imgproc: dispatch medianBlur

pull/14013/head
Alexander Alekhin 6 years ago
parent 8546ac3ce6
commit 6ec08f268f
  1. 1
      modules/imgproc/CMakeLists.txt
  2. 937
      modules/imgproc/src/median_blur.dispatch.cpp
  3. 288
      modules/imgproc/src/median_blur.simd.hpp

@ -4,4 +4,5 @@ ocv_add_dispatched_file(filter SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(color_hsv SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(color_rgb SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(color_yuv SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(median_blur SSE2 SSE4_1 AVX2)
ocv_define_module(imgproc opencv_core WRAP java python js)

@ -50,895 +50,10 @@
#include "opencv2/core/openvx/ovx_defs.hpp"
/*
* This file includes the code, contributed by Simon Perreault
* (the function icvMedianBlur_8u_O1)
*
* Constant-time median filtering -- http://nomis80.org/ctmf.html
* Copyright (C) 2006 Simon Perreault
*
* Contact:
* Laboratoire de vision et systemes numeriques
* Pavillon Adrien-Pouliot
* Universite Laval
* Sainte-Foy, Quebec, Canada
* G1K 7P4
*
* perreaul@gel.ulaval.ca
*/
#include "median_blur.simd.hpp"
#include "median_blur.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
/****************************************************************************************\
Median Filter
\****************************************************************************************/
namespace cv
{
static void
medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
{
typedef ushort HT;
/**
* This structure represents a two-tier histogram. The first tier (known as the
* "coarse" level) is 4 bit wide and the second tier (known as the "fine" level)
* is 8 bit wide. Pixels inserted in the fine level also get inserted into the
* coarse bucket designated by the 4 MSBs of the fine bucket value.
*
* The structure is aligned on 16 bits, which is a prerequisite for SIMD
* instructions. Each bucket is 16 bit wide, which means that extra care must be
* taken to prevent overflow.
*/
typedef struct
{
HT coarse[16];
HT fine[16][16];
} Histogram;
/**
* HOP is short for Histogram OPeration. This macro makes an operation \a op on
* histogram \a h for pixel value \a x. It takes care of handling both levels.
*/
#define HOP(h,x,op) \
h.coarse[x>>4] op, \
*((HT*)h.fine + x) op
#define COP(c,j,x,op) \
h_coarse[ 16*(n*c+j) + (x>>4) ] op, \
h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op
int cn = _dst.channels(), m = _dst.rows, r = (ksize-1)/2;
CV_Assert(cn > 0 && cn <= 4);
size_t sstep = _src.step, dstep = _dst.step;
int STRIPE_SIZE = std::min( _dst.cols, 512/cn );
#if defined(CV_SIMD_WIDTH) && CV_SIMD_WIDTH >= 16
# define CV_ALIGNMENT CV_SIMD_WIDTH
#else
# define CV_ALIGNMENT 16
#endif
std::vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + CV_ALIGNMENT);
std::vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + CV_ALIGNMENT);
HT* h_coarse = alignPtr(&_h_coarse[0], CV_ALIGNMENT);
HT* h_fine = alignPtr(&_h_fine[0], CV_ALIGNMENT);
for( int x = 0; x < _dst.cols; x += STRIPE_SIZE )
{
int i, j, k, c, n = std::min(_dst.cols - x, STRIPE_SIZE) + r*2;
const uchar* src = _src.ptr() + x*cn;
uchar* dst = _dst.ptr() + (x - r)*cn;
memset( h_coarse, 0, 16*n*cn*sizeof(h_coarse[0]) );
memset( h_fine, 0, 16*16*n*cn*sizeof(h_fine[0]) );
// First row initialization
for( c = 0; c < cn; c++ )
{
for( j = 0; j < n; j++ )
COP( c, j, src[cn*j+c], += (HT)(r+2) );
for( i = 1; i < r; i++ )
{
const uchar* p = src + sstep*std::min(i, m-1);
for ( j = 0; j < n; j++ )
COP( c, j, p[cn*j+c], ++ );
}
}
for( i = 0; i < m; i++ )
{
const uchar* p0 = src + sstep * std::max( 0, i-r-1 );
const uchar* p1 = src + sstep * std::min( m-1, i+r );
for( c = 0; c < cn; c++ )
{
Histogram CV_DECL_ALIGNED(CV_ALIGNMENT) H;
HT CV_DECL_ALIGNED(CV_ALIGNMENT) luc[16];
memset(&H, 0, sizeof(H));
memset(luc, 0, sizeof(luc));
// Update column histograms for the entire row.
for( j = 0; j < n; j++ )
{
COP( c, j, p0[j*cn + c], -- );
COP( c, j, p1[j*cn + c], ++ );
}
// First column initialization
for (k = 0; k < 16; ++k)
{
#if CV_SIMD256
v_store(H.fine[k], v_mul_wrap(v256_load(h_fine + 16 * n*(16 * c + k)), v256_setall_u16(2 * r + 1)) + v256_load(H.fine[k]));
#elif CV_SIMD128
v_store(H.fine[k], v_mul_wrap(v_load(h_fine + 16 * n*(16 * c + k)), v_setall_u16((ushort)(2 * r + 1))) + v_load(H.fine[k]));
v_store(H.fine[k] + 8, v_mul_wrap(v_load(h_fine + 16 * n*(16 * c + k) + 8), v_setall_u16((ushort)(2 * r + 1))) + v_load(H.fine[k] + 8));
#else
for (int ind = 0; ind < 16; ++ind)
H.fine[k][ind] = (HT)(H.fine[k][ind] + (2 * r + 1) * h_fine[16 * n*(16 * c + k) + ind]);
#endif
}
#if CV_SIMD256
v_uint16x16 v_coarse = v256_load(H.coarse);
#elif CV_SIMD128
v_uint16x8 v_coarsel = v_load(H.coarse);
v_uint16x8 v_coarseh = v_load(H.coarse + 8);
#endif
HT* px = h_coarse + 16 * n*c;
for( j = 0; j < 2*r; ++j, px += 16 )
{
#if CV_SIMD256
v_coarse += v256_load(px);
#elif CV_SIMD128
v_coarsel += v_load(px);
v_coarseh += v_load(px + 8);
#else
for (int ind = 0; ind < 16; ++ind)
H.coarse[ind] += px[ind];
#endif
}
for( j = r; j < n-r; j++ )
{
int t = 2*r*r + 2*r, b, sum = 0;
HT* segment;
px = h_coarse + 16 * (n*c + std::min(j + r, n - 1));
#if CV_SIMD256
v_coarse += v256_load(px);
v_store(H.coarse, v_coarse);
#elif CV_SIMD128
v_coarsel += v_load(px);
v_coarseh += v_load(px + 8);
v_store(H.coarse, v_coarsel);
v_store(H.coarse + 8, v_coarseh);
#else
for (int ind = 0; ind < 16; ++ind)
H.coarse[ind] += px[ind];
#endif
// Find median at coarse level
for ( k = 0; k < 16 ; ++k )
{
sum += H.coarse[k];
if ( sum > t )
{
sum -= H.coarse[k];
break;
}
}
CV_Assert( k < 16 );
/* Update corresponding histogram segment */
#if CV_SIMD256
v_uint16x16 v_fine;
#elif CV_SIMD128
v_uint16x8 v_finel;
v_uint16x8 v_fineh;
#endif
if ( luc[k] <= j-r )
{
#if CV_SIMD256
v_fine = v256_setzero_u16();
#elif CV_SIMD128
v_finel = v_setzero_u16();
v_fineh = v_setzero_u16();
#else
memset(&H.fine[k], 0, 16 * sizeof(HT));
#endif
px = h_fine + 16 * (n*(16 * c + k) + j - r);
for (luc[k] = HT(j - r); luc[k] < MIN(j + r + 1, n); ++luc[k], px += 16)
{
#if CV_SIMD256
v_fine += v256_load(px);
#elif CV_SIMD128
v_finel += v_load(px);
v_fineh += v_load(px + 8);
#else
for (int ind = 0; ind < 16; ++ind)
H.fine[k][ind] += px[ind];
#endif
}
if ( luc[k] < j+r+1 )
{
px = h_fine + 16 * (n*(16 * c + k) + (n - 1));
#if CV_SIMD256
v_fine += v_mul_wrap(v256_load(px), v256_setall_u16(j + r + 1 - n));
#elif CV_SIMD128
v_finel += v_mul_wrap(v_load(px), v_setall_u16((ushort)(j + r + 1 - n)));
v_fineh += v_mul_wrap(v_load(px + 8), v_setall_u16((ushort)(j + r + 1 - n)));
#else
for (int ind = 0; ind < 16; ++ind)
H.fine[k][ind] = (HT)(H.fine[k][ind] + (j + r + 1 - n) * px[ind]);
#endif
luc[k] = (HT)(j+r+1);
}
}
else
{
#if CV_SIMD256
v_fine = v256_load(H.fine[k]);
#elif CV_SIMD128
v_finel = v_load(H.fine[k]);
v_fineh = v_load(H.fine[k] + 8);
#endif
px = h_fine + 16*n*(16 * c + k);
for ( ; luc[k] < j+r+1; ++luc[k] )
{
#if CV_SIMD256
v_fine = v_fine + v256_load(px + 16 * MIN(luc[k], n - 1)) - v256_load(px + 16 * MAX(luc[k] - 2 * r - 1, 0));
#elif CV_SIMD128
v_finel = v_finel + v_load(px + 16 * MIN(luc[k], n - 1) ) - v_load(px + 16 * MAX(luc[k] - 2 * r - 1, 0));
v_fineh = v_fineh + v_load(px + 16 * MIN(luc[k], n - 1) + 8) - v_load(px + 16 * MAX(luc[k] - 2 * r - 1, 0) + 8);
#else
for (int ind = 0; ind < 16; ++ind)
H.fine[k][ind] += px[16 * MIN(luc[k], n - 1) + ind] - px[16 * MAX(luc[k] - 2 * r - 1, 0) + ind];
#endif
}
}
px = h_coarse + 16 * (n*c + MAX(j - r, 0));
#if CV_SIMD256
v_store(H.fine[k], v_fine);
v_coarse -= v256_load(px);
#elif CV_SIMD128
v_store(H.fine[k], v_finel);
v_store(H.fine[k] + 8, v_fineh);
v_coarsel -= v_load(px);
v_coarseh -= v_load(px + 8);
#else
for (int ind = 0; ind < 16; ++ind)
H.coarse[ind] -= px[ind];
#endif
/* Find median in segment */
segment = H.fine[k];
for ( b = 0; b < 16 ; b++ )
{
sum += segment[b];
if ( sum > t )
{
dst[dstep*i+cn*j+c] = (uchar)(16*k + b);
break;
}
}
CV_Assert( b < 16 );
}
}
}
#if CV_SIMD
vx_cleanup();
#endif
}
#undef HOP
#undef COP
}
static void
medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m )
{
#define N 16
int zone0[4][N];
int zone1[4][N*N];
int x, y;
int n2 = m*m/2;
Size size = _dst.size();
const uchar* src = _src.ptr();
uchar* dst = _dst.ptr();
int src_step = (int)_src.step, dst_step = (int)_dst.step;
int cn = _src.channels();
const uchar* src_max = src + size.height*src_step;
CV_Assert(cn > 0 && cn <= 4);
#define UPDATE_ACC01( pix, cn, op ) \
{ \
int p = (pix); \
zone1[cn][p] op; \
zone0[cn][p >> 4] op; \
}
//CV_Assert( size.height >= nx && size.width >= nx );
for( x = 0; x < size.width; x++, src += cn, dst += cn )
{
uchar* dst_cur = dst;
const uchar* src_top = src;
const uchar* src_bottom = src;
int k, c;
int src_step1 = src_step, dst_step1 = dst_step;
if( x % 2 != 0 )
{
src_bottom = src_top += src_step*(size.height-1);
dst_cur += dst_step*(size.height-1);
src_step1 = -src_step1;
dst_step1 = -dst_step1;
}
// init accumulator
memset( zone0, 0, sizeof(zone0[0])*cn );
memset( zone1, 0, sizeof(zone1[0])*cn );
for( y = 0; y <= m/2; y++ )
{
for( c = 0; c < cn; c++ )
{
if( y > 0 )
{
for( k = 0; k < m*cn; k += cn )
UPDATE_ACC01( src_bottom[k+c], c, ++ );
}
else
{
for( k = 0; k < m*cn; k += cn )
UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 );
}
}
if( (src_step1 > 0 && y < size.height-1) ||
(src_step1 < 0 && size.height-y-1 > 0) )
src_bottom += src_step1;
}
for( y = 0; y < size.height; y++, dst_cur += dst_step1 )
{
// find median
for( c = 0; c < cn; c++ )
{
int s = 0;
for( k = 0; ; k++ )
{
int t = s + zone0[c][k];
if( t > n2 ) break;
s = t;
}
for( k *= N; ;k++ )
{
s += zone1[c][k];
if( s > n2 ) break;
}
dst_cur[c] = (uchar)k;
}
if( y+1 == size.height )
break;
if( cn == 1 )
{
for( k = 0; k < m; k++ )
{
int p = src_top[k];
int q = src_bottom[k];
zone1[0][p]--;
zone0[0][p>>4]--;
zone1[0][q]++;
zone0[0][q>>4]++;
}
}
else if( cn == 3 )
{
for( k = 0; k < m*3; k += 3 )
{
UPDATE_ACC01( src_top[k], 0, -- );
UPDATE_ACC01( src_top[k+1], 1, -- );
UPDATE_ACC01( src_top[k+2], 2, -- );
UPDATE_ACC01( src_bottom[k], 0, ++ );
UPDATE_ACC01( src_bottom[k+1], 1, ++ );
UPDATE_ACC01( src_bottom[k+2], 2, ++ );
}
}
else
{
assert( cn == 4 );
for( k = 0; k < m*4; k += 4 )
{
UPDATE_ACC01( src_top[k], 0, -- );
UPDATE_ACC01( src_top[k+1], 1, -- );
UPDATE_ACC01( src_top[k+2], 2, -- );
UPDATE_ACC01( src_top[k+3], 3, -- );
UPDATE_ACC01( src_bottom[k], 0, ++ );
UPDATE_ACC01( src_bottom[k+1], 1, ++ );
UPDATE_ACC01( src_bottom[k+2], 2, ++ );
UPDATE_ACC01( src_bottom[k+3], 3, ++ );
}
}
if( (src_step1 > 0 && src_bottom + src_step1 < src_max) ||
(src_step1 < 0 && src_bottom + src_step1 >= src) )
src_bottom += src_step1;
if( y >= m/2 )
src_top += src_step1;
}
}
#undef N
#undef UPDATE_ACC
}
namespace {
struct MinMax8u
{
typedef uchar value_type;
typedef int arg_type;
enum { SIZE = 1 };
arg_type load(const uchar* ptr) { return *ptr; }
void store(uchar* ptr, arg_type val) { *ptr = (uchar)val; }
void operator()(arg_type& a, arg_type& b) const
{
int t = CV_FAST_CAST_8U(a - b);
b += t; a -= t;
}
};
struct MinMax16u
{
typedef ushort value_type;
typedef int arg_type;
enum { SIZE = 1 };
arg_type load(const ushort* ptr) { return *ptr; }
void store(ushort* ptr, arg_type val) { *ptr = (ushort)val; }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = std::min(a, b);
b = std::max(b, t);
}
};
struct MinMax16s
{
typedef short value_type;
typedef int arg_type;
enum { SIZE = 1 };
arg_type load(const short* ptr) { return *ptr; }
void store(short* ptr, arg_type val) { *ptr = (short)val; }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = std::min(a, b);
b = std::max(b, t);
}
};
struct MinMax32f
{
typedef float value_type;
typedef float arg_type;
enum { SIZE = 1 };
arg_type load(const float* ptr) { return *ptr; }
void store(float* ptr, arg_type val) { *ptr = val; }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = std::min(a, b);
b = std::max(b, t);
}
};
#if CV_SIMD
struct MinMaxVec8u
{
typedef uchar value_type;
typedef v_uint8x16 arg_type;
enum { SIZE = v_uint8x16::nlanes };
arg_type load(const uchar* ptr) { return v_load(ptr); }
void store(uchar* ptr, const arg_type &val) { v_store(ptr, val); }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#if CV_SIMD_WIDTH > 16
typedef v_uint8 warg_type;
enum { WSIZE = v_uint8::nlanes };
warg_type wload(const uchar* ptr) { return vx_load(ptr); }
void store(uchar* ptr, const warg_type &val) { v_store(ptr, val); }
void operator()(warg_type& a, warg_type& b) const
{
warg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#endif
};
struct MinMaxVec16u
{
typedef ushort value_type;
typedef v_uint16x8 arg_type;
enum { SIZE = v_uint16x8::nlanes };
arg_type load(const ushort* ptr) { return v_load(ptr); }
void store(ushort* ptr, const arg_type &val) { v_store(ptr, val); }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#if CV_SIMD_WIDTH > 16
typedef v_uint16 warg_type;
enum { WSIZE = v_uint16::nlanes };
warg_type wload(const ushort* ptr) { return vx_load(ptr); }
void store(ushort* ptr, const warg_type &val) { v_store(ptr, val); }
void operator()(warg_type& a, warg_type& b) const
{
warg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#endif
};
struct MinMaxVec16s
{
typedef short value_type;
typedef v_int16x8 arg_type;
enum { SIZE = v_int16x8::nlanes };
arg_type load(const short* ptr) { return v_load(ptr); }
void store(short* ptr, const arg_type &val) { v_store(ptr, val); }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#if CV_SIMD_WIDTH > 16
typedef v_int16 warg_type;
enum { WSIZE = v_int16::nlanes };
warg_type wload(const short* ptr) { return vx_load(ptr); }
void store(short* ptr, const warg_type &val) { v_store(ptr, val); }
void operator()(warg_type& a, warg_type& b) const
{
warg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#endif
};
struct MinMaxVec32f
{
typedef float value_type;
typedef v_float32x4 arg_type;
enum { SIZE = v_float32x4::nlanes };
arg_type load(const float* ptr) { return v_load(ptr); }
void store(float* ptr, const arg_type &val) { v_store(ptr, val); }
void operator()(arg_type& a, arg_type& b) const
{
arg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#if CV_SIMD_WIDTH > 16
typedef v_float32 warg_type;
enum { WSIZE = v_float32::nlanes };
warg_type wload(const float* ptr) { return vx_load(ptr); }
void store(float* ptr, const warg_type &val) { v_store(ptr, val); }
void operator()(warg_type& a, warg_type& b) const
{
warg_type t = a;
a = v_min(a, b);
b = v_max(b, t);
}
#endif
};
#else
typedef MinMax8u MinMaxVec8u;
typedef MinMax16u MinMaxVec16u;
typedef MinMax16s MinMaxVec16s;
typedef MinMax32f MinMaxVec32f;
#endif
template<class Op, class VecOp>
static void
medianBlur_SortNet( const Mat& _src, Mat& _dst, int m )
{
typedef typename Op::value_type T;
typedef typename Op::arg_type WT;
typedef typename VecOp::arg_type VT;
#if CV_SIMD_WIDTH > 16
typedef typename VecOp::warg_type WVT;
#endif
const T* src = _src.ptr<T>();
T* dst = _dst.ptr<T>();
int sstep = (int)(_src.step/sizeof(T));
int dstep = (int)(_dst.step/sizeof(T));
Size size = _dst.size();
int i, j, k, cn = _src.channels();
Op op;
VecOp vop;
if( m == 3 )
{
if( size.width == 1 || size.height == 1 )
{
int len = size.width + size.height - 1;
int sdelta = size.height == 1 ? cn : sstep;
int sdelta0 = size.height == 1 ? 0 : sstep - cn;
int ddelta = size.height == 1 ? cn : dstep;
for( i = 0; i < len; i++, src += sdelta0, dst += ddelta )
for( j = 0; j < cn; j++, src++ )
{
WT p0 = src[i > 0 ? -sdelta : 0];
WT p1 = src[0];
WT p2 = src[i < len - 1 ? sdelta : 0];
op(p0, p1); op(p1, p2); op(p0, p1);
dst[j] = (T)p1;
}
return;
}
size.width *= cn;
for( i = 0; i < size.height; i++, dst += dstep )
{
const T* row0 = src + std::max(i - 1, 0)*sstep;
const T* row1 = src + i*sstep;
const T* row2 = src + std::min(i + 1, size.height-1)*sstep;
int limit = cn;
for(j = 0;; )
{
for( ; j < limit; j++ )
{
int j0 = j >= cn ? j - cn : j;
int j2 = j < size.width - cn ? j + cn : j;
WT p0 = row0[j0], p1 = row0[j], p2 = row0[j2];
WT p3 = row1[j0], p4 = row1[j], p5 = row1[j2];
WT p6 = row2[j0], p7 = row2[j], p8 = row2[j2];
op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p1);
op(p3, p4); op(p6, p7); op(p1, p2); op(p4, p5);
op(p7, p8); op(p0, p3); op(p5, p8); op(p4, p7);
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
op(p4, p2); op(p6, p4); op(p4, p2);
dst[j] = (T)p4;
}
if( limit == size.width )
break;
#if CV_SIMD_WIDTH > 16
for( ; j <= size.width - VecOp::WSIZE - cn; j += VecOp::WSIZE )
{
WVT p0 = vop.wload(row0+j-cn), p1 = vop.wload(row0+j), p2 = vop.wload(row0+j+cn);
WVT p3 = vop.wload(row1+j-cn), p4 = vop.wload(row1+j), p5 = vop.wload(row1+j+cn);
WVT p6 = vop.wload(row2+j-cn), p7 = vop.wload(row2+j), p8 = vop.wload(row2+j+cn);
vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1);
vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5);
vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7);
vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7);
vop(p4, p2); vop(p6, p4); vop(p4, p2);
vop.store(dst+j, p4);
}
#endif
for( ; j <= size.width - VecOp::SIZE - cn; j += VecOp::SIZE )
{
VT p0 = vop.load(row0+j-cn), p1 = vop.load(row0+j), p2 = vop.load(row0+j+cn);
VT p3 = vop.load(row1+j-cn), p4 = vop.load(row1+j), p5 = vop.load(row1+j+cn);
VT p6 = vop.load(row2+j-cn), p7 = vop.load(row2+j), p8 = vop.load(row2+j+cn);
vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1);
vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5);
vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7);
vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7);
vop(p4, p2); vop(p6, p4); vop(p4, p2);
vop.store(dst+j, p4);
}
limit = size.width;
}
}
#if CV_SIMD
vx_cleanup();
#endif
}
else if( m == 5 )
{
if( size.width == 1 || size.height == 1 )
{
int len = size.width + size.height - 1;
int sdelta = size.height == 1 ? cn : sstep;
int sdelta0 = size.height == 1 ? 0 : sstep - cn;
int ddelta = size.height == 1 ? cn : dstep;
for( i = 0; i < len; i++, src += sdelta0, dst += ddelta )
for( j = 0; j < cn; j++, src++ )
{
int i1 = i > 0 ? -sdelta : 0;
int i0 = i > 1 ? -sdelta*2 : i1;
int i3 = i < len-1 ? sdelta : 0;
int i4 = i < len-2 ? sdelta*2 : i3;
WT p0 = src[i0], p1 = src[i1], p2 = src[0], p3 = src[i3], p4 = src[i4];
op(p0, p1); op(p3, p4); op(p2, p3); op(p3, p4); op(p0, p2);
op(p2, p4); op(p1, p3); op(p1, p2);
dst[j] = (T)p2;
}
return;
}
size.width *= cn;
for( i = 0; i < size.height; i++, dst += dstep )
{
const T* row[5];
row[0] = src + std::max(i - 2, 0)*sstep;
row[1] = src + std::max(i - 1, 0)*sstep;
row[2] = src + i*sstep;
row[3] = src + std::min(i + 1, size.height-1)*sstep;
row[4] = src + std::min(i + 2, size.height-1)*sstep;
int limit = cn*2;
for(j = 0;; )
{
for( ; j < limit; j++ )
{
WT p[25];
int j1 = j >= cn ? j - cn : j;
int j0 = j >= cn*2 ? j - cn*2 : j1;
int j3 = j < size.width - cn ? j + cn : j;
int j4 = j < size.width - cn*2 ? j + cn*2 : j3;
for( k = 0; k < 5; k++ )
{
const T* rowk = row[k];
p[k*5] = rowk[j0]; p[k*5+1] = rowk[j1];
p[k*5+2] = rowk[j]; p[k*5+3] = rowk[j3];
p[k*5+4] = rowk[j4];
}
op(p[1], p[2]); op(p[0], p[1]); op(p[1], p[2]); op(p[4], p[5]); op(p[3], p[4]);
op(p[4], p[5]); op(p[0], p[3]); op(p[2], p[5]); op(p[2], p[3]); op(p[1], p[4]);
op(p[1], p[2]); op(p[3], p[4]); op(p[7], p[8]); op(p[6], p[7]); op(p[7], p[8]);
op(p[10], p[11]); op(p[9], p[10]); op(p[10], p[11]); op(p[6], p[9]); op(p[8], p[11]);
op(p[8], p[9]); op(p[7], p[10]); op(p[7], p[8]); op(p[9], p[10]); op(p[0], p[6]);
op(p[4], p[10]); op(p[4], p[6]); op(p[2], p[8]); op(p[2], p[4]); op(p[6], p[8]);
op(p[1], p[7]); op(p[5], p[11]); op(p[5], p[7]); op(p[3], p[9]); op(p[3], p[5]);
op(p[7], p[9]); op(p[1], p[2]); op(p[3], p[4]); op(p[5], p[6]); op(p[7], p[8]);
op(p[9], p[10]); op(p[13], p[14]); op(p[12], p[13]); op(p[13], p[14]); op(p[16], p[17]);
op(p[15], p[16]); op(p[16], p[17]); op(p[12], p[15]); op(p[14], p[17]); op(p[14], p[15]);
op(p[13], p[16]); op(p[13], p[14]); op(p[15], p[16]); op(p[19], p[20]); op(p[18], p[19]);
op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[21], p[23]); op(p[22], p[24]);
op(p[22], p[23]); op(p[18], p[21]); op(p[20], p[23]); op(p[20], p[21]); op(p[19], p[22]);
op(p[22], p[24]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[12], p[18]);
op(p[16], p[22]); op(p[16], p[18]); op(p[14], p[20]); op(p[20], p[24]); op(p[14], p[16]);
op(p[18], p[20]); op(p[22], p[24]); op(p[13], p[19]); op(p[17], p[23]); op(p[17], p[19]);
op(p[15], p[21]); op(p[15], p[17]); op(p[19], p[21]); op(p[13], p[14]); op(p[15], p[16]);
op(p[17], p[18]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[0], p[12]);
op(p[8], p[20]); op(p[8], p[12]); op(p[4], p[16]); op(p[16], p[24]); op(p[12], p[16]);
op(p[2], p[14]); op(p[10], p[22]); op(p[10], p[14]); op(p[6], p[18]); op(p[6], p[10]);
op(p[10], p[12]); op(p[1], p[13]); op(p[9], p[21]); op(p[9], p[13]); op(p[5], p[17]);
op(p[13], p[17]); op(p[3], p[15]); op(p[11], p[23]); op(p[11], p[15]); op(p[7], p[19]);
op(p[7], p[11]); op(p[11], p[13]); op(p[11], p[12]);
dst[j] = (T)p[12];
}
if( limit == size.width )
break;
#if CV_SIMD_WIDTH > 16
for( ; j <= size.width - VecOp::WSIZE - cn*2; j += VecOp::WSIZE )
{
WVT p[25];
for( k = 0; k < 5; k++ )
{
const T* rowk = row[k];
p[k*5] = vop.wload(rowk+j-cn*2); p[k*5+1] = vop.wload(rowk+j-cn);
p[k*5+2] = vop.wload(rowk+j); p[k*5+3] = vop.wload(rowk+j+cn);
p[k*5+4] = vop.wload(rowk+j+cn*2);
}
vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]);
vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]);
vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]);
vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]);
vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]);
vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]);
vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]);
vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]);
vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]);
vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]);
vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]);
vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]);
vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]);
vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]);
vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]);
vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]);
vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]);
vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]);
vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]);
vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]);
vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]);
vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]);
vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]);
vop.store(dst+j, p[12]);
}
#endif
for( ; j <= size.width - VecOp::SIZE - cn*2; j += VecOp::SIZE )
{
VT p[25];
for( k = 0; k < 5; k++ )
{
const T* rowk = row[k];
p[k*5] = vop.load(rowk+j-cn*2); p[k*5+1] = vop.load(rowk+j-cn);
p[k*5+2] = vop.load(rowk+j); p[k*5+3] = vop.load(rowk+j+cn);
p[k*5+4] = vop.load(rowk+j+cn*2);
}
vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]);
vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]);
vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]);
vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]);
vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]);
vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]);
vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]);
vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]);
vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]);
vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]);
vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]);
vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]);
vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]);
vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]);
vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]);
vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]);
vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]);
vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]);
vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]);
vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]);
vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]);
vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]);
vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]);
vop.store(dst+j, p[12]);
}
limit = size.width;
}
}
#if CV_SIMD
vx_cleanup();
#endif
}
}
namespace cv {
#ifdef HAVE_OPENCL
@ -1160,7 +275,6 @@ static bool ipp_medianFilter(Mat &src0, Mat &dst, int ksize)
}
}
#endif
}
void medianBlur( InputArray _src0, OutputArray _dst, int ksize )
{
@ -1194,49 +308,10 @@ void medianBlur( InputArray _src0, OutputArray _dst, int ksize )
return;
#endif
bool useSortNet = ksize == 3 || (ksize == 5
#if !(CV_SIMD)
&& ( src0.depth() > CV_8U || src0.channels() == 2 || src0.channels() > 4 )
#endif
);
Mat src;
if( useSortNet )
{
if( dst.data != src0.data )
src = src0;
else
src0.copyTo(src);
if( src.depth() == CV_8U )
medianBlur_SortNet<MinMax8u, MinMaxVec8u>( src, dst, ksize );
else if( src.depth() == CV_16U )
medianBlur_SortNet<MinMax16u, MinMaxVec16u>( src, dst, ksize );
else if( src.depth() == CV_16S )
medianBlur_SortNet<MinMax16s, MinMaxVec16s>( src, dst, ksize );
else if( src.depth() == CV_32F )
medianBlur_SortNet<MinMax32f, MinMaxVec32f>( src, dst, ksize );
else
CV_Error(CV_StsUnsupportedFormat, "");
return;
}
else
{
cv::copyMakeBorder( src0, src, 0, 0, ksize/2, ksize/2, BORDER_REPLICATE|BORDER_ISOLATED);
int cn = src0.channels();
CV_Assert( src.depth() == CV_8U && (cn == 1 || cn == 3 || cn == 4) );
double img_size_mp = (double)(src0.total())/(1 << 20);
if( ksize <= 3 + (img_size_mp < 1 ? 12 : img_size_mp < 4 ? 6 : 2)*
(CV_SIMD ? 1 : 3))
medianBlur_8u_Om( src, dst, ksize );
else
medianBlur_8u_O1( src, dst, ksize );
}
CV_CPU_DISPATCH(medianBlur, (src0, dst, ksize),
CV_CPU_DISPATCH_MODES_ALL);
}
}
} // namespace
/* End of file. */

@ -46,9 +46,11 @@
#include <vector>
#include "opencv2/core/hal/intrin.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/openvx/ovx_defs.hpp"
#ifdef _MSC_VER
#pragma warning(disable: 4244) // warning C4244: 'argument': conversion from 'int' to 'ushort', possible loss of data
// triggered on intrinsic code from medianBlur_8u_O1()
#endif
/*
* This file includes the code, contributed by Simon Perreault
@ -71,12 +73,18 @@
Median Filter
\****************************************************************************************/
namespace cv
{
namespace cv {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
// forward declarations
void medianBlur(const Mat& src0, /*const*/ Mat& dst, int ksize);
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
static void
medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
{
CV_INSTRUMENT_REGION();
typedef ushort HT;
/**
@ -330,9 +338,6 @@ medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
}
}
}
#if CV_SIMD
vx_cleanup();
#endif
}
#undef HOP
@ -342,6 +347,8 @@ medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
static void
medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m )
{
CV_INSTRUMENT_REGION();
#define N 16
int zone0[4][N];
int zone1[4][N*N];
@ -671,6 +678,8 @@ template<class Op, class VecOp>
static void
medianBlur_SortNet( const Mat& _src, Mat& _dst, int m )
{
CV_INSTRUMENT_REGION();
typedef typename Op::value_type T;
typedef typename Op::arg_type WT;
typedef typename VecOp::arg_type VT;
@ -770,9 +779,6 @@ medianBlur_SortNet( const Mat& _src, Mat& _dst, int m )
limit = size.width;
}
}
#if CV_SIMD
vx_cleanup();
#endif
}
else if( m == 5 )
{
@ -934,266 +940,15 @@ medianBlur_SortNet( const Mat& _src, Mat& _dst, int m )
limit = size.width;
}
}
#if CV_SIMD
vx_cleanup();
#endif
}
}
#ifdef HAVE_OPENCL
#define DIVUP(total, grain) ((total + grain - 1) / (grain))
static bool ocl_medianFilter(InputArray _src, OutputArray _dst, int m)
{
size_t localsize[2] = { 16, 16 };
size_t globalsize[2];
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
if ( !((depth == CV_8U || depth == CV_16U || depth == CV_16S || depth == CV_32F) && cn <= 4 && (m == 3 || m == 5)) )
return false;
Size imgSize = _src.size();
bool useOptimized = (1 == cn) &&
(size_t)imgSize.width >= localsize[0] * 8 &&
(size_t)imgSize.height >= localsize[1] * 8 &&
imgSize.width % 4 == 0 &&
imgSize.height % 4 == 0 &&
(ocl::Device::getDefault().isIntel());
cv::String kname = format( useOptimized ? "medianFilter%d_u" : "medianFilter%d", m) ;
cv::String kdefs = useOptimized ?
format("-D T=%s -D T1=%s -D T4=%s%d -D cn=%d -D USE_4OPT", ocl::typeToStr(type),
ocl::typeToStr(depth), ocl::typeToStr(depth), cn*4, cn)
:
format("-D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn) ;
ocl::Kernel k(kname.c_str(), ocl::imgproc::medianFilter_oclsrc, kdefs.c_str() );
if (k.empty())
return false;
UMat src = _src.getUMat();
_dst.create(src.size(), type);
UMat dst = _dst.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst));
if( useOptimized )
{
globalsize[0] = DIVUP(src.cols / 4, localsize[0]) * localsize[0];
globalsize[1] = DIVUP(src.rows / 4, localsize[1]) * localsize[1];
}
else
{
globalsize[0] = (src.cols + localsize[0] + 2) / localsize[0] * localsize[0];
globalsize[1] = (src.rows + localsize[1] - 1) / localsize[1] * localsize[1];
}
return k.run(2, globalsize, localsize, false);
}
#undef DIVUP
#endif
#ifdef HAVE_OPENVX
namespace ovx {
template <> inline bool skipSmallImages<VX_KERNEL_MEDIAN_3x3>(int w, int h) { return w*h < 1280 * 720; }
}
static bool openvx_medianFilter(InputArray _src, OutputArray _dst, int ksize)
{
if (_src.type() != CV_8UC1 || _dst.type() != CV_8U
#ifndef VX_VERSION_1_1
|| ksize != 3
#endif
)
return false;
Mat src = _src.getMat();
Mat dst = _dst.getMat();
if (
#ifdef VX_VERSION_1_1
ksize != 3 ? ovx::skipSmallImages<VX_KERNEL_NON_LINEAR_FILTER>(src.cols, src.rows) :
#endif
ovx::skipSmallImages<VX_KERNEL_MEDIAN_3x3>(src.cols, src.rows)
)
return false;
try
{
ivx::Context ctx = ovx::getOpenVXContext();
#ifdef VX_VERSION_1_1
if ((vx_size)ksize > ctx.nonlinearMaxDimension())
return false;
#endif
Mat a;
if (dst.data != src.data)
a = src;
else
src.copyTo(a);
ivx::Image
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standard says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(VX_BORDER_REPLICATE);
#ifdef VX_VERSION_1_1
if (ksize == 3)
#endif
{
ivx::IVX_CHECK_STATUS(vxuMedian3x3(ctx, ia, ib));
}
#ifdef VX_VERSION_1_1
else
{
ivx::Matrix mtx;
if(ksize == 5)
mtx = ivx::Matrix::createFromPattern(ctx, VX_PATTERN_BOX, ksize, ksize);
else
{
vx_size supportedSize;
ivx::IVX_CHECK_STATUS(vxQueryContext(ctx, VX_CONTEXT_NONLINEAR_MAX_DIMENSION, &supportedSize, sizeof(supportedSize)));
if ((vx_size)ksize > supportedSize)
{
ctx.setImmediateBorder(prevBorder);
return false;
}
Mat mask(ksize, ksize, CV_8UC1, Scalar(255));
mtx = ivx::Matrix::create(ctx, VX_TYPE_UINT8, ksize, ksize);
mtx.copyFrom(mask);
}
ivx::IVX_CHECK_STATUS(vxuNonLinearFilter(ctx, VX_NONLINEAR_FILTER_MEDIAN, ia, mtx, ib));
}
#endif
ctx.setImmediateBorder(prevBorder);
}
catch (const ivx::RuntimeError & e)
{
VX_DbgThrow(e.what());
}
catch (const ivx::WrapperError & e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif
#ifdef HAVE_IPP
static bool ipp_medianFilter(Mat &src0, Mat &dst, int ksize)
{
CV_INSTRUMENT_REGION_IPP();
#if IPP_VERSION_X100 < 201801
// Degradations for big kernel
if(ksize > 7)
return false;
#endif
{
int bufSize;
IppiSize dstRoiSize = ippiSize(dst.cols, dst.rows), maskSize = ippiSize(ksize, ksize);
IppDataType ippType = ippiGetDataType(src0.type());
int channels = src0.channels();
IppAutoBuffer<Ipp8u> buffer;
if(src0.isSubmatrix())
return false;
Mat src;
if(dst.data != src0.data)
src = src0;
else
src0.copyTo(src);
if(ippiFilterMedianBorderGetBufferSize(dstRoiSize, maskSize, ippType, channels, &bufSize) < 0)
return false;
buffer.allocate(bufSize);
} // namespace anon
switch(ippType)
{
case ipp8u:
if(channels == 1)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_8u_C1R, src.ptr<Ipp8u>(), (int)src.step, dst.ptr<Ipp8u>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else if(channels == 3)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_8u_C3R, src.ptr<Ipp8u>(), (int)src.step, dst.ptr<Ipp8u>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else if(channels == 4)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_8u_C4R, src.ptr<Ipp8u>(), (int)src.step, dst.ptr<Ipp8u>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else
return false;
case ipp16u:
if(channels == 1)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16u_C1R, src.ptr<Ipp16u>(), (int)src.step, dst.ptr<Ipp16u>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else if(channels == 3)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16u_C3R, src.ptr<Ipp16u>(), (int)src.step, dst.ptr<Ipp16u>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else if(channels == 4)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16u_C4R, src.ptr<Ipp16u>(), (int)src.step, dst.ptr<Ipp16u>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else
return false;
case ipp16s:
if(channels == 1)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16s_C1R, src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else if(channels == 3)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16s_C3R, src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else if(channels == 4)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16s_C4R, src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else
return false;
case ipp32f:
if(channels == 1)
return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_32f_C1R, src.ptr<Ipp32f>(), (int)src.step, dst.ptr<Ipp32f>(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0;
else
return false;
default:
return false;
}
}
}
#endif
}
void medianBlur( InputArray _src0, OutputArray _dst, int ksize )
void medianBlur(const Mat& src0, /*const*/ Mat& dst, int ksize)
{
CV_INSTRUMENT_REGION();
CV_Assert( (ksize % 2 == 1) && (_src0.dims() <= 2 ));
if( ksize <= 1 || _src0.empty() )
{
_src0.copyTo(_dst);
return;
}
CV_OCL_RUN(_dst.isUMat(),
ocl_medianFilter(_src0,_dst, ksize))
Mat src0 = _src0.getMat();
_dst.create( src0.size(), src0.type() );
Mat dst = _dst.getMat();
CALL_HAL(medianBlur, cv_hal_medianBlur, src0.data, src0.step, dst.data, dst.step, src0.cols, src0.rows, src0.depth(),
src0.channels(), ksize);
CV_OVX_RUN(true,
openvx_medianFilter(_src0, _dst, ksize))
CV_IPP_RUN_FAST(ipp_medianFilter(src0, dst, ksize));
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && tegra::medianBlur(src0, dst, ksize))
return;
#endif
bool useSortNet = ksize == 3 || (ksize == 5
#if !(CV_SIMD)
&& ( src0.depth() > CV_8U || src0.channels() == 2 || src0.channels() > 4 )
@ -1223,6 +978,7 @@ void medianBlur( InputArray _src0, OutputArray _dst, int ksize )
}
else
{
// TODO AVX guard (external call)
cv::copyMakeBorder( src0, src, 0, 0, ksize/2, ksize/2, BORDER_REPLICATE|BORDER_ISOLATED);
int cn = src0.channels();
@ -1237,6 +993,6 @@ void medianBlur( InputArray _src0, OutputArray _dst, int ksize )
}
}
}
/* End of file. */
#endif
CV_CPU_OPTIMIZATION_NAMESPACE_END
} // namespace

Loading…
Cancel
Save