mirror of https://github.com/opencv/opencv.git
Merge pull request #779 from sivapvarma:master
commit
6ef43cd96e
2 changed files with 74 additions and 0 deletions
@ -0,0 +1,33 @@ |
||||
#!/usr/bin/python |
||||
|
||||
''' |
||||
This example illustrates how to use cv2.HoughCircles() function. |
||||
Usage: ./houghcircles.py [<image_name>] |
||||
image argument defaults to ../cpp/board.jpg |
||||
''' |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
import sys |
||||
|
||||
|
||||
print __doc__ |
||||
try: |
||||
fn = sys.argv[1] |
||||
except: |
||||
fn = "../cpp/board.jpg" |
||||
|
||||
src = cv2.imread(fn, 1) |
||||
img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) |
||||
img = cv2.medianBlur(img, 5) |
||||
cimg = src.copy() # numpy function |
||||
|
||||
circles = cv2.HoughCircles(img, cv2.cv.CV_HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30) |
||||
a, b, c = circles.shape |
||||
for i in range(b): |
||||
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv2.cv.CV_AA) |
||||
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv2.cv.CV_AA) # draw center of circle |
||||
|
||||
cv2.imshow("source", src) |
||||
cv2.imshow("detected circles", cimg) |
||||
cv2.waitKey(0) |
@ -0,0 +1,41 @@ |
||||
#!/usr/bin/python |
||||
''' |
||||
This example illustrates how to use Hough Transform to find lines |
||||
Usage: ./houghlines.py [<image_name>] |
||||
image argument defaults to ../cpp/pic1.png |
||||
''' |
||||
import cv2 |
||||
import numpy as np |
||||
import sys |
||||
import math |
||||
|
||||
try: |
||||
fn = sys.argv[1] |
||||
except: |
||||
fn = "../cpp/pic1.png" |
||||
print __doc__ |
||||
src = cv2.imread(fn) |
||||
dst = cv2.Canny(src, 50, 200) |
||||
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) |
||||
|
||||
# HoughLines() |
||||
# lines = cv2.HoughLines(dst, 1, cv2.cv.CV_PI/180.0, 50, np.array([]), 0, 0) |
||||
# a,b,c = lines.shape |
||||
# for i in range(b): |
||||
# rho = lines[0][i][0] |
||||
# theta = lines[0][i][1] |
||||
# a = math.cos(theta) |
||||
# b = math.sin(theta) |
||||
# x0, y0 = a*rho, b*rho |
||||
# pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) ) |
||||
# pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) ) |
||||
# cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.cv.CV_AA) |
||||
|
||||
lines = cv2.HoughLinesP(dst, 1, cv2.cv.CV_PI/180.0, 50, np.array([]), 50, 10) |
||||
a,b,c = lines.shape |
||||
for i in range(b): |
||||
cv2.line(cdst, (lines[0][i][0], lines[0][i][1]), (lines[0][i][2], lines[0][i][3]), (0, 0, 255), 3, cv2.cv.CV_AA) |
||||
|
||||
cv2.imshow("source", src) |
||||
cv2.imshow("detected lines", cdst) |
||||
cv2.waitKey(0) |
Loading…
Reference in new issue