mirror of https://github.com/opencv/opencv.git
Merge pull request #2373 from mlyashko:optflow_dualtvl1
commit
702a2a6ff6
6 changed files with 1140 additions and 151 deletions
@ -0,0 +1,112 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
#include "opencv2/ts/ocl_perf.hpp" |
||||
|
||||
using std::tr1::make_tuple; |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
namespace cvtest { |
||||
namespace ocl { |
||||
|
||||
///////////// OpticalFlow Dual TVL1 ////////////////////////
|
||||
typedef tuple< tuple<int, double>, bool> OpticalFlowDualTVL1Params; |
||||
typedef TestBaseWithParam<OpticalFlowDualTVL1Params> OpticalFlowDualTVL1Fixture; |
||||
|
||||
OCL_PERF_TEST_P(OpticalFlowDualTVL1Fixture, OpticalFlowDualTVL1, |
||||
::testing::Combine( |
||||
::testing::Values(make_tuple<int, double>(-1, 0.3), |
||||
make_tuple<int, double>(3, 0.5)), |
||||
::testing::Bool() |
||||
) |
||||
) |
||||
{ |
||||
Mat frame0 = imread(getDataPath("cv/optflow/RubberWhale1.png"), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(frame0.empty()) << "can't load RubberWhale1.png"; |
||||
|
||||
Mat frame1 = imread(getDataPath("cv/optflow/RubberWhale2.png"), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(frame1.empty()) << "can't load RubberWhale2.png"; |
||||
|
||||
const Size srcSize = frame0.size(); |
||||
|
||||
const OpticalFlowDualTVL1Params params = GetParam(); |
||||
const tuple<int, double> filteringScale = get<0>(params); |
||||
const int medianFiltering = get<0>(filteringScale); |
||||
const double scaleStep = get<1>(filteringScale); |
||||
const bool useInitFlow = get<1>(params); |
||||
double eps = 0.9; |
||||
|
||||
UMat uFrame0; frame0.copyTo(uFrame0); |
||||
UMat uFrame1; frame1.copyTo(uFrame1); |
||||
UMat uFlow(srcSize, CV_32FC2); |
||||
declare.in(uFrame0, uFrame1, WARMUP_READ).out(uFlow, WARMUP_READ); |
||||
|
||||
//create algorithm
|
||||
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1(); |
||||
|
||||
//set parameters
|
||||
alg->set("scaleStep", scaleStep); |
||||
alg->setInt("medianFiltering", medianFiltering); |
||||
|
||||
if (useInitFlow) |
||||
{ |
||||
//calculate initial flow as result of optical flow
|
||||
alg->calc(uFrame0, uFrame1, uFlow); |
||||
} |
||||
|
||||
//set flag to use initial flow
|
||||
alg->setBool("useInitialFlow", useInitFlow); |
||||
OCL_TEST_CYCLE() |
||||
alg->calc(uFrame0, uFrame1, uFlow); |
||||
|
||||
SANITY_CHECK(uFlow, eps, ERROR_RELATIVE); |
||||
} |
||||
} |
||||
} // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -0,0 +1,378 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Jin Ma jin@multicorewareinc.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
__kernel void centeredGradientKernel(__global const float* src_ptr, int src_col, int src_row, int src_step, |
||||
__global float* dx, __global float* dy, int d_step) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if((x < src_col)&&(y < src_row)) |
||||
{ |
||||
int src_x1 = (x + 1) < (src_col -1)? (x + 1) : (src_col - 1); |
||||
int src_x2 = (x - 1) > 0 ? (x -1) : 0; |
||||
dx[y * d_step+ x] = 0.5f * (src_ptr[y * src_step + src_x1] - src_ptr[y * src_step+ src_x2]); |
||||
|
||||
int src_y1 = (y+1) < (src_row - 1) ? (y + 1) : (src_row - 1); |
||||
int src_y2 = (y - 1) > 0 ? (y - 1) : 0; |
||||
dy[y * d_step+ x] = 0.5f * (src_ptr[src_y1 * src_step + x] - src_ptr[src_y2 * src_step+ x]); |
||||
} |
||||
|
||||
} |
||||
|
||||
inline float bicubicCoeff(float x_) |
||||
{ |
||||
|
||||
float x = fabs(x_); |
||||
if (x <= 1.0f) |
||||
return x * x * (1.5f * x - 2.5f) + 1.0f; |
||||
else if (x < 2.0f) |
||||
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; |
||||
else |
||||
return 0.0f; |
||||
} |
||||
|
||||
__kernel void warpBackwardKernel(__global const float* I0, int I0_step, int I0_col, int I0_row, |
||||
image2d_t tex_I1, image2d_t tex_I1x, image2d_t tex_I1y, |
||||
__global const float* u1, int u1_step, |
||||
__global const float* u2, |
||||
__global float* I1w, |
||||
__global float* I1wx, /*int I1wx_step,*/ |
||||
__global float* I1wy, /*int I1wy_step,*/ |
||||
__global float* grad, /*int grad_step,*/ |
||||
__global float* rho, |
||||
int I1w_step, |
||||
int u2_step, |
||||
int u1_offset_x, |
||||
int u1_offset_y, |
||||
int u2_offset_x, |
||||
int u2_offset_y) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < I0_col&&y < I0_row) |
||||
{ |
||||
//float u1Val = u1(y, x); |
||||
float u1Val = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
||||
//float u2Val = u2(y, x); |
||||
float u2Val = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
||||
|
||||
float wx = x + u1Val; |
||||
float wy = y + u2Val; |
||||
|
||||
int xmin = ceil(wx - 2.0f); |
||||
int xmax = floor(wx + 2.0f); |
||||
|
||||
int ymin = ceil(wy - 2.0f); |
||||
int ymax = floor(wy + 2.0f); |
||||
|
||||
float sum = 0.0f; |
||||
float sumx = 0.0f; |
||||
float sumy = 0.0f; |
||||
float wsum = 0.0f; |
||||
sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; |
||||
for (int cy = ymin; cy <= ymax; ++cy) |
||||
{ |
||||
for (int cx = xmin; cx <= xmax; ++cx) |
||||
{ |
||||
float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); |
||||
//sum += w * tex2D(tex_I1 , cx, cy); |
||||
int2 cood = (int2)(cx, cy); |
||||
sum += w * read_imagef(tex_I1, sampleri, cood).x; |
||||
//sumx += w * tex2D(tex_I1x, cx, cy); |
||||
sumx += w * read_imagef(tex_I1x, sampleri, cood).x; |
||||
//sumy += w * tex2D(tex_I1y, cx, cy); |
||||
sumy += w * read_imagef(tex_I1y, sampleri, cood).x; |
||||
wsum += w; |
||||
} |
||||
} |
||||
float coeff = 1.0f / wsum; |
||||
float I1wVal = sum * coeff; |
||||
float I1wxVal = sumx * coeff; |
||||
float I1wyVal = sumy * coeff; |
||||
I1w[y * I1w_step + x] = I1wVal; |
||||
I1wx[y * I1w_step + x] = I1wxVal; |
||||
I1wy[y * I1w_step + x] = I1wyVal; |
||||
float Ix2 = I1wxVal * I1wxVal; |
||||
float Iy2 = I1wyVal * I1wyVal; |
||||
|
||||
// store the |Grad(I1)|^2 |
||||
grad[y * I1w_step + x] = Ix2 + Iy2; |
||||
|
||||
// compute the constant part of the rho function |
||||
float I0Val = I0[y * I0_step + x]; |
||||
rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; |
||||
} |
||||
} |
||||
|
||||
inline float readImage(__global float *image, int x, int y, int rows, int cols, int elemCntPerRow) |
||||
{ |
||||
int i0 = clamp(x, 0, cols - 1); |
||||
int j0 = clamp(y, 0, rows - 1); |
||||
|
||||
return image[j0 * elemCntPerRow + i0]; |
||||
} |
||||
|
||||
__kernel void warpBackwardKernelNoImage2d(__global const float* I0, int I0_step, int I0_col, int I0_row, |
||||
__global const float* tex_I1, __global const float* tex_I1x, __global const float* tex_I1y, |
||||
__global const float* u1, int u1_step, |
||||
__global const float* u2, |
||||
__global float* I1w, |
||||
__global float* I1wx, /*int I1wx_step,*/ |
||||
__global float* I1wy, /*int I1wy_step,*/ |
||||
__global float* grad, /*int grad_step,*/ |
||||
__global float* rho, |
||||
int I1w_step, |
||||
int u2_step, |
||||
int I1_step, |
||||
int I1x_step) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < I0_col&&y < I0_row) |
||||
{ |
||||
//float u1Val = u1(y, x); |
||||
float u1Val = u1[y * u1_step + x]; |
||||
//float u2Val = u2(y, x); |
||||
float u2Val = u2[y * u2_step + x]; |
||||
|
||||
float wx = x + u1Val; |
||||
float wy = y + u2Val; |
||||
|
||||
int xmin = ceil(wx - 2.0f); |
||||
int xmax = floor(wx + 2.0f); |
||||
|
||||
int ymin = ceil(wy - 2.0f); |
||||
int ymax = floor(wy + 2.0f); |
||||
|
||||
float sum = 0.0f; |
||||
float sumx = 0.0f; |
||||
float sumy = 0.0f; |
||||
float wsum = 0.0f; |
||||
|
||||
for (int cy = ymin; cy <= ymax; ++cy) |
||||
{ |
||||
for (int cx = xmin; cx <= xmax; ++cx) |
||||
{ |
||||
float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); |
||||
|
||||
int2 cood = (int2)(cx, cy); |
||||
sum += w * readImage(tex_I1, cood.x, cood.y, I0_col, I0_row, I1_step); |
||||
sumx += w * readImage(tex_I1x, cood.x, cood.y, I0_col, I0_row, I1x_step); |
||||
sumy += w * readImage(tex_I1y, cood.x, cood.y, I0_col, I0_row, I1x_step); |
||||
wsum += w; |
||||
} |
||||
} |
||||
|
||||
float coeff = 1.0f / wsum; |
||||
|
||||
float I1wVal = sum * coeff; |
||||
float I1wxVal = sumx * coeff; |
||||
float I1wyVal = sumy * coeff; |
||||
|
||||
I1w[y * I1w_step + x] = I1wVal; |
||||
I1wx[y * I1w_step + x] = I1wxVal; |
||||
I1wy[y * I1w_step + x] = I1wyVal; |
||||
|
||||
float Ix2 = I1wxVal * I1wxVal; |
||||
float Iy2 = I1wyVal * I1wyVal; |
||||
|
||||
// store the |Grad(I1)|^2 |
||||
grad[y * I1w_step + x] = Ix2 + Iy2; |
||||
|
||||
// compute the constant part of the rho function |
||||
float I0Val = I0[y * I0_step + x]; |
||||
rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; |
||||
} |
||||
|
||||
} |
||||
|
||||
|
||||
__kernel void estimateDualVariablesKernel(__global const float* u1, int u1_col, int u1_row, int u1_step, |
||||
__global const float* u2, |
||||
__global float* p11, int p11_step, |
||||
__global float* p12, |
||||
__global float* p21, |
||||
__global float* p22, |
||||
float taut, |
||||
int u2_step, |
||||
int u1_offset_x, |
||||
int u1_offset_y, |
||||
int u2_offset_x, |
||||
int u2_offset_y) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < u1_col && y < u1_row) |
||||
{ |
||||
int src_x1 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); |
||||
float u1x = u1[(y + u1_offset_y) * u1_step + src_x1 + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
||||
|
||||
int src_y1 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); |
||||
float u1y = u1[(src_y1 + u1_offset_y) * u1_step + x + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
||||
|
||||
int src_x2 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); |
||||
float u2x = u2[(y + u2_offset_y) * u2_step + src_x2 + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
||||
|
||||
int src_y2 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); |
||||
float u2y = u2[(src_y2 + u2_offset_y) * u2_step + x + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
||||
|
||||
float g1 = hypot(u1x, u1y); |
||||
float g2 = hypot(u2x, u2y); |
||||
|
||||
float ng1 = 1.0f + taut * g1; |
||||
float ng2 = 1.0f + taut * g2; |
||||
|
||||
p11[y * p11_step + x] = (p11[y * p11_step + x] + taut * u1x) / ng1; |
||||
p12[y * p11_step + x] = (p12[y * p11_step + x] + taut * u1y) / ng1; |
||||
p21[y * p11_step + x] = (p21[y * p11_step + x] + taut * u2x) / ng2; |
||||
p22[y * p11_step + x] = (p22[y * p11_step + x] + taut * u2y) / ng2; |
||||
} |
||||
|
||||
} |
||||
|
||||
inline float divergence(__global const float* v1, __global const float* v2, int y, int x, int v1_step, int v2_step) |
||||
{ |
||||
|
||||
if (x > 0 && y > 0) |
||||
{ |
||||
float v1x = v1[y * v1_step + x] - v1[y * v1_step + x - 1]; |
||||
float v2y = v2[y * v2_step + x] - v2[(y - 1) * v2_step + x]; |
||||
return v1x + v2y; |
||||
} |
||||
else |
||||
{ |
||||
if (y > 0) |
||||
return v1[y * v1_step + 0] + v2[y * v2_step + 0] - v2[(y - 1) * v2_step + 0]; |
||||
else |
||||
{ |
||||
if (x > 0) |
||||
return v1[0 * v1_step + x] - v1[0 * v1_step + x - 1] + v2[0 * v2_step + x]; |
||||
else |
||||
return v1[0 * v1_step + 0] + v2[0 * v2_step + 0]; |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
__kernel void estimateUKernel(__global const float* I1wx, int I1wx_col, int I1wx_row, int I1wx_step, |
||||
__global const float* I1wy, /*int I1wy_step,*/ |
||||
__global const float* grad, /*int grad_step,*/ |
||||
__global const float* rho_c, /*int rho_c_step,*/ |
||||
__global const float* p11, /*int p11_step,*/ |
||||
__global const float* p12, /*int p12_step,*/ |
||||
__global const float* p21, /*int p21_step,*/ |
||||
__global const float* p22, /*int p22_step,*/ |
||||
__global float* u1, int u1_step, |
||||
__global float* u2, |
||||
__global float* error, float l_t, float theta, int u2_step, |
||||
int u1_offset_x, |
||||
int u1_offset_y, |
||||
int u2_offset_x, |
||||
int u2_offset_y, |
||||
char calc_error) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < I1wx_col && y < I1wx_row) |
||||
{ |
||||
float I1wxVal = I1wx[y * I1wx_step + x]; |
||||
float I1wyVal = I1wy[y * I1wx_step + x]; |
||||
float gradVal = grad[y * I1wx_step + x]; |
||||
float u1OldVal = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
||||
float u2OldVal = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
||||
|
||||
float rho = rho_c[y * I1wx_step + x] + (I1wxVal * u1OldVal + I1wyVal * u2OldVal); |
||||
|
||||
// estimate the values of the variable (v1, v2) (thresholding operator TH) |
||||
|
||||
float d1 = 0.0f; |
||||
float d2 = 0.0f; |
||||
|
||||
if (rho < -l_t * gradVal) |
||||
{ |
||||
d1 = l_t * I1wxVal; |
||||
d2 = l_t * I1wyVal; |
||||
} |
||||
else if (rho > l_t * gradVal) |
||||
{ |
||||
d1 = -l_t * I1wxVal; |
||||
d2 = -l_t * I1wyVal; |
||||
} |
||||
else if (gradVal > 1.192092896e-07f) |
||||
{ |
||||
float fi = -rho / gradVal; |
||||
d1 = fi * I1wxVal; |
||||
d2 = fi * I1wyVal; |
||||
} |
||||
|
||||
float v1 = u1OldVal + d1; |
||||
float v2 = u2OldVal + d2; |
||||
|
||||
// compute the divergence of the dual variable (p1, p2) |
||||
|
||||
float div_p1 = divergence(p11, p12, y, x, I1wx_step, I1wx_step); |
||||
float div_p2 = divergence(p21, p22, y, x, I1wx_step, I1wx_step); |
||||
|
||||
// estimate the values of the optical flow (u1, u2) |
||||
|
||||
float u1NewVal = v1 + theta * div_p1; |
||||
float u2NewVal = v2 + theta * div_p2; |
||||
|
||||
u1[(y + u1_offset_y) * u1_step + x + u1_offset_x] = u1NewVal; |
||||
u2[(y + u2_offset_y) * u2_step + x + u2_offset_x] = u2NewVal; |
||||
|
||||
if(calc_error) |
||||
{ |
||||
float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal); |
||||
float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal); |
||||
error[y * I1wx_step + x] = n1 + n2; |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,117 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include "opencv2/ts/ocl_test.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
namespace cvtest { |
||||
namespace ocl { |
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Optical_flow_tvl1
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) |
||||
IMPLEMENT_PARAM_CLASS(MedianFiltering, int) |
||||
IMPLEMENT_PARAM_CLASS(ScaleStep, double) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(OpticalFlowTVL1, UseInitFlow, MedianFiltering, ScaleStep) |
||||
{ |
||||
bool useInitFlow; |
||||
int medianFiltering; |
||||
double scaleStep; |
||||
virtual void SetUp() |
||||
{ |
||||
useInitFlow = GET_PARAM(0); |
||||
medianFiltering = GET_PARAM(1); |
||||
scaleStep = GET_PARAM(2); |
||||
} |
||||
}; |
||||
|
||||
OCL_TEST_P(OpticalFlowTVL1, Mat) |
||||
{ |
||||
cv::Mat frame0 = readImage("optflow/RubberWhale1.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(frame0.empty()); |
||||
|
||||
cv::Mat frame1 = readImage("optflow/RubberWhale2.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(frame1.empty()); |
||||
|
||||
cv::Mat flow; cv::UMat uflow; |
||||
|
||||
//create algorithm
|
||||
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1(); |
||||
|
||||
//set parameters
|
||||
alg->set("scaleStep", scaleStep); |
||||
alg->setInt("medianFiltering", medianFiltering); |
||||
|
||||
//create initial flow as result of algorithm calculation
|
||||
if (useInitFlow) |
||||
{ |
||||
OCL_ON(alg->calc(frame0, frame1, uflow)); |
||||
uflow.copyTo(flow); |
||||
} |
||||
|
||||
//set flag to use initial flow as it is ready to use
|
||||
alg->setBool("useInitialFlow", useInitFlow); |
||||
|
||||
OCL_OFF(alg->calc(frame0, frame1, flow)); |
||||
OCL_ON(alg->calc(frame0, frame1, uflow)); |
||||
|
||||
EXPECT_MAT_SIMILAR(flow, uflow, 1e-2); |
||||
} |
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Video, OpticalFlowTVL1, |
||||
Combine( |
||||
Values(UseInitFlow(false), UseInitFlow(true)), |
||||
Values(MedianFiltering(3), MedianFiltering(-1)), |
||||
Values(ScaleStep(0.3),ScaleStep(0.5)) |
||||
) |
||||
); |
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
Loading…
Reference in new issue