|
|
|
@ -45,9 +45,9 @@ |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::gpu; |
|
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_GPUARITHM) |
|
|
|
|
|
|
|
|
|
void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat&, GpuMat&, const GpuMat&) { throw_no_cuda(); } |
|
|
|
|
Ptr<gpu::CornersDetector> cv::gpu::createGoodFeaturesToTrackDetector(int, int, double, double, int, bool, double) { throw_no_cuda(); return Ptr<gpu::CornersDetector>(); } |
|
|
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
|
|
|
|
|
@ -60,119 +60,156 @@ namespace cv { namespace gpu { namespace cudev |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask) |
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
#ifndef HAVE_OPENCV_GPUARITHM |
|
|
|
|
(void) image; |
|
|
|
|
(void) corners; |
|
|
|
|
(void) mask; |
|
|
|
|
throw_no_cuda(); |
|
|
|
|
#else |
|
|
|
|
using namespace cv::gpu::cudev::gfft; |
|
|
|
|
class GoodFeaturesToTrackDetector : public CornersDetector |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
GoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, |
|
|
|
|
int blockSize, bool useHarrisDetector, double harrisK); |
|
|
|
|
|
|
|
|
|
void detect(InputArray image, OutputArray corners, InputArray mask = noArray()); |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
int maxCorners_; |
|
|
|
|
double qualityLevel_; |
|
|
|
|
double minDistance_; |
|
|
|
|
|
|
|
|
|
Ptr<gpu::CornernessCriteria> cornerCriteria_; |
|
|
|
|
|
|
|
|
|
GpuMat Dx_; |
|
|
|
|
GpuMat Dy_; |
|
|
|
|
GpuMat buf_; |
|
|
|
|
GpuMat eig_; |
|
|
|
|
GpuMat minMaxbuf_; |
|
|
|
|
GpuMat tmpCorners_; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
GoodFeaturesToTrackDetector::GoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, |
|
|
|
|
int blockSize, bool useHarrisDetector, double harrisK) : |
|
|
|
|
maxCorners_(maxCorners), qualityLevel_(qualityLevel), minDistance_(minDistance) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( qualityLevel_ > 0 && minDistance_ >= 0 && maxCorners_ >= 0 ); |
|
|
|
|
|
|
|
|
|
CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0); |
|
|
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size())); |
|
|
|
|
cornerCriteria_ = useHarrisDetector ? |
|
|
|
|
gpu::createHarrisCorner(srcType, blockSize, 3, harrisK) : |
|
|
|
|
gpu::createMinEigenValCorner(srcType, blockSize, 3); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(image.size(), CV_32F, eig_); |
|
|
|
|
void GoodFeaturesToTrackDetector::detect(InputArray _image, OutputArray _corners, InputArray _mask) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::gfft; |
|
|
|
|
|
|
|
|
|
Ptr<gpu::CornernessCriteria> cornerCriteria = |
|
|
|
|
useHarrisDetector ? |
|
|
|
|
gpu::createHarrisCorner(image.type(), blockSize, 3, harrisK) : |
|
|
|
|
gpu::createMinEigenValCorner(image.type(), blockSize, 3); |
|
|
|
|
GpuMat image = _image.getGpuMat(); |
|
|
|
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
|
|
|
|
|
|
cornerCriteria->compute(image, eig_); |
|
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) ); |
|
|
|
|
|
|
|
|
|
double maxVal = 0; |
|
|
|
|
gpu::minMax(eig_, 0, &maxVal, GpuMat(), minMaxbuf_); |
|
|
|
|
ensureSizeIsEnough(image.size(), CV_32FC1, eig_); |
|
|
|
|
cornerCriteria_->compute(image, eig_); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_); |
|
|
|
|
double maxVal = 0; |
|
|
|
|
gpu::minMax(eig_, 0, &maxVal, noArray(), minMaxbuf_); |
|
|
|
|
|
|
|
|
|
int total = findCorners_gpu(eig_, static_cast<float>(maxVal * qualityLevel), mask, tmpCorners_.ptr<float2>(), tmpCorners_.cols); |
|
|
|
|
ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_); |
|
|
|
|
|
|
|
|
|
if (total == 0) |
|
|
|
|
{ |
|
|
|
|
corners.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
int total = findCorners_gpu(eig_, static_cast<float>(maxVal * qualityLevel_), mask, tmpCorners_.ptr<float2>(), tmpCorners_.cols); |
|
|
|
|
|
|
|
|
|
sortCorners_gpu(eig_, tmpCorners_.ptr<float2>(), total); |
|
|
|
|
if (total == 0) |
|
|
|
|
{ |
|
|
|
|
_corners.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (minDistance < 1) |
|
|
|
|
tmpCorners_.colRange(0, maxCorners > 0 ? std::min(maxCorners, total) : total).copyTo(corners); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
std::vector<Point2f> tmp(total); |
|
|
|
|
Mat tmpMat(1, total, CV_32FC2, (void*)&tmp[0]); |
|
|
|
|
tmpCorners_.colRange(0, total).download(tmpMat); |
|
|
|
|
sortCorners_gpu(eig_, tmpCorners_.ptr<float2>(), total); |
|
|
|
|
|
|
|
|
|
std::vector<Point2f> tmp2; |
|
|
|
|
tmp2.reserve(total); |
|
|
|
|
if (minDistance_ < 1) |
|
|
|
|
{ |
|
|
|
|
tmpCorners_.colRange(0, maxCorners_ > 0 ? std::min(maxCorners_, total) : total).copyTo(_corners); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
std::vector<Point2f> tmp(total); |
|
|
|
|
Mat tmpMat(1, total, CV_32FC2, (void*)&tmp[0]); |
|
|
|
|
tmpCorners_.colRange(0, total).download(tmpMat); |
|
|
|
|
|
|
|
|
|
const int cell_size = cvRound(minDistance); |
|
|
|
|
const int grid_width = (image.cols + cell_size - 1) / cell_size; |
|
|
|
|
const int grid_height = (image.rows + cell_size - 1) / cell_size; |
|
|
|
|
std::vector<Point2f> tmp2; |
|
|
|
|
tmp2.reserve(total); |
|
|
|
|
|
|
|
|
|
std::vector< std::vector<Point2f> > grid(grid_width * grid_height); |
|
|
|
|
const int cell_size = cvRound(minDistance_); |
|
|
|
|
const int grid_width = (image.cols + cell_size - 1) / cell_size; |
|
|
|
|
const int grid_height = (image.rows + cell_size - 1) / cell_size; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < total; ++i) |
|
|
|
|
{ |
|
|
|
|
Point2f p = tmp[i]; |
|
|
|
|
std::vector< std::vector<Point2f> > grid(grid_width * grid_height); |
|
|
|
|
|
|
|
|
|
bool good = true; |
|
|
|
|
for (int i = 0; i < total; ++i) |
|
|
|
|
{ |
|
|
|
|
Point2f p = tmp[i]; |
|
|
|
|
|
|
|
|
|
int x_cell = static_cast<int>(p.x / cell_size); |
|
|
|
|
int y_cell = static_cast<int>(p.y / cell_size); |
|
|
|
|
bool good = true; |
|
|
|
|
|
|
|
|
|
int x1 = x_cell - 1; |
|
|
|
|
int y1 = y_cell - 1; |
|
|
|
|
int x2 = x_cell + 1; |
|
|
|
|
int y2 = y_cell + 1; |
|
|
|
|
int x_cell = static_cast<int>(p.x / cell_size); |
|
|
|
|
int y_cell = static_cast<int>(p.y / cell_size); |
|
|
|
|
|
|
|
|
|
// boundary check
|
|
|
|
|
x1 = std::max(0, x1); |
|
|
|
|
y1 = std::max(0, y1); |
|
|
|
|
x2 = std::min(grid_width - 1, x2); |
|
|
|
|
y2 = std::min(grid_height - 1, y2); |
|
|
|
|
int x1 = x_cell - 1; |
|
|
|
|
int y1 = y_cell - 1; |
|
|
|
|
int x2 = x_cell + 1; |
|
|
|
|
int y2 = y_cell + 1; |
|
|
|
|
|
|
|
|
|
for (int yy = y1; yy <= y2; yy++) |
|
|
|
|
{ |
|
|
|
|
for (int xx = x1; xx <= x2; xx++) |
|
|
|
|
{ |
|
|
|
|
std::vector<Point2f>& m = grid[yy * grid_width + xx]; |
|
|
|
|
// boundary check
|
|
|
|
|
x1 = std::max(0, x1); |
|
|
|
|
y1 = std::max(0, y1); |
|
|
|
|
x2 = std::min(grid_width - 1, x2); |
|
|
|
|
y2 = std::min(grid_height - 1, y2); |
|
|
|
|
|
|
|
|
|
if (!m.empty()) |
|
|
|
|
for (int yy = y1; yy <= y2; yy++) |
|
|
|
|
{ |
|
|
|
|
for (int xx = x1; xx <= x2; xx++) |
|
|
|
|
{ |
|
|
|
|
for(size_t j = 0; j < m.size(); j++) |
|
|
|
|
{ |
|
|
|
|
float dx = p.x - m[j].x; |
|
|
|
|
float dy = p.y - m[j].y; |
|
|
|
|
std::vector<Point2f>& m = grid[yy * grid_width + xx]; |
|
|
|
|
|
|
|
|
|
if (dx * dx + dy * dy < minDistance * minDistance) |
|
|
|
|
if (!m.empty()) |
|
|
|
|
{ |
|
|
|
|
for(size_t j = 0; j < m.size(); j++) |
|
|
|
|
{ |
|
|
|
|
good = false; |
|
|
|
|
goto break_out; |
|
|
|
|
float dx = p.x - m[j].x; |
|
|
|
|
float dy = p.y - m[j].y; |
|
|
|
|
|
|
|
|
|
if (dx * dx + dy * dy < minDistance_ * minDistance_) |
|
|
|
|
{ |
|
|
|
|
good = false; |
|
|
|
|
goto break_out; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
break_out: |
|
|
|
|
break_out: |
|
|
|
|
|
|
|
|
|
if(good) |
|
|
|
|
{ |
|
|
|
|
grid[y_cell * grid_width + x_cell].push_back(p); |
|
|
|
|
if(good) |
|
|
|
|
{ |
|
|
|
|
grid[y_cell * grid_width + x_cell].push_back(p); |
|
|
|
|
|
|
|
|
|
tmp2.push_back(p); |
|
|
|
|
tmp2.push_back(p); |
|
|
|
|
|
|
|
|
|
if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners)) |
|
|
|
|
break; |
|
|
|
|
if (maxCorners_ > 0 && tmp2.size() == static_cast<size_t>(maxCorners_)) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0])); |
|
|
|
|
_corners.create(1, static_cast<int>(tmp2.size()), CV_32FC2); |
|
|
|
|
GpuMat corners = _corners.getGpuMat(); |
|
|
|
|
|
|
|
|
|
corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0])); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Ptr<gpu::CornersDetector> cv::gpu::createGoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, |
|
|
|
|
int blockSize, bool useHarrisDetector, double harrisK) |
|
|
|
|
{ |
|
|
|
|
return new GoodFeaturesToTrackDetector(srcType, maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, harrisK); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */ |
|
|
|
|