updated lt_track.py sample

- continuous feature detection
- track verification by reverse tracking
pull/13383/head
Alexander Mordvintsev 14 years ago
parent 1991440cf7
commit 6fdbf15aed
  1. 116
      samples/python2/lk_track.py

@ -9,31 +9,71 @@ help_message = '''
USAGE: lk_track.py [<video_source>]
Keys:
1 - toggle old/new CalcOpticalFlowPyrLK implementation
SPACE - reset features
'''
lk_params = dict( winSize = (21, 21),
lk_params = dict( winSize = (15, 15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03),
derivLambda = 0.0 )
feature_params = dict( maxCorners = 1000,
qualityLevel = 0.1,
minDistance = 5,
blockSize = 5 )
feature_params = dict( maxCorners = 500,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
def calc_flow_old(img0, img1, p0):
p0 = [(x, y) for x, y in p0.reshape(-1, 2)]
h, w = img0.shape[:2]
img0_cv = cv.CreateMat(h, w, cv.CV_8U)
img1_cv = cv.CreateMat(h, w, cv.CV_8U)
np.asarray(img0_cv)[:] = img0
np.asarray(img1_cv)[:] = img1
t = clock()
features, status, error = cv.CalcOpticalFlowPyrLK(img0_cv, img1_cv, None, None, p0,
lk_params['winSize'], lk_params['maxLevel'], lk_params['criteria'], 0, p0)
return np.float32(features), status, error, clock()-t
class App:
def __init__(self, video_src):
self.track_len = 10
self.detect_interval = 5
self.tracks = []
self.cam = video.create_capture(video_src)
self.frame_idx = 0
def run(self):
while True:
ret, frame = self.cam.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
vis = frame.copy()
if len(self.tracks) > 0:
img0, img1 = self.prev_gray, frame_gray
p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append((x, y))
if len(tr) > self.track_len:
del tr[0]
new_tracks.append(tr)
cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
self.tracks = new_tracks
cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
if self.frame_idx % self.detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
cv2.circle(mask, (x, y), 5, 0, -1)
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
self.tracks.append([(x, y)])
self.frame_idx += 1
self.prev_gray = frame_gray
cv2.imshow('lk_track', vis)
ch = cv2.waitKey(1)
if ch == 27:
break
def main():
import sys
@ -41,47 +81,7 @@ def main():
except: video_src = video.presets['chess']
print help_message
track_len = 4
tracks = []
cam = video.create_capture(video_src)
old_mode = True
while True:
ret, frame = cam.read()
vis = frame.copy()
if len(tracks) > 0:
p0 = np.float32([tr[-1] for tr in tracks]).reshape(-1, 1, 2)
img0 = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
img1 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if old_mode:
p1, st, err, dt = calc_flow_old(img0, img1, p0)
else:
t = clock()
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
dt = clock()-t
for tr, (x, y) in zip(tracks, p1.reshape(-1, 2)):
tr.append((x, y))
if len(tr) > 10:
del tr[0]
cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
cv2.polylines(vis, [np.int32(tr) for tr in tracks], False, (0, 255, 0))
draw_str(vis, (20, 20), ['new', 'old'][old_mode]+' mode')
draw_str(vis, (20, 40), 'time: %.02f ms' % (dt*1000))
prev_frame = frame.copy()
cv2.imshow('lk_track', vis)
ch = cv2.waitKey(5)
if ch == 27:
break
if ch == ord(' ') or len(tracks) == 0:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
p = cv2.goodFeaturesToTrack(gray, **feature_params)
p = [] if p is None else p.reshape(-1, 2)
tracks = []
for x, y in np.float32(p):
tracks.append([(x, y)])
if ch == ord('1'):
old_mode = not old_mode
App(video_src).run()
if __name__ == '__main__':
main()

Loading…
Cancel
Save