mirror of https://github.com/opencv/opencv.git
parent
83e7d3dd67
commit
6f11dc03b9
3 changed files with 551 additions and 4 deletions
@ -0,0 +1,505 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include "opencv2/core/cuda_devptrs.hpp" |
||||
|
||||
#if defined(__GNUC__) |
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__) |
||||
#else /* defined(__CUDACC__) || defined(__MSVC__) */ |
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__) |
||||
#endif |
||||
|
||||
static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "") |
||||
{ |
||||
// if (cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), file, line, func); |
||||
} |
||||
|
||||
__host__ __device__ __forceinline__ int divUp(int total, int grain) |
||||
{ |
||||
return (total + grain - 1) / grain; |
||||
} |
||||
|
||||
namespace cv { namespace softcascade { namespace device |
||||
{ |
||||
// Utility function to extract unsigned chars from an unsigned integer |
||||
__device__ uchar4 int_to_uchar4(unsigned int in) |
||||
{ |
||||
uchar4 bytes; |
||||
bytes.x = (in & 0x000000ff) >> 0; |
||||
bytes.y = (in & 0x0000ff00) >> 8; |
||||
bytes.z = (in & 0x00ff0000) >> 16; |
||||
bytes.w = (in & 0xff000000) >> 24; |
||||
return bytes; |
||||
} |
||||
|
||||
__global__ void shfl_integral_horizontal(const cv::gpu::PtrStep<uint4> img, cv::gpu::PtrStep<uint4> integral) |
||||
{ |
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300) |
||||
__shared__ int sums[128]; |
||||
|
||||
const int id = threadIdx.x; |
||||
const int lane_id = id % warpSize; |
||||
const int warp_id = id / warpSize; |
||||
|
||||
const uint4 data = img(blockIdx.x, id); |
||||
|
||||
const uchar4 a = int_to_uchar4(data.x); |
||||
const uchar4 b = int_to_uchar4(data.y); |
||||
const uchar4 c = int_to_uchar4(data.z); |
||||
const uchar4 d = int_to_uchar4(data.w); |
||||
|
||||
int result[16]; |
||||
|
||||
result[0] = a.x; |
||||
result[1] = result[0] + a.y; |
||||
result[2] = result[1] + a.z; |
||||
result[3] = result[2] + a.w; |
||||
|
||||
result[4] = result[3] + b.x; |
||||
result[5] = result[4] + b.y; |
||||
result[6] = result[5] + b.z; |
||||
result[7] = result[6] + b.w; |
||||
|
||||
result[8] = result[7] + c.x; |
||||
result[9] = result[8] + c.y; |
||||
result[10] = result[9] + c.z; |
||||
result[11] = result[10] + c.w; |
||||
|
||||
result[12] = result[11] + d.x; |
||||
result[13] = result[12] + d.y; |
||||
result[14] = result[13] + d.z; |
||||
result[15] = result[14] + d.w; |
||||
|
||||
int sum = result[15]; |
||||
|
||||
// the prefix sum for each thread's 16 value is computed, |
||||
// now the final sums (result[15]) need to be shared |
||||
// with the other threads and add. To do this, |
||||
// the __shfl_up() instruction is used and a shuffle scan |
||||
// operation is performed to distribute the sums to the correct |
||||
// threads |
||||
#pragma unroll |
||||
for (int i = 1; i < 32; i *= 2) |
||||
{ |
||||
const int n = __shfl_up(sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
{ |
||||
#pragma unroll |
||||
for (int i = 0; i < 16; ++i) |
||||
result[i] += n; |
||||
|
||||
sum += n; |
||||
} |
||||
} |
||||
|
||||
// Now the final sum for the warp must be shared |
||||
// between warps. This is done by each warp |
||||
// having a thread store to shared memory, then |
||||
// having some other warp load the values and |
||||
// compute a prefix sum, again by using __shfl_up. |
||||
// The results are uniformly added back to the warps. |
||||
// last thread in the warp holding sum of the warp |
||||
// places that in shared |
||||
if (threadIdx.x % warpSize == warpSize - 1) |
||||
sums[warp_id] = result[15]; |
||||
|
||||
__syncthreads(); |
||||
|
||||
if (warp_id == 0) |
||||
{ |
||||
int warp_sum = sums[lane_id]; |
||||
|
||||
#pragma unroll |
||||
for (int i = 1; i <= 32; i *= 2) |
||||
{ |
||||
const int n = __shfl_up(warp_sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
warp_sum += n; |
||||
} |
||||
|
||||
sums[lane_id] = warp_sum; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
int blockSum = 0; |
||||
|
||||
// fold in unused warp |
||||
if (warp_id > 0) |
||||
{ |
||||
blockSum = sums[warp_id - 1]; |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < 16; ++i) |
||||
result[i] += blockSum; |
||||
} |
||||
|
||||
// assemble result |
||||
// Each thread has 16 values to write, which are |
||||
// now integer data (to avoid overflow). Instead of |
||||
// each thread writing consecutive uint4s, the |
||||
// approach shown here experiments using |
||||
// the shuffle command to reformat the data |
||||
// inside the registers so that each thread holds |
||||
// consecutive data to be written so larger contiguous |
||||
// segments can be assembled for writing. |
||||
|
||||
/* |
||||
For example data that needs to be written as |
||||
|
||||
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3 |
||||
but is stored in registers (r0..r3), in four threads (0..3) as: |
||||
|
||||
threadId 0 1 2 3 |
||||
r0 x0 y0 z0 w0 |
||||
r1 x1 y1 z1 w1 |
||||
r2 x2 y2 z2 w2 |
||||
r3 x3 y3 z3 w3 |
||||
|
||||
after apply __shfl_xor operations to move data between registers r1..r3: |
||||
|
||||
threadId 00 01 10 11 |
||||
x0 y0 z0 w0 |
||||
xor(01)->y1 x1 w1 z1 |
||||
xor(10)->z2 w2 x2 y2 |
||||
xor(11)->w3 z3 y3 x3 |
||||
|
||||
and now x0..x3, and z0..z3 can be written out in order by all threads. |
||||
|
||||
In the current code, each register above is actually representing |
||||
four integers to be written as uint4's to GMEM. |
||||
*/ |
||||
|
||||
result[4] = __shfl_xor(result[4] , 1, 32); |
||||
result[5] = __shfl_xor(result[5] , 1, 32); |
||||
result[6] = __shfl_xor(result[6] , 1, 32); |
||||
result[7] = __shfl_xor(result[7] , 1, 32); |
||||
|
||||
result[8] = __shfl_xor(result[8] , 2, 32); |
||||
result[9] = __shfl_xor(result[9] , 2, 32); |
||||
result[10] = __shfl_xor(result[10], 2, 32); |
||||
result[11] = __shfl_xor(result[11], 2, 32); |
||||
|
||||
result[12] = __shfl_xor(result[12], 3, 32); |
||||
result[13] = __shfl_xor(result[13], 3, 32); |
||||
result[14] = __shfl_xor(result[14], 3, 32); |
||||
result[15] = __shfl_xor(result[15], 3, 32); |
||||
|
||||
uint4* integral_row = integral.ptr(blockIdx.x); |
||||
uint4 output; |
||||
|
||||
/////// |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output; |
||||
|
||||
/////// |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output; |
||||
|
||||
// continuning from the above example, |
||||
// this use of __shfl_xor() places the y0..y3 and w0..w3 data |
||||
// in order. |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < 16; ++i) |
||||
result[i] = __shfl_xor(result[i], 1, 32); |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output; |
||||
|
||||
/////// |
||||
|
||||
if (threadIdx.x % 4 == 2) |
||||
output = make_uint4(result[0], result[1], result[2], result[3]); |
||||
|
||||
if (threadIdx.x % 4 == 3) |
||||
output = make_uint4(result[4], result[5], result[6], result[7]); |
||||
|
||||
if (threadIdx.x % 4 == 0) |
||||
output = make_uint4(result[8], result[9], result[10], result[11]); |
||||
|
||||
if (threadIdx.x % 4 == 1) |
||||
output = make_uint4(result[12], result[13], result[14], result[15]); |
||||
|
||||
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output; |
||||
#endif |
||||
} |
||||
|
||||
// This kernel computes columnwise prefix sums. When the data input is |
||||
// the row sums from above, this completes the integral image. |
||||
// The approach here is to have each block compute a local set of sums. |
||||
// First , the data covered by the block is loaded into shared memory, |
||||
// then instead of performing a sum in shared memory using __syncthreads |
||||
// between stages, the data is reformatted so that the necessary sums |
||||
// occur inside warps and the shuffle scan operation is used. |
||||
// The final set of sums from the block is then propgated, with the block |
||||
// computing "down" the image and adding the running sum to the local |
||||
// block sums. |
||||
__global__ void shfl_integral_vertical(cv::gpu::PtrStepSz<unsigned int> integral) |
||||
{ |
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300) |
||||
__shared__ unsigned int sums[32][9]; |
||||
|
||||
const int tidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int lane_id = tidx % 8; |
||||
|
||||
if (tidx >= integral.cols) |
||||
return; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = 0; |
||||
__syncthreads(); |
||||
|
||||
unsigned int stepSum = 0; |
||||
|
||||
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y) |
||||
{ |
||||
unsigned int* p = integral.ptr(y) + tidx; |
||||
|
||||
unsigned int sum = *p; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = sum; |
||||
__syncthreads(); |
||||
|
||||
// place into SMEM |
||||
// shfl scan reduce the SMEM, reformating so the column |
||||
// sums are computed in a warp |
||||
// then read out properly |
||||
const int j = threadIdx.x % 8; |
||||
const int k = threadIdx.x / 8 + threadIdx.y * 4; |
||||
|
||||
int partial_sum = sums[k][j]; |
||||
|
||||
for (int i = 1; i <= 8; i *= 2) |
||||
{ |
||||
int n = __shfl_up(partial_sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
partial_sum += n; |
||||
} |
||||
|
||||
sums[k][j] = partial_sum; |
||||
__syncthreads(); |
||||
|
||||
if (threadIdx.y > 0) |
||||
sum += sums[threadIdx.x][threadIdx.y - 1]; |
||||
|
||||
sum += stepSum; |
||||
stepSum += sums[threadIdx.x][blockDim.y - 1]; |
||||
|
||||
__syncthreads(); |
||||
|
||||
*p = sum; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
void shfl_integral(const cv::gpu::PtrStepSzb& img, cv::gpu::PtrStepSz<unsigned int> integral, cudaStream_t stream) |
||||
{ |
||||
{ |
||||
// each thread handles 16 values, use 1 block/row |
||||
// save, becouse step is actually can't be less 512 bytes |
||||
int block = integral.cols / 16; |
||||
|
||||
// launch 1 block / row |
||||
const int grid = img.rows; |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) ); |
||||
|
||||
shfl_integral_horizontal<<<grid, block, 0, stream>>>((const cv::gpu::PtrStepSz<uint4>) img, (cv::gpu::PtrStepSz<uint4>) integral); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
|
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(integral.cols, block.x), 1); |
||||
|
||||
shfl_integral_vertical<<<grid, block, 0, stream>>>(integral); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
__global__ void shfl_integral_vertical(cv::gpu::PtrStepSz<unsigned int> buffer, cv::gpu::PtrStepSz<unsigned int> integral) |
||||
{ |
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300) |
||||
__shared__ unsigned int sums[32][9]; |
||||
|
||||
const int tidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int lane_id = tidx % 8; |
||||
|
||||
if (tidx >= integral.cols) |
||||
return; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = 0; |
||||
__syncthreads(); |
||||
|
||||
unsigned int stepSum = 0; |
||||
|
||||
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y) |
||||
{ |
||||
unsigned int* p = buffer.ptr(y) + tidx; |
||||
unsigned int* dst = integral.ptr(y + 1) + tidx + 1; |
||||
|
||||
unsigned int sum = *p; |
||||
|
||||
sums[threadIdx.x][threadIdx.y] = sum; |
||||
__syncthreads(); |
||||
|
||||
// place into SMEM |
||||
// shfl scan reduce the SMEM, reformating so the column |
||||
// sums are computed in a warp |
||||
// then read out properly |
||||
const int j = threadIdx.x % 8; |
||||
const int k = threadIdx.x / 8 + threadIdx.y * 4; |
||||
|
||||
int partial_sum = sums[k][j]; |
||||
|
||||
for (int i = 1; i <= 8; i *= 2) |
||||
{ |
||||
int n = __shfl_up(partial_sum, i, 32); |
||||
|
||||
if (lane_id >= i) |
||||
partial_sum += n; |
||||
} |
||||
|
||||
sums[k][j] = partial_sum; |
||||
__syncthreads(); |
||||
|
||||
if (threadIdx.y > 0) |
||||
sum += sums[threadIdx.x][threadIdx.y - 1]; |
||||
|
||||
sum += stepSum; |
||||
stepSum += sums[threadIdx.x][blockDim.y - 1]; |
||||
|
||||
__syncthreads(); |
||||
|
||||
*dst = sum; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
// used for frame preprocessing before Soft Cascade evaluation: no synchronization needed |
||||
void shfl_integral_gpu_buffered(cv::gpu::PtrStepSzb img, cv::gpu::PtrStepSz<uint4> buffer, cv::gpu::PtrStepSz<unsigned int> integral, |
||||
int blockStep, cudaStream_t stream) |
||||
{ |
||||
{ |
||||
const int block = blockStep; |
||||
const int grid = img.rows; |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) ); |
||||
|
||||
shfl_integral_horizontal<<<grid, block, 0, stream>>>((cv::gpu::PtrStepSz<uint4>) img, buffer); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
|
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(integral.cols, block.x), 1); |
||||
|
||||
shfl_integral_vertical<<<grid, block, 0, stream>>>((cv::gpu::PtrStepSz<uint>)buffer, integral); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
} |
||||
} |
||||
// 0 |
||||
#define CV_DESCALE(x, n) (((x) + (1 << ((n)-1))) >> (n)) |
||||
|
||||
enum |
||||
{ |
||||
yuv_shift = 14, |
||||
xyz_shift = 12, |
||||
R2Y = 4899, |
||||
G2Y = 9617, |
||||
B2Y = 1868 |
||||
}; |
||||
|
||||
template <int bidx> static __device__ __forceinline__ unsigned char RGB2GrayConvert(uint src) |
||||
{ |
||||
uint b = 0xffu & (src >> (bidx * 8)); |
||||
uint g = 0xffu & (src >> 8); |
||||
uint r = 0xffu & (src >> ((bidx ^ 2) * 8)); |
||||
return CV_DESCALE((uint)(b * B2Y + g * G2Y + r * R2Y), yuv_shift); |
||||
} |
||||
|
||||
void transform(const cv::gpu::PtrStepSz<uchar3>& bgr, cv::gpu::PtrStepSzb gray) |
||||
{ |
||||
|
||||
} |
||||
}}} |
Loading…
Reference in new issue