bij = B_line[j];
//CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
Mat _point_mat(&point_mat), _cam_mat(&cam_mat), _Aij(Aij), _Bij(Bij);
Mat _point_mat = cv::cvarrToMat(&point_mat), _cam_mat = cv::cvarrToMat(&cam_mat), _Aij = cv::cvarrToMat(Aij), _Bij = cv::cvarrToMat(Bij);
(*fjac)(i, j, _point_mat, _cam_mat, _Aij, _Bij, data);
}
}
@ -1100,16 +1100,17 @@ void LevMarqSparse::bundleAdjust( std::vector<Point3d>& points, //positions of p
}
//fill camera params
//R.clear();T.clear();cameraMatrix.clear();
Mat levmarP = cv::cvarrToMat(levmar.P);
for( int i = 0; i < num_cameras; i++ ) {
//rotation
Mat rot_vec = Mat(levmar.P).rowRange(i*num_cam_param, i*num_cam_param+3);
Mat rot_vec = levmarP.rowRange(i*num_cam_param, i*num_cam_param+3);
Rodrigues( rot_vec, R[i] );
//translation
T[i] = Mat(levmar.P).rowRange(i*num_cam_param + 3, i*num_cam_param+6);
T[i] = levmarP.rowRange(i*num_cam_param + 3, i*num_cam_param+6);
//intrinsic camera matrix
double* intr_data = (double*)cameraMatrix[i].data;
double* intr = (double*)(Mat(levmar.P).data + Mat(levmar.P).step * (i*num_cam_param+6));
double* intr = (double*)(levmarP.data +levmarP.step * (i*num_cam_param+6));
//focals
intr_data[0] = intr[0]; //fx
intr_data[4] = intr[1]; //fy
@ -1119,7 +1120,7 @@ void LevMarqSparse::bundleAdjust( std::vector<Point3d>& points, //positions of p
//add distortion if exists
if( distCoeffs.size() ) {
Mat(levmar.P).rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist).copyTo(distCoeffs[i]);
levmarP.rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist).copyTo(distCoeffs[i]);
}
}
}

File diff suppressed because it is too large Load Diff

@ -441,9 +441,18 @@ class CV_EXPORTS Mat;
class CV_EXPORTS SparseMat;
typedef Mat MatND;
class CV_EXPORTS MatExpr;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS SparseMat_;
class CV_EXPORTS MatConstIterator;
class CV_EXPORTS SparseMatIterator;
class CV_EXPORTS SparseMatConstIterator;
template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS SparseMatIterator_;
template<typename _Tp> class CV_EXPORTS SparseMatConstIterator_;
namespace ogl
{

File diff suppressed because it is too large Load Diff

@ -383,15 +383,6 @@ inline Mat Mat::operator()(const Range* ranges) const
return Mat(*this, ranges);
}
inline Mat::operator CvMat() const
{
CV_DbgAssert(dims <= 2);
CvMat m = cvMat(rows, dims == 1 ? 1 : cols, type(), data);
m.step = (int)step[0];
m.type = (m.type & ~CONTINUOUS_FLAG) | (flags & CONTINUOUS_FLAG);
return m;
}
inline bool Mat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; }
inline bool Mat::isSubmatrix() const { return (flags & SUBMATRIX_FLAG) != 0; }
inline size_t Mat::elemSize() const { return dims > 0 ? step.p[dims-1] : 0; }
@ -2411,11 +2402,11 @@ template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const Mat& m)
*this = sm;
}
template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const CvSparseMat* m)
{
SparseMat sm(m);
*this = sm;
}
// template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const CvSparseMat* m)
// {
// SparseMat sm(m);
// *this = sm;
// }
template<typename _Tp> inline SparseMat_<_Tp>&
SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m)
@ -2457,11 +2448,11 @@ SparseMat_<_Tp>::create(int _dims, const int* _sizes)
SparseMat::create(_dims, _sizes, DataType<_Tp>::type);
}
template<typename _Tp> inline
SparseMat_<_Tp>::operator CvSparseMat*() const
{
return SparseMat::operator CvSparseMat*();
}
// template<typename _Tp> inline
// SparseMat_<_Tp>::operator CvSparseMat*() const
// {
// return SparseMat::operator CvSparseMat*();
// }
template<typename _Tp> inline int SparseMat_<_Tp>::type() const
{ return DataType<_Tp>::type; }

@ -94,6 +94,7 @@
#ifdef __cplusplus
# include "opencv2/core/types.hpp"
# include "opencv2/core/mat.hpp"
#endif
/* CvArr* is used to pass arbitrary
@ -307,6 +308,11 @@ typedef struct _IplImage
char *imageDataOrigin; /* Pointer to very origin of image data
(not necessarily aligned) -
needed for correct deallocation */
#ifdef __cplusplus
_IplImage() {}
_IplImage(const cv::Mat& m);
#endif
}
IplImage;
@ -417,6 +423,12 @@ typedef struct CvMat
int cols;
#endif
#ifdef __cplusplus
CvMat() {}
CvMat(const cv::Mat& m);
#endif
}
CvMat;
@ -478,6 +490,16 @@ CV_INLINE CvMat cvMat( int rows, int cols, int type, void* data CV_DEFAULT(NULL)
return m;
}
#ifdef __cplusplus
inline CvMat::CvMat(const cv::Mat& m)
{
CV_DbgAssert(m.dims <= 2);
*this = cvMat(m.rows, m.dims == 1 ? 1 : m.cols, m.type(), m.data);
step = (int)m.step[0];
type = (type & ~cv::Mat::CONTINUOUS_FLAG) | (m.flags & cv::Mat::CONTINUOUS_FLAG);
}
#endif
#define CV_MAT_ELEM_PTR_FAST( mat, row, col, pix_size ) \
(assert( (unsigned)(row) < (unsigned)(mat).rows && \
@ -567,6 +589,11 @@ typedef struct CvMatND
int step;
}
dim[CV_MAX_DIM];
#ifdef __cplusplus
CvMatND() {}
CvMatND(const cv::Mat& m);
#endif
}
CvMatND;
@ -586,7 +613,7 @@ CvMatND;
struct CvSet;
typedef struct CvSparseMat
typedef struct CV_EXPORTS CvSparseMat
{
int type;
int dims;
@ -599,9 +626,17 @@ typedef struct CvSparseMat
int valoffset;
int idxoffset;
int size[CV_MAX_DIM];
#ifdef __cplusplus
void copyToSparseMat(cv::SparseMat& m) const;
#endif
}
CvSparseMat;
#ifdef __cplusplus
CvSparseMat* cvCreateSparseMat(const cv::SparseMat& m);
#endif
#define CV_IS_SPARSE_MAT_HDR(mat) \
((mat) != NULL && \
(((const CvSparseMat*)(mat))->type & CV_MAGIC_MASK) == CV_SPARSE_MAT_MAGIC_VAL)

@ -305,7 +305,8 @@ cvCloneMatND( const CvMatND* src )
if( src->data.ptr )
{
cvCreateData( dst );
cv::Mat _src(src), _dst(dst);
cv::Mat _src = cv::cvarrToMat(src);
cv::Mat _dst = cv::cvarrToMat(dst);
uchar* data0 = dst->data.ptr;
_src.copyTo(_dst);
CV_Assert(_dst.data == data0);

@ -544,7 +544,7 @@ cv::gpu::GpuMat::GpuMat(const GpuMat& m)
}
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_),
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
@ -568,7 +568,7 @@ cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t ste
}
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
@ -1495,7 +1495,7 @@ GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
_type &= Mat::TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;

@ -1689,7 +1689,6 @@ cvDet( const CvArr* arr )
if( rows == 3 )
return det3(Md);
}
return cv::determinant(cv::Mat(mat));
}
return cv::determinant(cv::cvarrToMat(arr));
}

@ -2350,7 +2350,7 @@ int cv::solveCubic( InputArray _coeffs, OutputArray _roots )
coeffs.size() == Size(1, n0) ||
coeffs.size() == Size(1, n0+1)) );
_roots.create(n0, 1, ctype, -1, true, DEPTH_MASK_FLT);
_roots.create(n0, 1, ctype, -1, true, _OutputArray::DEPTH_MASK_FLT);
Mat roots = _roots.getMat();
int i = -1, n = 0;
@ -2482,7 +2482,7 @@ double cv::solvePoly( InputArray _coeffs0, OutputArray _roots0, int maxIters )
int n = coeffs0.cols + coeffs0.rows - 2;
_roots0.create(n, 1, CV_MAKETYPE(cdepth, 2), -1, true, DEPTH_MASK_FLT);
_roots0.create(n, 1, CV_MAKETYPE(cdepth, 2), -1, true, _OutputArray::DEPTH_MASK_FLT);
Mat roots0 = _roots0.getMat();
AutoBuffer<C> buf(n*2+2);
@ -2550,7 +2550,9 @@ cvSolveCubic( const CvMat* coeffs, CvMat* roots )
void cvSolvePoly(const CvMat* a, CvMat *r, int maxiter, int)
{
cv::Mat _a = cv::cvarrToMat(a), _r = cv::cvarrToMat(r), _r0 = r;
cv::Mat _a = cv::cvarrToMat(a);
cv::Mat _r = cv::cvarrToMat(r);
cv::Mat _r0 = _r;
cv::solvePoly(_a, _r, maxiter);
CV_Assert( _r.data == _r0.data ); // check that the array of roots was not reallocated
}

@ -371,13 +371,14 @@ Mat::Mat(const Mat& m, const Range* ranges) : size(&rows)
}
Mat::Mat(const CvMatND* m, bool copyData) : size(&rows)
static Mat cvMatNDToMat(const CvMatND* m, bool copyData)
{
initEmpty();
Mat thiz;
if( !m )
return;
data = datastart = m->data.ptr;
flags |= CV_MAT_TYPE(m->type);
return thiz;
thiz.data = thiz.datastart = m->data.ptr;
thiz.flags |= CV_MAT_TYPE(m->type);
int _sizes[CV_MAX_DIM];
size_t _steps[CV_MAX_DIM];
@ -388,145 +389,141 @@ Mat::Mat(const CvMatND* m, bool copyData) : size(&rows)
_steps[i] = m->dim[i].step;
}
setSize(*this, d, _sizes, _steps);
finalizeHdr(*this);
setSize(thiz, d, _sizes, _steps);
finalizeHdr(thiz);
if( copyData )
{
Mat temp(*this);
temp.copyTo(*this);
}
}
Mat Mat::diag(int d) const
{
CV_Assert( dims <= 2 );
Mat m = *this;
size_t esz = elemSize();
int len;
if( d >= 0 )
{
len = std::min(cols - d, rows);
m.data += esz*d;
}
else
{
len = std::min(rows + d, cols);
m.data -= step[0]*d;
Mat temp(thiz);
thiz.release();
temp.copyTo(thiz);
}
CV_DbgAssert( len > 0 );
m.size[0] = m.rows = len;
m.size[1] = m.cols = 1;
m.step[0] += (len > 1 ? esz : 0);
if( m.rows > 1 )
m.flags &= ~CONTINUOUS_FLAG;
else
m.flags |= CONTINUOUS_FLAG;
if( size() != Size(1,1) )
m.flags |= SUBMATRIX_FLAG;
return m;
return thiz;
}
Mat::Mat(const CvMat* m, bool copyData) : size(&rows)
static Mat cvMatToMat(const CvMat* m, bool copyData)
{
initEmpty();
Mat thiz;
if( !m )
return;
return thiz;
if( !copyData )
{
flags = MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG));
dims = 2;
rows = m->rows;
cols = m->cols;
data = datastart = m->data.ptr;
size_t esz = CV_ELEM_SIZE(m->type), minstep = cols*esz, _step = m->step;
thiz.flags = Mat::MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG));
thiz.dims = 2;
thiz.rows = m->rows;
thiz.cols = m->cols;
thiz.data = thiz.datastart = m->data.ptr;
size_t esz = CV_ELEM_SIZE(m->type), minstep = thiz.cols*esz, _step = m->step;
if( _step == 0 )
_step = minstep;
datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
step[0] = _step; step[1] = esz;
thiz.datalimit = thiz.datastart + _step*thiz.rows;
thiz.dataend = thiz.datalimit - _step + minstep;
thiz.step[0] = _step; thiz.step[1] = esz;
}
else
{
data = datastart = dataend = 0;
Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(*this);
thiz.data = thiz.datastart = thiz.dataend = 0;
Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(thiz);
}
return thiz;
}
Mat::Mat(const IplImage* img, bool copyData) : size(&rows)
static Mat iplImageToMat(const IplImage* img, bool copyData)
{
initEmpty();
Mat m;
if( !img )
return;
return m;
dims = 2;
m.dims = 2;
CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0);
int imgdepth = IPL2CV_DEPTH(img->depth);
size_t esz;
step[0] = img->widthStep;
m.step[0] = img->widthStep;
if(!img->roi)
{
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL);
flags = MAGIC_VAL + CV_MAKETYPE(imgdepth, img->nChannels);
rows = img->height; cols = img->width;
datastart = data = (uchar*)img->imageData;
esz = CV_ELEM_SIZE(flags);
m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, img->nChannels);
m.rows = img->height;
m.cols = img->width;
m.datastart = m.data = (uchar*)img->imageData;
esz = CV_ELEM_SIZE(m.flags);
}
else
{
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0);
bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE;
flags = MAGIC_VAL + CV_MAKETYPE(imgdepth, selectedPlane ? 1 : img->nChannels);
rows = img->roi->height; cols = img->roi->width;
esz = CV_ELEM_SIZE(flags);
data = datastart = (uchar*)img->imageData +
(selectedPlane ? (img->roi->coi - 1)*step*img->height : 0) +
img->roi->yOffset*step[0] + img->roi->xOffset*esz;
}
datalimit = datastart + step.p[0]*rows;
dataend = datastart + step.p[0]*(rows-1) + esz*cols;
flags |= (cols*esz == step.p[0] || rows == 1 ? CONTINUOUS_FLAG : 0);
step[1] = esz;
m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, selectedPlane ? 1 : img->nChannels);
m.rows = img->roi->height;
m.cols = img->roi->width;
esz = CV_ELEM_SIZE(m.flags);
m.data = m.datastart = (uchar*)img->imageData +
(selectedPlane ? (img->roi->coi - 1)*m.step*img->height : 0) +
img->roi->yOffset*m.step[0] + img->roi->xOffset*esz;
}
m.datalimit = m.datastart + m.step.p[0]*m.rows;
m.dataend = m.datastart + m.step.p[0]*(m.rows-1) + esz*m.cols;
m.flags |= (m.cols*esz == m.step.p[0] || m.rows == 1 ? Mat::CONTINUOUS_FLAG : 0);
m.step[1] = esz;
if( copyData )
{
Mat m = *this;
release();
Mat m2 = m;
m.release();
if( !img->roi || !img->roi->coi ||
img->dataOrder == IPL_DATA_ORDER_PLANE)
m.copyTo(*this);
m2.copyTo(m);
else
{
int ch[] = {img->roi->coi - 1, 0};
create(m.rows, m.cols, m.type());
mixChannels(&m, 1, this, 1, ch, 1);
m.create(m2.rows, m2.cols, m2.type());
mixChannels(&m2, 1, &m, 1, ch, 1);
}
}
}
return m;
}
Mat::operator IplImage() const
Mat Mat::diag(int d) const
{
CV_Assert( dims <= 2 );
IplImage img;
cvInitImageHeader(&img, size(), cvIplDepth(flags), channels());
cvSetData(&img, data, (int)step[0]);
return img;
}
Mat m = *this;
size_t esz = elemSize();
int len;
if( d >= 0 )
{
len = std::min(cols - d, rows);
m.data += esz*d;
}
else
{
len = std::min(rows + d, cols);
m.data -= step[0]*d;
}
CV_DbgAssert( len > 0 );
m.size[0] = m.rows = len;
m.size[1] = m.cols = 1;
m.step[0] += (len > 1 ? esz : 0);
if( m.rows > 1 )
m.flags &= ~CONTINUOUS_FLAG;
else
m.flags |= CONTINUOUS_FLAG;
if( size() != Size(1,1) )
m.flags |= SUBMATRIX_FLAG;
return m;
}
void Mat::pop_back(size_t nelems)
{
@ -673,16 +670,16 @@ Mat cvarrToMat(const CvArr* arr, bool copyData,
{
if( !arr )
return Mat();
if( CV_IS_MAT(arr) )
return Mat((const CvMat*)arr, copyData );
if( CV_IS_MAT_HDR_Z(arr) )
return cvMatToMat((const CvMat*)arr, copyData);
if( CV_IS_MATND(arr) )
return Mat((const CvMatND*)arr, copyData );
return cvMatNDToMat((const CvMatND*)arr, copyData );
if( CV_IS_IMAGE(arr) )
{
const IplImage* iplimg = (const IplImage*)arr;
if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 )
CV_Error(CV_BadCOI, "COI is not supported by the function");
return Mat(iplimg, copyData);
return iplImageToMat(iplimg, copyData);
}
if( CV_IS_SEQ(arr) )
{
@ -2938,7 +2935,7 @@ CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr )
CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR )
{
cv::Mat m(matrix);
cv::Mat m = cv::cvarrToMat(matrix);
cv::completeSymm( m, LtoR != 0 );
}
@ -3109,17 +3106,6 @@ Mat Mat::reshape(int _cn, int _newndims, const int* _newsz) const
return Mat();
}
Mat::operator CvMatND() const
{
CvMatND mat;
cvInitMatNDHeader( &mat, dims, size, type(), data );
int i, d = dims;
for( i = 0; i < d; i++ )
mat.dim[i].step = (int)step[i];
mat.type |= flags & CONTINUOUS_FLAG;
return mat;
}
NAryMatIterator::NAryMatIterator()
: arrays(0), planes(0), ptrs(0), narrays(0), nplanes(0), size(0), iterdepth(0), idx(0)
{
@ -3630,24 +3616,6 @@ SparseMat::SparseMat(const Mat& m)
}
}
SparseMat::SparseMat(const CvSparseMat* m)
: flags(MAGIC_VAL), hdr(0)
{
CV_Assert(m);
create( m->dims, &m->size[0], m->type );
CvSparseMatIterator it;
CvSparseNode* n = cvInitSparseMatIterator(m, &it);
size_t esz = elemSize();
for( ; n != 0; n = cvGetNextSparseNode(&it) )
{
const int* idx = CV_NODE_IDX(m, n);
uchar* to = newNode(idx, hash(idx));
copyElem((const uchar*)CV_NODE_VAL(m, n), to, esz);
}
}
void SparseMat::create(int d, const int* _sizes, int _type)
{
int i;
@ -3795,24 +3763,6 @@ void SparseMat::clear()
hdr->clear();
}
SparseMat::operator CvSparseMat*() const
{
if( !hdr )
return 0;
CvSparseMat* m = cvCreateSparseMat(hdr->dims, hdr->size, type());
SparseMatConstIterator from = begin();
size_t i, N = nzcount(), esz = elemSize();
for( i = 0; i < N; i++, ++from )
{
const Node* n = from.node();
uchar* to = cvPtrND(m, n->idx, 0, -2, 0);
copyElem(from.ptr, to, esz);
}
return m;
}
uchar* SparseMat::ptr(int i0, bool createMissing, size_t* hashval)
{
CV_Assert( hdr && hdr->dims == 1 );
@ -4266,4 +4216,58 @@ Rect RotatedRect::boundingRect() const
}
// glue
CvMatND::CvMatND(const cv::Mat& m)
{
cvInitMatNDHeader(this, m.dims, m.size, m.type(), m.data );
int i, d = m.dims;
for( i = 0; i < d; i++ )
dim[i].step = (int)m.step[i];
type |= m.flags & cv::Mat::CONTINUOUS_FLAG;
}
_IplImage::_IplImage(const cv::Mat& m)
{
CV_Assert( m.dims <= 2 );
cvInitImageHeader(this, m.size(), cvIplDepth(m.flags), m.channels());
cvSetData(this, m.data, (int)m.step[0]);
}
CvSparseMat* cvCreateSparseMat(const cv::SparseMat& sm)
{
if( !sm.hdr )
return 0;
CvSparseMat* m = cvCreateSparseMat(sm.hdr->dims, sm.hdr->size, sm.type());
cv::SparseMatConstIterator from = sm.begin();
size_t i, N = sm.nzcount(), esz = sm.elemSize();
for( i = 0; i < N; i++, ++from )
{
const cv::SparseMat::Node* n = from.node();
uchar* to = cvPtrND(m, n->idx, 0, -2, 0);
cv::copyElem(from.ptr, to, esz);
}
return m;
}
void CvSparseMat::copyToSparseMat(cv::SparseMat& m) const
{
m.create( dims, &size[0], type );
CvSparseMatIterator it;
CvSparseNode* n = cvInitSparseMatIterator(this, &it);
size_t esz = m.elemSize();
for( ; n != 0; n = cvGetNextSparseNode(&it) )
{
const int* idx = CV_NODE_IDX(this, n);
uchar* to = m.newNode(idx, m.hash(idx));
cv::copyElem((const uchar*)CV_NODE_VAL(this, n), to, esz);
}
}
/* End of file. */

@ -5470,7 +5470,7 @@ void write( FileStorage& fs, const String& name, const Mat& value )
// TODO: the 4 functions below need to be implemented more efficiently
void write( FileStorage& fs, const String& name, const SparseMat& value )
{
Ptr<CvSparseMat> mat = (CvSparseMat*)value;
Ptr<CvSparseMat> mat = cvCreateSparseMat(value);
cvWrite( *fs, name.size() ? name.c_str() : 0, mat );
}
@ -5495,12 +5495,12 @@ void read( const FileNode& node, Mat& mat, const Mat& default_mat )
void* obj = cvRead((CvFileStorage*)node.fs, (CvFileNode*)*node);
if(CV_IS_MAT_HDR_Z(obj))
{
Mat((const CvMat*)obj).copyTo(mat);
cvarrToMat(obj).copyTo(mat);
cvReleaseMat((CvMat**)&obj);
}
else if(CV_IS_MATND_HDR(obj))
{
Mat((const CvMatND*)obj).copyTo(mat);
cvarrToMat(obj).copyTo(mat);
cvReleaseMatND((CvMatND**)&obj);
}
else
@ -5519,7 +5519,7 @@ void read( const FileNode& node, SparseMat& mat, const SparseMat& default_mat )
}
Ptr<CvSparseMat> m = (CvSparseMat*)cvRead((CvFileStorage*)node.fs, (CvFileNode*)*node);
CV_Assert(CV_IS_SPARSE_MAT(m.obj));
SparseMat(m).copyTo(mat);
m->copyToSparseMat(mat);
}
void write(FileStorage& fs, const String& objname, const std::vector<KeyPoint>& keypoints)

@ -35,7 +35,7 @@ struct BaseElemWiseOp
virtual int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL_BUT_8S, 1,
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1,
ninputs > 1 ? ARITHM_MAX_CHANNELS : 4);
}
@ -425,7 +425,7 @@ struct CmpOp : public BaseElemWiseOp
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL_BUT_8S, 1, 1);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1, 1);
}
double getMaxErr(int)
@ -455,7 +455,7 @@ struct CmpSOp : public BaseElemWiseOp
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL_BUT_8S, 1, 1);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1, 1);
}
double getMaxErr(int)
{
@ -478,7 +478,7 @@ struct CopyOp : public BaseElemWiseOp
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
}
double getMaxErr(int)
{
@ -501,7 +501,7 @@ struct SetOp : public BaseElemWiseOp
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
}
double getMaxErr(int)
{
@ -718,8 +718,8 @@ struct ConvertScaleOp : public BaseElemWiseOp
}
int getRandomType(RNG& rng)
{
int srctype = cvtest::randomType(rng, DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
ddepth = cvtest::randomType(rng, DEPTH_MASK_ALL, 1, 1);
int srctype = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
ddepth = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, 1);
return srctype;
}
double getMaxErr(int)
@ -957,7 +957,7 @@ struct ExpOp : public BaseElemWiseOp
ExpOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
}
void getValueRange(int depth, double& minval, double& maxval)
{
@ -984,7 +984,7 @@ struct LogOp : public BaseElemWiseOp
LogOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {};
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
}
void getValueRange(int depth, double& minval, double& maxval)
{
@ -1070,7 +1070,7 @@ struct CartToPolarToCartOp : public BaseElemWiseOp
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_FLT, 1, 1);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, 1);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
@ -1157,7 +1157,7 @@ struct CountNonZeroOp : public BaseElemWiseOp
{}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL, 1, 1);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, 1);
}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
@ -1237,7 +1237,7 @@ struct NormOp : public BaseElemWiseOp
};
int getRandomType(RNG& rng)
{
int type = cvtest::randomType(rng, DEPTH_MASK_ALL_BUT_8S, 1, 4);
int type = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1, 4);
for(;;)
{
normType = rng.uniform(1, 8);
@ -1283,7 +1283,7 @@ struct MinMaxLocOp : public BaseElemWiseOp
};
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, DEPTH_MASK_ALL_BUT_8S, 1, 1);
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1, 1);
}
void saveOutput(const vector<int>& minidx, const vector<int>& maxidx,
double minval, double maxval, Mat& dst)

@ -211,7 +211,7 @@ protected:
vector<int> pt;
if( !m || !CV_IS_MAT(m) || m->rows != test_mat.rows || m->cols != test_mat.cols ||
cvtest::cmpEps( Mat(&stub1), Mat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "the read matrix is not correct: (%.20g vs %.20g) at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
@ -241,7 +241,7 @@ protected:
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
cvtest::cmpEps( Mat(&stub1), Mat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "readObj method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
@ -259,7 +259,7 @@ protected:
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
cvtest::cmpEps( Mat(&stub1), Mat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "C++ method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[1], pt[0]),
@ -271,11 +271,11 @@ protected:
cvRelease((void**)&m_nd);
Ptr<CvSparseMat> m_s = (CvSparseMat*)fs["test_sparse_mat"].readObj();
Ptr<CvSparseMat> _test_sparse_ = (CvSparseMat*)test_sparse_mat;
Ptr<CvSparseMat> _test_sparse_ = cvCreateSparseMat(test_sparse_mat);
Ptr<CvSparseMat> _test_sparse = (CvSparseMat*)cvClone(_test_sparse_);
SparseMat m_s2;
fs["test_sparse_mat"] >> m_s2;
Ptr<CvSparseMat> _m_s2 = (CvSparseMat*)m_s2;
Ptr<CvSparseMat> _m_s2 = cvCreateSparseMat(m_s2);
if( !m_s || !CV_IS_SPARSE_MAT(m_s) ||
!cvTsCheckSparse(m_s, _test_sparse,0) ||

@ -734,7 +734,7 @@ void Core_ArrayOpTest::run( int /* start_from */)
}
}
Ptr<CvSparseMat> M2 = (CvSparseMat*)M;
Ptr<CvSparseMat> M2 = cvCreateSparseMat(M);
MatND Md;
M.copyTo(Md);
SparseMat M3; SparseMat(Md).convertTo(M3, Md.type(), 2);

@ -2292,9 +2292,9 @@ void Core_SolvePolyTest::run( int )
cvFlip(&amat, &amat, 0);
int nr2;
if( cubic_case == 0 )
nr2 = cv::solveCubic(cv::Mat(&amat),umat2);
nr2 = cv::solveCubic(cv::cvarrToMat(&amat),umat2);
else
nr2 = cv::solveCubic(cv::Mat_<float>(cv::Mat(&amat)), umat2);
nr2 = cv::solveCubic(cv::Mat_<float>(cv::cvarrToMat(&amat)), umat2);
cvFlip(&amat, &amat, 0);
if(nr2 > 0)
std::sort(ar2.begin(), ar2.begin()+nr2, pred_double());

@ -596,8 +596,8 @@ PERF_TEST_P(Video, Video_FGDStatModel,
stopTimer();
}
const cv::Mat background = model->background;
const cv::Mat foreground = model->foreground;
const cv::Mat background = cv::cvarrToMat(model->background);
const cv::Mat foreground = cv::cvarrToMat(model->foreground);
CPU_SANITY_CHECK(background);
CPU_SANITY_CHECK(foreground);

@ -495,10 +495,10 @@ bool VideoCapture::retrieve(Mat& image, int channel)
return false;
}
if(_img->origin == IPL_ORIGIN_TL)
image = Mat(_img);
image = cv::cvarrToMat(_img);
else
{
Mat temp(_img);
Mat temp = cv::cvarrToMat(_img);
flip(temp, image, 0);
}
return true;

@ -948,7 +948,7 @@ void GuiReceiver::showImage(QString name, void* arr)
mat = cvGetMat(arr, &stub);
cv::Mat im(mat);
cv::Mat im = cv::cvarrToMat(mat);
cv::imshow(name.toUtf8().data(), im);
}
else

@ -247,7 +247,7 @@ void CV_HighGuiTest::VideoTest(const string& dir, const cvtest::VideoFormat& fmt
if (!img)
break;
frames.push_back(Mat(img).clone());
frames.push_back(cv::cvarrToMat(img, true));
if (writer == 0)
{
@ -285,7 +285,7 @@ void CV_HighGuiTest::VideoTest(const string& dir, const cvtest::VideoFormat& fmt
break;
Mat img = frames[i];
Mat img1(ipl1);
Mat img1 = cv::cvarrToMat(ipl1);
double psnr = PSNR(img1, img);
if (psnr < thresDbell)

@ -2456,7 +2456,8 @@ cvCompareHist( const CvHistogram* hist1,
if( !CV_IS_SPARSE_MAT(hist1->bins) )
{
cv::Mat H1((const CvMatND*)hist1->bins), H2((const CvMatND*)hist2->bins);
cv::Mat H1 = cv::cvarrToMat(hist1->bins);
cv::Mat H2 = cv::cvarrToMat(hist2->bins);
return cv::compareHist(H1, H2, method);
}
@ -2758,7 +2759,7 @@ cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask
if( !CV_IS_SPARSE_HIST(hist) )
{
cv::Mat H((const CvMatND*)hist->bins);
cv::Mat H = cv::cvarrToMat(hist->bins);
cv::calcHist( &images[0], (int)images.size(), 0, _mask,
H, cvGetDims(hist->bins), H.size, ranges, uniform, accumulate != 0 );
}
@ -2768,7 +2769,8 @@ cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask
if( !accumulate )
cvZero( hist->bins );
cv::SparseMat sH(sparsemat);
cv::SparseMat sH;
sparsemat->copyToSparseMat(sH);
cv::calcHist( &images[0], (int)images.size(), 0, _mask, sH, sH.dims(),
sH.dims() > 0 ? sH.hdr->size : 0, ranges, uniform, accumulate != 0, true );
@ -2820,13 +2822,14 @@ cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist )
if( !CV_IS_SPARSE_HIST(hist) )
{
cv::Mat H((const CvMatND*)hist->bins);
cv::Mat H = cv::cvarrToMat(hist->bins);
cv::calcBackProject( &images[0], (int)images.size(),
0, H, _dst, ranges, 1, uniform );
}
else
{
cv::SparseMat sH((const CvSparseMat*)hist->bins);
cv::SparseMat sH;
((const CvSparseMat*)hist->bins)->copyToSparseMat(sH);
cv::calcBackProject( &images[0], (int)images.size(),
0, sH, _dst, ranges, 1, uniform );
}

@ -630,7 +630,8 @@ void CV_MinMaxHistTest::run_func(void)
{
if( hist_type != CV_HIST_ARRAY && test_cpp )
{
cv::SparseMat h((CvSparseMat*)hist[0]->bins);
cv::SparseMat h;
((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h);
double _min_val = 0, _max_val = 0;
cv::minMaxLoc(h, &_min_val, &_max_val, min_idx, max_idx );
min_val = (float)_min_val;
@ -727,10 +728,11 @@ void CV_NormHistTest::run_func(void)
{
if( hist_type != CV_HIST_ARRAY && test_cpp )
{
cv::SparseMat h((CvSparseMat*)hist[0]->bins);
cv::SparseMat h;
((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h);
cv::normalize(h, h, factor, CV_L1);
cvReleaseSparseMat((CvSparseMat**)&hist[0]->bins);
hist[0]->bins = (CvSparseMat*)h;
hist[0]->bins = cvCreateSparseMat(h);
}
else
cvNormalizeHist( hist[0], factor );
@ -978,8 +980,9 @@ void CV_CompareHistTest::run_func(void)
int k;
if( hist_type != CV_HIST_ARRAY && test_cpp )
{
cv::SparseMat h0((CvSparseMat*)hist[0]->bins);
cv::SparseMat h1((CvSparseMat*)hist[1]->bins);
cv::SparseMat h0, h1;
((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h0);
((CvSparseMat*)hist[1]->bins)->copyToSparseMat(h1);
for( k = 0; k < MAX_METHOD; k++ )
result[k] = cv::compareHist(h0, h1, k);
}

@ -334,7 +334,7 @@ void RandomizedTree::train(std::vector<BaseKeypoint> const& base_set,
Size patchSize(PATCH_SIZE, PATCH_SIZE);
for (keypt_it = base_set.begin(); keypt_it != base_set.end(); ++keypt_it, ++class_id) {
for (int i = 0; i < views; ++i) {
make_patch( Mat(keypt_it->image), Point(keypt_it->x, keypt_it->y ), patch, patchSize, rng );
make_patch( cv::cvarrToMat(keypt_it->image), Point(keypt_it->x, keypt_it->y ), patch, patchSize, rng );
IplImage iplPatch = patch;
addExample(class_id, getData(&iplPatch));
}

@ -139,15 +139,15 @@ void init_params(const CvEMParams& src,
Mat& prbs, Mat& weights,
Mat& means, std::vector<Mat>& covsHdrs)
{
prbs = src.probs;
weights = src.weights;
means = src.means;
prbs = cv::cvarrToMat(src.probs);
weights = cv::cvarrToMat(src.weights);
means = cv::cvarrToMat(src.means);
if(src.covs)
{
covsHdrs.resize(src.nclusters);
for(size_t i = 0; i < covsHdrs.size(); i++)
covsHdrs[i] = src.covs[i];
covsHdrs[i] = cv::cvarrToMat(src.covs[i]);
}
}

@ -745,6 +745,7 @@ void icvReconstructPoints4DStatus(CvMat** projPoints, CvMat **projMatrs, CvMat**
double* matrW_dat = 0;
CV_FUNCNAME( "icvReconstructPoints4DStatus" );
__BEGIN__;
/* ----- Test input params for errors ----- */
@ -770,6 +771,7 @@ void icvReconstructPoints4DStatus(CvMat** projPoints, CvMat **projMatrs, CvMat**
CV_ERROR( CV_StsOutOfRange, "Points must have 4 cordinates" );
}
/* !!! Not tested all input parameters */
/* ----- End test ----- */
@ -778,75 +780,75 @@ void icvReconstructPoints4DStatus(CvMat** projPoints, CvMat **projMatrs, CvMat**
/* Allocate maximum data */
{
double matrV_dat[4*4];
CvMat matrV = cvMat(4,4,CV_64F,matrV_dat);
CvMat matrV;
double matrV_dat[4*4];
matrV = cvMat(4,4,CV_64F,matrV_dat);
CV_CALL(matrA_dat = (double*)cvAlloc(3*numImages * 4 * sizeof(double)));
CV_CALL(matrW_dat = (double*)cvAlloc(3*numImages * 4 * sizeof(double)));
CV_CALL(matrA_dat = (double*)cvAlloc(3*numImages * 4 * sizeof(double)));
CV_CALL(matrW_dat = (double*)cvAlloc(3*numImages * 4 * sizeof(double)));
/* reconstruct each point */
for( currPoint = 0; currPoint < numPoints; currPoint++ )
{
/* Reconstruct current point */
/* Define number of visible projections */
int numVisProj = 0;
for( currImage = 0; currImage < numImages; currImage++ )
/* reconstruct each point */
for( currPoint = 0; currPoint < numPoints; currPoint++ )
{
if( cvmGet(presPoints[currImage],0,currPoint) > 0 )
/* Reconstruct current point */
/* Define number of visible projections */
int numVisProj = 0;
for( currImage = 0; currImage < numImages; currImage++ )
{
numVisProj++;
if( cvmGet(presPoints[currImage],0,currPoint) > 0 )
{
numVisProj++;
}
}
}
if( numVisProj < 2 )
{
/* This point can't be reconstructed */
continue;
}
if( numVisProj < 2 )
{
/* This point can't be reconstructed */
continue;
}
/* Allocate memory and create matrices */
CvMat matrA;
matrA = cvMat(3*numVisProj,4,CV_64F,matrA_dat);
/* Allocate memory and create matrices */
CvMat matrA;
matrA = cvMat(3*numVisProj,4,CV_64F,matrA_dat);
CvMat matrW;
matrW = cvMat(3*numVisProj,4,CV_64F,matrW_dat);
CvMat matrW;
matrW = cvMat(3*numVisProj,4,CV_64F,matrW_dat);
int currVisProj = 0;
for( currImage = 0; currImage < numImages; currImage++ )/* For each view */
{
if( cvmGet(presPoints[currImage],0,currPoint) > 0 )
int currVisProj = 0;
for( currImage = 0; currImage < numImages; currImage++ )/* For each view */
{
double x,y;
x = cvmGet(projPoints[currImage],0,currPoint);
y = cvmGet(projPoints[currImage],1,currPoint);
for( int k = 0; k < 4; k++ )
if( cvmGet(presPoints[currImage],0,currPoint) > 0 )
{
matrA_dat[currVisProj*12 + k] =
x * cvmGet(projMatrs[currImage],2,k) - cvmGet(projMatrs[currImage],0,k);
double x,y;
x = cvmGet(projPoints[currImage],0,currPoint);
y = cvmGet(projPoints[currImage],1,currPoint);
for( int k = 0; k < 4; k++ )
{
matrA_dat[currVisProj*12 + k] =
x * cvmGet(projMatrs[currImage],2,k) - cvmGet(projMatrs[currImage],0,k);
matrA_dat[currVisProj*12+4 + k] =
y * cvmGet(projMatrs[currImage],2,k) - cvmGet(projMatrs[currImage],1,k);
matrA_dat[currVisProj*12+4 + k] =
y * cvmGet(projMatrs[currImage],2,k) - cvmGet(projMatrs[currImage],1,k);
matrA_dat[currVisProj*12+8 + k] =
x * cvmGet(projMatrs[currImage],1,k) - y * cvmGet(projMatrs[currImage],0,k);
matrA_dat[currVisProj*12+8 + k] =
x * cvmGet(projMatrs[currImage],1,k) - y * cvmGet(projMatrs[currImage],0,k);
}
currVisProj++;
}
currVisProj++;
}
}
/* Solve system for current point */
{
cvSVD(&matrA,&matrW,0,&matrV,CV_SVD_V_T);
/* Solve system for current point */
{
cvSVD(&matrA,&matrW,0,&matrV,CV_SVD_V_T);
/* Copy computed point */
cvmSet(points4D,0,currPoint,cvmGet(&matrV,3,0));//X
cvmSet(points4D,1,currPoint,cvmGet(&matrV,3,1));//Y
cvmSet(points4D,2,currPoint,cvmGet(&matrV,3,2));//Z
cvmSet(points4D,3,currPoint,cvmGet(&matrV,3,3));//W
}
/* Copy computed point */
cvmSet(points4D,0,currPoint,cvmGet(&matrV,3,0));//X
cvmSet(points4D,1,currPoint,cvmGet(&matrV,3,1));//Y
cvmSet(points4D,2,currPoint,cvmGet(&matrV,3,2));//Z
cvmSet(points4D,3,currPoint,cvmGet(&matrV,3,3));//W
}
}
}
{/* Compute projection error */
@ -913,7 +915,7 @@ static void icvProjPointsStatusFunc( int numImages, CvMat *points4D, CvMat **pro
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
{
int numPoints;
numPoints = points4D->cols;
if( numPoints < 1 )
@ -994,7 +996,7 @@ static void icvProjPointsStatusFunc( int numImages, CvMat *points4D, CvMat **pro
}
}
}
}
__END__;
}

@ -1740,7 +1740,7 @@ namespace cv{
CV_Error(CV_StsNotImplemented, "OpenCV was built without SURF support");
surf_extractor->set("hessianThreshold", 1.0);
//printf("Extracting SURF features...");
surf_extractor->detect(Mat(img), features);
surf_extractor->detect(cv::cvarrToMat(img), features);
//printf("done\n");
for (int j = 0; j < (int)features.size(); j++)

@ -223,7 +223,7 @@ int icvComputeProjectMatrices6Points( CvMat* points1,CvMat* points2,CvMat* point
CV_ERROR( CV_StsUnmatchedSizes, "Number of coordinates of points4D must be 4" );
}
#endif
{
/* Find transform matrix for each camera */
int i;
CvMat* points[3];
@ -400,7 +400,7 @@ int icvComputeProjectMatrices6Points( CvMat* points1,CvMat* points2,CvMat* point
#endif
}/* for all sollutions */
}
__END__;
return numSol;
}
@ -1362,7 +1362,7 @@ void icvFindBaseTransform(CvMat* points,CvMat* resultT)
/* Function gets four points and compute transformation to e1=(100) e2=(010) e3=(001) e4=(111) */
/* !!! test each three points not collinear. Need to test */
{
/* Create matrices */
CvMat matrA;
CvMat vectB;
@ -1410,7 +1410,7 @@ void icvFindBaseTransform(CvMat* points,CvMat* resultT)
cvInvert(&matrA,&tmpRes);
cvConvert(&tmpRes,resultT);
}
__END__;
return;
@ -1459,7 +1459,7 @@ void GetGeneratorReduceFundSolution(CvMat* points1,CvMat* points2,CvMat* fundRed
}
/* Using 3 corr. points compute reduce */
{
/* Create matrix */
CvMat matrA;
double matrA_dat[3*5];
@ -1507,7 +1507,7 @@ void GetGeneratorReduceFundSolution(CvMat* points1,CvMat* points2,CvMat* fundRed
cvmSet(fundReduceCoef1,0,i,cvmGet(&matrV,3,i));
cvmSet(fundReduceCoef2,0,i,cvmGet(&matrV,4,i));
}
}
__END__;
return;
@ -1551,7 +1551,7 @@ int GetGoodReduceFundamMatrFromTwo(CvMat* fundReduceCoef1,CvMat* fundReduceCoef2
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of resFundReduceCoef must be 1x5" );
}
{
double p1,q1,r1,s1,t1;
double p2,q2,r2,s2,t2;
p1 = cvmGet(fundReduceCoef1,0,0);
@ -1599,7 +1599,7 @@ int GetGoodReduceFundamMatrFromTwo(CvMat* fundReduceCoef1,CvMat* fundReduceCoef2
numRoots++;
}
}
}
__END__;
return numRoots;
}
@ -1636,7 +1636,7 @@ void GetProjMatrFromReducedFundamental(CvMat* fundReduceCoefs,CvMat* projMatrCoe
/* Computes project matrix from given reduced matrix */
/* we have p,q,r,s,t and need get a,b,c,d */
/* Fill matrix to compute ratio a:b:c as A:B:C */
{
CvMat matrA;
double matrA_dat[3*3];
matrA = cvMat(3,3,CV_64F,matrA_dat);
@ -1752,7 +1752,7 @@ void GetProjMatrFromReducedFundamental(CvMat* fundReduceCoefs,CvMat* projMatrCoe
cvmSet(projMatrCoefs,0,3,d);
}
}
__END__;
return;
}
@ -2106,7 +2106,7 @@ void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* proj
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of projection matrices must be 3x4" );
}
{
CvMat matrA;
double matrA_dat[36];
matrA = cvMat(9,4,CV_64F,matrA_dat);
@ -2203,7 +2203,7 @@ void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* proj
}
}
}*/
}
__END__;
return;
}

@ -1655,10 +1655,10 @@ CvBoost::predict( const CvMat* _sample, const CvMat* _missing,
const int* cmap = data->cat_map->data.i;
const int* cofs = data->cat_ofs->data.i;
cv::Mat sample = _sample;
cv::Mat sample = cv::cvarrToMat(_sample);
cv::Mat missing;
if(!_missing)
missing = _missing;
missing = cv::cvarrToMat(_missing);
// if need, preprocess the input vector
if( !raw_mode )

@ -861,7 +861,7 @@ float CvRTrees::predict_prob( const Mat& _sample, const Mat& _missing) const
Mat CvRTrees::getVarImportance()
{
return Mat(get_var_importance());
return cvarrToMat(get_var_importance());
}
// End of file.

@ -4142,7 +4142,7 @@ void CvDTree::read( CvFileStorage* fs, CvFileNode* node, CvDTreeTrainData* _data
Mat CvDTree::getVarImportance()
{
return Mat(get_var_importance());
return cvarrToMat(get_var_importance());
}
/* End of file. */

@ -597,7 +597,7 @@ protected:
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
}
Mat values = data.get_values();
Mat values = cv::cvarrToMat(data.get_values());
CV_Assert(values.cols == 58);
int responseIndex = 57;

@ -528,7 +528,7 @@ void findDataMatrix(InputArray _image,
{
_dmtx.create(rc_i.original->rows, rc_i.original->cols, rc_i.original->type, i);
Mat dst = _dmtx.getMat(i);
Mat(rc_i.original).copyTo(dst);
cv::cvarrToMat(rc_i.original).copyTo(dst);
}
cvReleaseMat(&rc_i.original);
}

@ -1611,17 +1611,17 @@ cvHaarDetectObjectsForROC( const CvArr* _img,
if( use_ipp )
{
cv::Mat fsum(sum1.rows, sum1.cols, CV_32F, sum1.data.ptr, sum1.step);
cv::Mat(&sum1).convertTo(fsum, CV_32F, 1, -(1<<24));
cv::cvarrToMat(&sum1).convertTo(fsum, CV_32F, 1, -(1<<24));
}
else
#endif
cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. );
cv::Mat _norm1(&norm1), _mask1(&mask1);
cv::Mat _norm1 = cv::cvarrToMat(&norm1), _mask1 = cv::cvarrToMat(&mask1);
cv::parallel_for_(cv::Range(0, stripCount),
cv::HaarDetectObjects_ScaleImage_Invoker(cascade,
(((sz1.height + stripCount - 1)/stripCount + ystep-1)/ystep)*ystep,
factor, cv::Mat(&sum1), cv::Mat(&sqsum1), &_norm1, &_mask1,
factor, cv::cvarrToMat(&sum1), cv::cvarrToMat(&sqsum1), &_norm1, &_mask1,
cv::Rect(equRect), allCandidates, rejectLevels, levelWeights, outputRejectLevels, &mtx));
}
}

@ -253,7 +253,7 @@ static PyObject *iplimage_tostring(PyObject *self, PyObject *args)
return NULL;
if (i == NULL)
return NULL;
cv::Mat img(i);
cv::Mat img = cvarrToMat(i);
size_t esz = img.elemSize();
int nrows = img.rows, ncols = img.cols;

@ -71,7 +71,7 @@ int randomType(RNG& rng, int typeMask, int minChannels, int maxChannels)
{
int channels = rng.uniform(minChannels, maxChannels+1);
int depth = 0;
CV_Assert((typeMask & DEPTH_MASK_ALL) != 0);
CV_Assert((typeMask & _OutputArray::DEPTH_MASK_ALL) != 0);
for(;;)
{
depth = rng.uniform(CV_8U, CV_64F+1);

@ -1,6 +1,7 @@
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include <cctype>
#include <iostream>
@ -124,7 +125,7 @@ int main( int argc, const char** argv )
for(;;)
{
IplImage* iplImg = cvQueryFrame( capture );
frame = iplImg;
frame = cv::cvarrToMat(iplImg);
if( frame.empty() )
break;
if( iplImg->origin == IPL_ORIGIN_TL )

@ -1,6 +1,7 @@
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include <cctype>
#include <iostream>
@ -120,7 +121,7 @@ int main( int argc, const char** argv )
for(;;)
{
IplImage* iplImg = cvQueryFrame( capture );
frame = iplImg;
frame = cv::cvarrToMat(iplImg);
if( frame.empty() )
break;
if( iplImg->origin == IPL_ORIGIN_TL )

@ -1,5 +1,6 @@
#include "opencv2/ml/ml.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/utility.hpp"
#include <stdio.h>
#include <map>
@ -21,7 +22,7 @@ static void help()
static int count_classes(CvMLData& data)
{
cv::Mat r(data.get_responses());
cv::Mat r = cv::cvarrToMat(data.get_responses());
std::map<int, int> rmap;
int i, n = (int)r.total();
for( i = 0; i < n; i++ )
@ -42,7 +43,7 @@ static void print_result(float train_err, float test_err, const CvMat* _var_imp)
if (_var_imp)
{
cv::Mat var_imp(_var_imp), sorted_idx;
cv::Mat var_imp = cv::cvarrToMat(_var_imp), sorted_idx;
cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING);
printf( "variable importance:\n" );

@ -118,7 +118,7 @@ static void foundCorners(vector<CvPoint2D32f> *srcImagePoints,IplImage* source,
cvNormalize(grayImage, grayImage, 0, 255, CV_MINMAX);
cvThreshold( grayImage, grayImage, 26, 255, CV_THRESH_BINARY_INV);//25
Mat MgrayImage = grayImage;
Mat MgrayImage = cv::cvarrToMat(grayImage);
//For debug
//MgrayImage = MgrayImage.clone();//deep copy
vector<vector<Point> > contours;
@ -184,7 +184,7 @@ static void foundCorners(vector<CvPoint2D32f> *srcImagePoints,IplImage* source,
}
srcImagePoints->at(3) = srcImagePoints_temp.at(index);
Mat Msource = source;
Mat Msource = cv::cvarrToMat(source);
stringstream ss;
for(size_t i = 0 ; i<srcImagePoints_temp.size(); i++ )
{

@ -3,6 +3,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/flann/miniflann.hpp"
#include "opencv2/core/utility.hpp"
using namespace cv; // all the new API is put into "cv" namespace. Export its content
using namespace std;
@ -32,7 +33,7 @@ int main( int argc, char** argv )
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
Mat img(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert
Mat img = cv::cvarrToMat(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert
// between the old and the new data structures (by default, only the header
// is converted, while the data is shared)
#else

@ -4,6 +4,7 @@
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/utility.hpp>"
using namespace cv; // The new C++ interface API is inside this namespace. Import it.
using namespace std;
@ -33,7 +34,7 @@ int main( int argc, char** argv )
cerr << "Can not load image " << imagename << endl;
return -1;
}
Mat I(IplI); // Convert to the new style container. Only header created. Image not copied.
Mat I = cv::cvarrToMat(IplI); // Convert to the new style container. Only header created. Image not copied.
#else
Mat I = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
if( I.empty() ) // same as if( !I.data )

@ -6,6 +6,7 @@
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include <iostream>
#include <stdio.h>
@ -43,7 +44,7 @@ int main( void )
{
for(;;)
{
frame = cvQueryFrame( capture );
frame = cv::cvarrToMat(cvQueryFrame( capture ));
//-- 3. Apply the classifier to the frame
if( !frame.empty() )

@ -6,6 +6,7 @@
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include <iostream>
#include <stdio.h>
@ -43,7 +44,7 @@ int main( void )
{
for(;;)
{
frame = cvQueryFrame( capture );
frame = cv::cvarrToMat(cvQueryFrame( capture ));
//-- 3. Apply the classifier to the frame
if( !frame.empty() )

Loading…
Cancel
Save