|
|
|
@ -50,895 +50,10 @@ |
|
|
|
|
|
|
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This file includes the code, contributed by Simon Perreault |
|
|
|
|
* (the function icvMedianBlur_8u_O1) |
|
|
|
|
* |
|
|
|
|
* Constant-time median filtering -- http://nomis80.org/ctmf.html
|
|
|
|
|
* Copyright (C) 2006 Simon Perreault |
|
|
|
|
* |
|
|
|
|
* Contact: |
|
|
|
|
* Laboratoire de vision et systemes numeriques |
|
|
|
|
* Pavillon Adrien-Pouliot |
|
|
|
|
* Universite Laval |
|
|
|
|
* Sainte-Foy, Quebec, Canada |
|
|
|
|
* G1K 7P4 |
|
|
|
|
* |
|
|
|
|
* perreaul@gel.ulaval.ca |
|
|
|
|
*/ |
|
|
|
|
#include "median_blur.simd.hpp" |
|
|
|
|
#include "median_blur.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
|
Median Filter |
|
|
|
|
\****************************************************************************************/ |
|
|
|
|
|
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
static void |
|
|
|
|
medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize ) |
|
|
|
|
{ |
|
|
|
|
typedef ushort HT; |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* This structure represents a two-tier histogram. The first tier (known as the |
|
|
|
|
* "coarse" level) is 4 bit wide and the second tier (known as the "fine" level) |
|
|
|
|
* is 8 bit wide. Pixels inserted in the fine level also get inserted into the |
|
|
|
|
* coarse bucket designated by the 4 MSBs of the fine bucket value. |
|
|
|
|
* |
|
|
|
|
* The structure is aligned on 16 bits, which is a prerequisite for SIMD |
|
|
|
|
* instructions. Each bucket is 16 bit wide, which means that extra care must be |
|
|
|
|
* taken to prevent overflow. |
|
|
|
|
*/ |
|
|
|
|
typedef struct
|
|
|
|
|
{ |
|
|
|
|
HT coarse[16]; |
|
|
|
|
HT fine[16][16]; |
|
|
|
|
} Histogram; |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* HOP is short for Histogram OPeration. This macro makes an operation \a op on |
|
|
|
|
* histogram \a h for pixel value \a x. It takes care of handling both levels. |
|
|
|
|
*/ |
|
|
|
|
#define HOP(h,x,op) \ |
|
|
|
|
h.coarse[x>>4] op, \
|
|
|
|
|
*((HT*)h.fine + x) op |
|
|
|
|
|
|
|
|
|
#define COP(c,j,x,op) \ |
|
|
|
|
h_coarse[ 16*(n*c+j) + (x>>4) ] op, \
|
|
|
|
|
h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op |
|
|
|
|
|
|
|
|
|
int cn = _dst.channels(), m = _dst.rows, r = (ksize-1)/2; |
|
|
|
|
CV_Assert(cn > 0 && cn <= 4); |
|
|
|
|
size_t sstep = _src.step, dstep = _dst.step; |
|
|
|
|
|
|
|
|
|
int STRIPE_SIZE = std::min( _dst.cols, 512/cn ); |
|
|
|
|
|
|
|
|
|
#if defined(CV_SIMD_WIDTH) && CV_SIMD_WIDTH >= 16 |
|
|
|
|
# define CV_ALIGNMENT CV_SIMD_WIDTH |
|
|
|
|
#else |
|
|
|
|
# define CV_ALIGNMENT 16 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
std::vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + CV_ALIGNMENT); |
|
|
|
|
std::vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + CV_ALIGNMENT); |
|
|
|
|
HT* h_coarse = alignPtr(&_h_coarse[0], CV_ALIGNMENT); |
|
|
|
|
HT* h_fine = alignPtr(&_h_fine[0], CV_ALIGNMENT); |
|
|
|
|
|
|
|
|
|
for( int x = 0; x < _dst.cols; x += STRIPE_SIZE ) |
|
|
|
|
{ |
|
|
|
|
int i, j, k, c, n = std::min(_dst.cols - x, STRIPE_SIZE) + r*2; |
|
|
|
|
const uchar* src = _src.ptr() + x*cn; |
|
|
|
|
uchar* dst = _dst.ptr() + (x - r)*cn; |
|
|
|
|
|
|
|
|
|
memset( h_coarse, 0, 16*n*cn*sizeof(h_coarse[0]) ); |
|
|
|
|
memset( h_fine, 0, 16*16*n*cn*sizeof(h_fine[0]) ); |
|
|
|
|
|
|
|
|
|
// First row initialization
|
|
|
|
|
for( c = 0; c < cn; c++ ) |
|
|
|
|
{ |
|
|
|
|
for( j = 0; j < n; j++ ) |
|
|
|
|
COP( c, j, src[cn*j+c], += (HT)(r+2) ); |
|
|
|
|
|
|
|
|
|
for( i = 1; i < r; i++ ) |
|
|
|
|
{ |
|
|
|
|
const uchar* p = src + sstep*std::min(i, m-1); |
|
|
|
|
for ( j = 0; j < n; j++ ) |
|
|
|
|
COP( c, j, p[cn*j+c], ++ ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( i = 0; i < m; i++ ) |
|
|
|
|
{ |
|
|
|
|
const uchar* p0 = src + sstep * std::max( 0, i-r-1 ); |
|
|
|
|
const uchar* p1 = src + sstep * std::min( m-1, i+r ); |
|
|
|
|
|
|
|
|
|
for( c = 0; c < cn; c++ ) |
|
|
|
|
{ |
|
|
|
|
Histogram CV_DECL_ALIGNED(CV_ALIGNMENT) H; |
|
|
|
|
HT CV_DECL_ALIGNED(CV_ALIGNMENT) luc[16]; |
|
|
|
|
|
|
|
|
|
memset(&H, 0, sizeof(H)); |
|
|
|
|
memset(luc, 0, sizeof(luc)); |
|
|
|
|
|
|
|
|
|
// Update column histograms for the entire row.
|
|
|
|
|
for( j = 0; j < n; j++ ) |
|
|
|
|
{ |
|
|
|
|
COP( c, j, p0[j*cn + c], -- ); |
|
|
|
|
COP( c, j, p1[j*cn + c], ++ ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// First column initialization
|
|
|
|
|
for (k = 0; k < 16; ++k) |
|
|
|
|
{ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_store(H.fine[k], v_mul_wrap(v256_load(h_fine + 16 * n*(16 * c + k)), v256_setall_u16(2 * r + 1)) + v256_load(H.fine[k])); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_store(H.fine[k], v_mul_wrap(v_load(h_fine + 16 * n*(16 * c + k)), v_setall_u16((ushort)(2 * r + 1))) + v_load(H.fine[k])); |
|
|
|
|
v_store(H.fine[k] + 8, v_mul_wrap(v_load(h_fine + 16 * n*(16 * c + k) + 8), v_setall_u16((ushort)(2 * r + 1))) + v_load(H.fine[k] + 8)); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.fine[k][ind] = (HT)(H.fine[k][ind] + (2 * r + 1) * h_fine[16 * n*(16 * c + k) + ind]); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_uint16x16 v_coarse = v256_load(H.coarse); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_uint16x8 v_coarsel = v_load(H.coarse); |
|
|
|
|
v_uint16x8 v_coarseh = v_load(H.coarse + 8); |
|
|
|
|
#endif |
|
|
|
|
HT* px = h_coarse + 16 * n*c; |
|
|
|
|
for( j = 0; j < 2*r; ++j, px += 16 ) |
|
|
|
|
{ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_coarse += v256_load(px); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_coarsel += v_load(px); |
|
|
|
|
v_coarseh += v_load(px + 8); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.coarse[ind] += px[ind]; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( j = r; j < n-r; j++ ) |
|
|
|
|
{ |
|
|
|
|
int t = 2*r*r + 2*r, b, sum = 0; |
|
|
|
|
HT* segment; |
|
|
|
|
|
|
|
|
|
px = h_coarse + 16 * (n*c + std::min(j + r, n - 1)); |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_coarse += v256_load(px); |
|
|
|
|
v_store(H.coarse, v_coarse); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_coarsel += v_load(px); |
|
|
|
|
v_coarseh += v_load(px + 8); |
|
|
|
|
v_store(H.coarse, v_coarsel); |
|
|
|
|
v_store(H.coarse + 8, v_coarseh); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.coarse[ind] += px[ind]; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Find median at coarse level
|
|
|
|
|
for ( k = 0; k < 16 ; ++k ) |
|
|
|
|
{ |
|
|
|
|
sum += H.coarse[k]; |
|
|
|
|
if ( sum > t ) |
|
|
|
|
{ |
|
|
|
|
sum -= H.coarse[k]; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
CV_Assert( k < 16 ); |
|
|
|
|
|
|
|
|
|
/* Update corresponding histogram segment */ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_uint16x16 v_fine; |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_uint16x8 v_finel; |
|
|
|
|
v_uint16x8 v_fineh; |
|
|
|
|
#endif |
|
|
|
|
if ( luc[k] <= j-r ) |
|
|
|
|
{ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_fine = v256_setzero_u16(); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_finel = v_setzero_u16(); |
|
|
|
|
v_fineh = v_setzero_u16(); |
|
|
|
|
#else |
|
|
|
|
memset(&H.fine[k], 0, 16 * sizeof(HT)); |
|
|
|
|
#endif |
|
|
|
|
px = h_fine + 16 * (n*(16 * c + k) + j - r); |
|
|
|
|
for (luc[k] = HT(j - r); luc[k] < MIN(j + r + 1, n); ++luc[k], px += 16) |
|
|
|
|
{ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_fine += v256_load(px); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_finel += v_load(px); |
|
|
|
|
v_fineh += v_load(px + 8); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.fine[k][ind] += px[ind]; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if ( luc[k] < j+r+1 ) |
|
|
|
|
{ |
|
|
|
|
px = h_fine + 16 * (n*(16 * c + k) + (n - 1)); |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_fine += v_mul_wrap(v256_load(px), v256_setall_u16(j + r + 1 - n)); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_finel += v_mul_wrap(v_load(px), v_setall_u16((ushort)(j + r + 1 - n))); |
|
|
|
|
v_fineh += v_mul_wrap(v_load(px + 8), v_setall_u16((ushort)(j + r + 1 - n))); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.fine[k][ind] = (HT)(H.fine[k][ind] + (j + r + 1 - n) * px[ind]); |
|
|
|
|
#endif |
|
|
|
|
luc[k] = (HT)(j+r+1); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_fine = v256_load(H.fine[k]); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_finel = v_load(H.fine[k]); |
|
|
|
|
v_fineh = v_load(H.fine[k] + 8); |
|
|
|
|
#endif |
|
|
|
|
px = h_fine + 16*n*(16 * c + k); |
|
|
|
|
for ( ; luc[k] < j+r+1; ++luc[k] ) |
|
|
|
|
{ |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_fine = v_fine + v256_load(px + 16 * MIN(luc[k], n - 1)) - v256_load(px + 16 * MAX(luc[k] - 2 * r - 1, 0)); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_finel = v_finel + v_load(px + 16 * MIN(luc[k], n - 1) ) - v_load(px + 16 * MAX(luc[k] - 2 * r - 1, 0)); |
|
|
|
|
v_fineh = v_fineh + v_load(px + 16 * MIN(luc[k], n - 1) + 8) - v_load(px + 16 * MAX(luc[k] - 2 * r - 1, 0) + 8); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.fine[k][ind] += px[16 * MIN(luc[k], n - 1) + ind] - px[16 * MAX(luc[k] - 2 * r - 1, 0) + ind]; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
px = h_coarse + 16 * (n*c + MAX(j - r, 0)); |
|
|
|
|
#if CV_SIMD256 |
|
|
|
|
v_store(H.fine[k], v_fine); |
|
|
|
|
v_coarse -= v256_load(px); |
|
|
|
|
#elif CV_SIMD128 |
|
|
|
|
v_store(H.fine[k], v_finel); |
|
|
|
|
v_store(H.fine[k] + 8, v_fineh); |
|
|
|
|
v_coarsel -= v_load(px); |
|
|
|
|
v_coarseh -= v_load(px + 8); |
|
|
|
|
#else |
|
|
|
|
for (int ind = 0; ind < 16; ++ind) |
|
|
|
|
H.coarse[ind] -= px[ind]; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
/* Find median in segment */ |
|
|
|
|
segment = H.fine[k]; |
|
|
|
|
for ( b = 0; b < 16 ; b++ ) |
|
|
|
|
{ |
|
|
|
|
sum += segment[b]; |
|
|
|
|
if ( sum > t ) |
|
|
|
|
{ |
|
|
|
|
dst[dstep*i+cn*j+c] = (uchar)(16*k + b); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
CV_Assert( b < 16 ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD |
|
|
|
|
vx_cleanup(); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#undef HOP |
|
|
|
|
#undef COP |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void |
|
|
|
|
medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m ) |
|
|
|
|
{ |
|
|
|
|
#define N 16 |
|
|
|
|
int zone0[4][N]; |
|
|
|
|
int zone1[4][N*N]; |
|
|
|
|
int x, y; |
|
|
|
|
int n2 = m*m/2; |
|
|
|
|
Size size = _dst.size(); |
|
|
|
|
const uchar* src = _src.ptr(); |
|
|
|
|
uchar* dst = _dst.ptr(); |
|
|
|
|
int src_step = (int)_src.step, dst_step = (int)_dst.step; |
|
|
|
|
int cn = _src.channels(); |
|
|
|
|
const uchar* src_max = src + size.height*src_step; |
|
|
|
|
CV_Assert(cn > 0 && cn <= 4); |
|
|
|
|
|
|
|
|
|
#define UPDATE_ACC01( pix, cn, op ) \ |
|
|
|
|
{ \
|
|
|
|
|
int p = (pix); \
|
|
|
|
|
zone1[cn][p] op; \
|
|
|
|
|
zone0[cn][p >> 4] op; \
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//CV_Assert( size.height >= nx && size.width >= nx );
|
|
|
|
|
for( x = 0; x < size.width; x++, src += cn, dst += cn ) |
|
|
|
|
{ |
|
|
|
|
uchar* dst_cur = dst; |
|
|
|
|
const uchar* src_top = src; |
|
|
|
|
const uchar* src_bottom = src; |
|
|
|
|
int k, c; |
|
|
|
|
int src_step1 = src_step, dst_step1 = dst_step; |
|
|
|
|
|
|
|
|
|
if( x % 2 != 0 ) |
|
|
|
|
{ |
|
|
|
|
src_bottom = src_top += src_step*(size.height-1); |
|
|
|
|
dst_cur += dst_step*(size.height-1); |
|
|
|
|
src_step1 = -src_step1; |
|
|
|
|
dst_step1 = -dst_step1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// init accumulator
|
|
|
|
|
memset( zone0, 0, sizeof(zone0[0])*cn ); |
|
|
|
|
memset( zone1, 0, sizeof(zone1[0])*cn ); |
|
|
|
|
|
|
|
|
|
for( y = 0; y <= m/2; y++ ) |
|
|
|
|
{ |
|
|
|
|
for( c = 0; c < cn; c++ ) |
|
|
|
|
{ |
|
|
|
|
if( y > 0 ) |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < m*cn; k += cn ) |
|
|
|
|
UPDATE_ACC01( src_bottom[k+c], c, ++ ); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < m*cn; k += cn ) |
|
|
|
|
UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( (src_step1 > 0 && y < size.height-1) || |
|
|
|
|
(src_step1 < 0 && size.height-y-1 > 0) ) |
|
|
|
|
src_bottom += src_step1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( y = 0; y < size.height; y++, dst_cur += dst_step1 ) |
|
|
|
|
{ |
|
|
|
|
// find median
|
|
|
|
|
for( c = 0; c < cn; c++ ) |
|
|
|
|
{ |
|
|
|
|
int s = 0; |
|
|
|
|
for( k = 0; ; k++ ) |
|
|
|
|
{ |
|
|
|
|
int t = s + zone0[c][k]; |
|
|
|
|
if( t > n2 ) break; |
|
|
|
|
s = t; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( k *= N; ;k++ ) |
|
|
|
|
{ |
|
|
|
|
s += zone1[c][k]; |
|
|
|
|
if( s > n2 ) break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dst_cur[c] = (uchar)k; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( y+1 == size.height ) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
if( cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < m; k++ ) |
|
|
|
|
{ |
|
|
|
|
int p = src_top[k]; |
|
|
|
|
int q = src_bottom[k]; |
|
|
|
|
zone1[0][p]--; |
|
|
|
|
zone0[0][p>>4]--; |
|
|
|
|
zone1[0][q]++; |
|
|
|
|
zone0[0][q>>4]++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if( cn == 3 ) |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < m*3; k += 3 ) |
|
|
|
|
{ |
|
|
|
|
UPDATE_ACC01( src_top[k], 0, -- ); |
|
|
|
|
UPDATE_ACC01( src_top[k+1], 1, -- ); |
|
|
|
|
UPDATE_ACC01( src_top[k+2], 2, -- ); |
|
|
|
|
|
|
|
|
|
UPDATE_ACC01( src_bottom[k], 0, ++ ); |
|
|
|
|
UPDATE_ACC01( src_bottom[k+1], 1, ++ ); |
|
|
|
|
UPDATE_ACC01( src_bottom[k+2], 2, ++ ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
assert( cn == 4 ); |
|
|
|
|
for( k = 0; k < m*4; k += 4 ) |
|
|
|
|
{ |
|
|
|
|
UPDATE_ACC01( src_top[k], 0, -- ); |
|
|
|
|
UPDATE_ACC01( src_top[k+1], 1, -- ); |
|
|
|
|
UPDATE_ACC01( src_top[k+2], 2, -- ); |
|
|
|
|
UPDATE_ACC01( src_top[k+3], 3, -- ); |
|
|
|
|
|
|
|
|
|
UPDATE_ACC01( src_bottom[k], 0, ++ ); |
|
|
|
|
UPDATE_ACC01( src_bottom[k+1], 1, ++ ); |
|
|
|
|
UPDATE_ACC01( src_bottom[k+2], 2, ++ ); |
|
|
|
|
UPDATE_ACC01( src_bottom[k+3], 3, ++ ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( (src_step1 > 0 && src_bottom + src_step1 < src_max) || |
|
|
|
|
(src_step1 < 0 && src_bottom + src_step1 >= src) ) |
|
|
|
|
src_bottom += src_step1; |
|
|
|
|
|
|
|
|
|
if( y >= m/2 ) |
|
|
|
|
src_top += src_step1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#undef N |
|
|
|
|
#undef UPDATE_ACC |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
struct MinMax8u |
|
|
|
|
{ |
|
|
|
|
typedef uchar value_type; |
|
|
|
|
typedef int arg_type; |
|
|
|
|
enum { SIZE = 1 }; |
|
|
|
|
arg_type load(const uchar* ptr) { return *ptr; } |
|
|
|
|
void store(uchar* ptr, arg_type val) { *ptr = (uchar)val; } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
int t = CV_FAST_CAST_8U(a - b); |
|
|
|
|
b += t; a -= t; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct MinMax16u |
|
|
|
|
{ |
|
|
|
|
typedef ushort value_type; |
|
|
|
|
typedef int arg_type; |
|
|
|
|
enum { SIZE = 1 }; |
|
|
|
|
arg_type load(const ushort* ptr) { return *ptr; } |
|
|
|
|
void store(ushort* ptr, arg_type val) { *ptr = (ushort)val; } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = std::min(a, b); |
|
|
|
|
b = std::max(b, t); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct MinMax16s |
|
|
|
|
{ |
|
|
|
|
typedef short value_type; |
|
|
|
|
typedef int arg_type; |
|
|
|
|
enum { SIZE = 1 }; |
|
|
|
|
arg_type load(const short* ptr) { return *ptr; } |
|
|
|
|
void store(short* ptr, arg_type val) { *ptr = (short)val; } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = std::min(a, b); |
|
|
|
|
b = std::max(b, t); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct MinMax32f |
|
|
|
|
{ |
|
|
|
|
typedef float value_type; |
|
|
|
|
typedef float arg_type; |
|
|
|
|
enum { SIZE = 1 }; |
|
|
|
|
arg_type load(const float* ptr) { return *ptr; } |
|
|
|
|
void store(float* ptr, arg_type val) { *ptr = val; } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = std::min(a, b); |
|
|
|
|
b = std::max(b, t); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#if CV_SIMD |
|
|
|
|
|
|
|
|
|
struct MinMaxVec8u |
|
|
|
|
{ |
|
|
|
|
typedef uchar value_type; |
|
|
|
|
typedef v_uint8x16 arg_type; |
|
|
|
|
enum { SIZE = v_uint8x16::nlanes }; |
|
|
|
|
arg_type load(const uchar* ptr) { return v_load(ptr); } |
|
|
|
|
void store(uchar* ptr, const arg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
typedef v_uint8 warg_type; |
|
|
|
|
enum { WSIZE = v_uint8::nlanes }; |
|
|
|
|
warg_type wload(const uchar* ptr) { return vx_load(ptr); } |
|
|
|
|
void store(uchar* ptr, const warg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(warg_type& a, warg_type& b) const |
|
|
|
|
{ |
|
|
|
|
warg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct MinMaxVec16u |
|
|
|
|
{ |
|
|
|
|
typedef ushort value_type; |
|
|
|
|
typedef v_uint16x8 arg_type; |
|
|
|
|
enum { SIZE = v_uint16x8::nlanes }; |
|
|
|
|
arg_type load(const ushort* ptr) { return v_load(ptr); } |
|
|
|
|
void store(ushort* ptr, const arg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
typedef v_uint16 warg_type; |
|
|
|
|
enum { WSIZE = v_uint16::nlanes }; |
|
|
|
|
warg_type wload(const ushort* ptr) { return vx_load(ptr); } |
|
|
|
|
void store(ushort* ptr, const warg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(warg_type& a, warg_type& b) const |
|
|
|
|
{ |
|
|
|
|
warg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct MinMaxVec16s |
|
|
|
|
{ |
|
|
|
|
typedef short value_type; |
|
|
|
|
typedef v_int16x8 arg_type; |
|
|
|
|
enum { SIZE = v_int16x8::nlanes }; |
|
|
|
|
arg_type load(const short* ptr) { return v_load(ptr); } |
|
|
|
|
void store(short* ptr, const arg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
typedef v_int16 warg_type; |
|
|
|
|
enum { WSIZE = v_int16::nlanes }; |
|
|
|
|
warg_type wload(const short* ptr) { return vx_load(ptr); } |
|
|
|
|
void store(short* ptr, const warg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(warg_type& a, warg_type& b) const |
|
|
|
|
{ |
|
|
|
|
warg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct MinMaxVec32f |
|
|
|
|
{ |
|
|
|
|
typedef float value_type; |
|
|
|
|
typedef v_float32x4 arg_type; |
|
|
|
|
enum { SIZE = v_float32x4::nlanes }; |
|
|
|
|
arg_type load(const float* ptr) { return v_load(ptr); } |
|
|
|
|
void store(float* ptr, const arg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(arg_type& a, arg_type& b) const |
|
|
|
|
{ |
|
|
|
|
arg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
typedef v_float32 warg_type; |
|
|
|
|
enum { WSIZE = v_float32::nlanes }; |
|
|
|
|
warg_type wload(const float* ptr) { return vx_load(ptr); } |
|
|
|
|
void store(float* ptr, const warg_type &val) { v_store(ptr, val); } |
|
|
|
|
void operator()(warg_type& a, warg_type& b) const |
|
|
|
|
{ |
|
|
|
|
warg_type t = a; |
|
|
|
|
a = v_min(a, b); |
|
|
|
|
b = v_max(b, t); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
typedef MinMax8u MinMaxVec8u; |
|
|
|
|
typedef MinMax16u MinMaxVec16u; |
|
|
|
|
typedef MinMax16s MinMaxVec16s; |
|
|
|
|
typedef MinMax32f MinMaxVec32f; |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
template<class Op, class VecOp> |
|
|
|
|
static void |
|
|
|
|
medianBlur_SortNet( const Mat& _src, Mat& _dst, int m ) |
|
|
|
|
{ |
|
|
|
|
typedef typename Op::value_type T; |
|
|
|
|
typedef typename Op::arg_type WT; |
|
|
|
|
typedef typename VecOp::arg_type VT; |
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
typedef typename VecOp::warg_type WVT; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
const T* src = _src.ptr<T>(); |
|
|
|
|
T* dst = _dst.ptr<T>(); |
|
|
|
|
int sstep = (int)(_src.step/sizeof(T)); |
|
|
|
|
int dstep = (int)(_dst.step/sizeof(T)); |
|
|
|
|
Size size = _dst.size(); |
|
|
|
|
int i, j, k, cn = _src.channels(); |
|
|
|
|
Op op; |
|
|
|
|
VecOp vop; |
|
|
|
|
|
|
|
|
|
if( m == 3 ) |
|
|
|
|
{ |
|
|
|
|
if( size.width == 1 || size.height == 1 ) |
|
|
|
|
{ |
|
|
|
|
int len = size.width + size.height - 1; |
|
|
|
|
int sdelta = size.height == 1 ? cn : sstep; |
|
|
|
|
int sdelta0 = size.height == 1 ? 0 : sstep - cn; |
|
|
|
|
int ddelta = size.height == 1 ? cn : dstep; |
|
|
|
|
|
|
|
|
|
for( i = 0; i < len; i++, src += sdelta0, dst += ddelta ) |
|
|
|
|
for( j = 0; j < cn; j++, src++ ) |
|
|
|
|
{ |
|
|
|
|
WT p0 = src[i > 0 ? -sdelta : 0]; |
|
|
|
|
WT p1 = src[0]; |
|
|
|
|
WT p2 = src[i < len - 1 ? sdelta : 0]; |
|
|
|
|
|
|
|
|
|
op(p0, p1); op(p1, p2); op(p0, p1); |
|
|
|
|
dst[j] = (T)p1; |
|
|
|
|
} |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
size.width *= cn; |
|
|
|
|
for( i = 0; i < size.height; i++, dst += dstep ) |
|
|
|
|
{ |
|
|
|
|
const T* row0 = src + std::max(i - 1, 0)*sstep; |
|
|
|
|
const T* row1 = src + i*sstep; |
|
|
|
|
const T* row2 = src + std::min(i + 1, size.height-1)*sstep; |
|
|
|
|
int limit = cn; |
|
|
|
|
|
|
|
|
|
for(j = 0;; ) |
|
|
|
|
{ |
|
|
|
|
for( ; j < limit; j++ ) |
|
|
|
|
{ |
|
|
|
|
int j0 = j >= cn ? j - cn : j; |
|
|
|
|
int j2 = j < size.width - cn ? j + cn : j; |
|
|
|
|
WT p0 = row0[j0], p1 = row0[j], p2 = row0[j2]; |
|
|
|
|
WT p3 = row1[j0], p4 = row1[j], p5 = row1[j2]; |
|
|
|
|
WT p6 = row2[j0], p7 = row2[j], p8 = row2[j2]; |
|
|
|
|
|
|
|
|
|
op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p1); |
|
|
|
|
op(p3, p4); op(p6, p7); op(p1, p2); op(p4, p5); |
|
|
|
|
op(p7, p8); op(p0, p3); op(p5, p8); op(p4, p7); |
|
|
|
|
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7); |
|
|
|
|
op(p4, p2); op(p6, p4); op(p4, p2); |
|
|
|
|
dst[j] = (T)p4; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( limit == size.width ) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
for( ; j <= size.width - VecOp::WSIZE - cn; j += VecOp::WSIZE ) |
|
|
|
|
{ |
|
|
|
|
WVT p0 = vop.wload(row0+j-cn), p1 = vop.wload(row0+j), p2 = vop.wload(row0+j+cn); |
|
|
|
|
WVT p3 = vop.wload(row1+j-cn), p4 = vop.wload(row1+j), p5 = vop.wload(row1+j+cn); |
|
|
|
|
WVT p6 = vop.wload(row2+j-cn), p7 = vop.wload(row2+j), p8 = vop.wload(row2+j+cn); |
|
|
|
|
|
|
|
|
|
vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1); |
|
|
|
|
vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5); |
|
|
|
|
vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7); |
|
|
|
|
vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7); |
|
|
|
|
vop(p4, p2); vop(p6, p4); vop(p4, p2); |
|
|
|
|
vop.store(dst+j, p4); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
for( ; j <= size.width - VecOp::SIZE - cn; j += VecOp::SIZE ) |
|
|
|
|
{ |
|
|
|
|
VT p0 = vop.load(row0+j-cn), p1 = vop.load(row0+j), p2 = vop.load(row0+j+cn); |
|
|
|
|
VT p3 = vop.load(row1+j-cn), p4 = vop.load(row1+j), p5 = vop.load(row1+j+cn); |
|
|
|
|
VT p6 = vop.load(row2+j-cn), p7 = vop.load(row2+j), p8 = vop.load(row2+j+cn); |
|
|
|
|
|
|
|
|
|
vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1); |
|
|
|
|
vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5); |
|
|
|
|
vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7); |
|
|
|
|
vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7); |
|
|
|
|
vop(p4, p2); vop(p6, p4); vop(p4, p2); |
|
|
|
|
vop.store(dst+j, p4); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
limit = size.width; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD |
|
|
|
|
vx_cleanup(); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
else if( m == 5 ) |
|
|
|
|
{ |
|
|
|
|
if( size.width == 1 || size.height == 1 ) |
|
|
|
|
{ |
|
|
|
|
int len = size.width + size.height - 1; |
|
|
|
|
int sdelta = size.height == 1 ? cn : sstep; |
|
|
|
|
int sdelta0 = size.height == 1 ? 0 : sstep - cn; |
|
|
|
|
int ddelta = size.height == 1 ? cn : dstep; |
|
|
|
|
|
|
|
|
|
for( i = 0; i < len; i++, src += sdelta0, dst += ddelta ) |
|
|
|
|
for( j = 0; j < cn; j++, src++ ) |
|
|
|
|
{ |
|
|
|
|
int i1 = i > 0 ? -sdelta : 0; |
|
|
|
|
int i0 = i > 1 ? -sdelta*2 : i1; |
|
|
|
|
int i3 = i < len-1 ? sdelta : 0; |
|
|
|
|
int i4 = i < len-2 ? sdelta*2 : i3; |
|
|
|
|
WT p0 = src[i0], p1 = src[i1], p2 = src[0], p3 = src[i3], p4 = src[i4]; |
|
|
|
|
|
|
|
|
|
op(p0, p1); op(p3, p4); op(p2, p3); op(p3, p4); op(p0, p2); |
|
|
|
|
op(p2, p4); op(p1, p3); op(p1, p2); |
|
|
|
|
dst[j] = (T)p2; |
|
|
|
|
} |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
size.width *= cn; |
|
|
|
|
for( i = 0; i < size.height; i++, dst += dstep ) |
|
|
|
|
{ |
|
|
|
|
const T* row[5]; |
|
|
|
|
row[0] = src + std::max(i - 2, 0)*sstep; |
|
|
|
|
row[1] = src + std::max(i - 1, 0)*sstep; |
|
|
|
|
row[2] = src + i*sstep; |
|
|
|
|
row[3] = src + std::min(i + 1, size.height-1)*sstep; |
|
|
|
|
row[4] = src + std::min(i + 2, size.height-1)*sstep; |
|
|
|
|
int limit = cn*2; |
|
|
|
|
|
|
|
|
|
for(j = 0;; ) |
|
|
|
|
{ |
|
|
|
|
for( ; j < limit; j++ ) |
|
|
|
|
{ |
|
|
|
|
WT p[25]; |
|
|
|
|
int j1 = j >= cn ? j - cn : j; |
|
|
|
|
int j0 = j >= cn*2 ? j - cn*2 : j1; |
|
|
|
|
int j3 = j < size.width - cn ? j + cn : j; |
|
|
|
|
int j4 = j < size.width - cn*2 ? j + cn*2 : j3; |
|
|
|
|
for( k = 0; k < 5; k++ ) |
|
|
|
|
{ |
|
|
|
|
const T* rowk = row[k]; |
|
|
|
|
p[k*5] = rowk[j0]; p[k*5+1] = rowk[j1]; |
|
|
|
|
p[k*5+2] = rowk[j]; p[k*5+3] = rowk[j3]; |
|
|
|
|
p[k*5+4] = rowk[j4]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
op(p[1], p[2]); op(p[0], p[1]); op(p[1], p[2]); op(p[4], p[5]); op(p[3], p[4]); |
|
|
|
|
op(p[4], p[5]); op(p[0], p[3]); op(p[2], p[5]); op(p[2], p[3]); op(p[1], p[4]); |
|
|
|
|
op(p[1], p[2]); op(p[3], p[4]); op(p[7], p[8]); op(p[6], p[7]); op(p[7], p[8]); |
|
|
|
|
op(p[10], p[11]); op(p[9], p[10]); op(p[10], p[11]); op(p[6], p[9]); op(p[8], p[11]); |
|
|
|
|
op(p[8], p[9]); op(p[7], p[10]); op(p[7], p[8]); op(p[9], p[10]); op(p[0], p[6]); |
|
|
|
|
op(p[4], p[10]); op(p[4], p[6]); op(p[2], p[8]); op(p[2], p[4]); op(p[6], p[8]); |
|
|
|
|
op(p[1], p[7]); op(p[5], p[11]); op(p[5], p[7]); op(p[3], p[9]); op(p[3], p[5]); |
|
|
|
|
op(p[7], p[9]); op(p[1], p[2]); op(p[3], p[4]); op(p[5], p[6]); op(p[7], p[8]); |
|
|
|
|
op(p[9], p[10]); op(p[13], p[14]); op(p[12], p[13]); op(p[13], p[14]); op(p[16], p[17]); |
|
|
|
|
op(p[15], p[16]); op(p[16], p[17]); op(p[12], p[15]); op(p[14], p[17]); op(p[14], p[15]); |
|
|
|
|
op(p[13], p[16]); op(p[13], p[14]); op(p[15], p[16]); op(p[19], p[20]); op(p[18], p[19]); |
|
|
|
|
op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[21], p[23]); op(p[22], p[24]); |
|
|
|
|
op(p[22], p[23]); op(p[18], p[21]); op(p[20], p[23]); op(p[20], p[21]); op(p[19], p[22]); |
|
|
|
|
op(p[22], p[24]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[12], p[18]); |
|
|
|
|
op(p[16], p[22]); op(p[16], p[18]); op(p[14], p[20]); op(p[20], p[24]); op(p[14], p[16]); |
|
|
|
|
op(p[18], p[20]); op(p[22], p[24]); op(p[13], p[19]); op(p[17], p[23]); op(p[17], p[19]); |
|
|
|
|
op(p[15], p[21]); op(p[15], p[17]); op(p[19], p[21]); op(p[13], p[14]); op(p[15], p[16]); |
|
|
|
|
op(p[17], p[18]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[0], p[12]); |
|
|
|
|
op(p[8], p[20]); op(p[8], p[12]); op(p[4], p[16]); op(p[16], p[24]); op(p[12], p[16]); |
|
|
|
|
op(p[2], p[14]); op(p[10], p[22]); op(p[10], p[14]); op(p[6], p[18]); op(p[6], p[10]); |
|
|
|
|
op(p[10], p[12]); op(p[1], p[13]); op(p[9], p[21]); op(p[9], p[13]); op(p[5], p[17]); |
|
|
|
|
op(p[13], p[17]); op(p[3], p[15]); op(p[11], p[23]); op(p[11], p[15]); op(p[7], p[19]); |
|
|
|
|
op(p[7], p[11]); op(p[11], p[13]); op(p[11], p[12]); |
|
|
|
|
dst[j] = (T)p[12]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( limit == size.width ) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
#if CV_SIMD_WIDTH > 16 |
|
|
|
|
for( ; j <= size.width - VecOp::WSIZE - cn*2; j += VecOp::WSIZE ) |
|
|
|
|
{ |
|
|
|
|
WVT p[25]; |
|
|
|
|
for( k = 0; k < 5; k++ ) |
|
|
|
|
{ |
|
|
|
|
const T* rowk = row[k]; |
|
|
|
|
p[k*5] = vop.wload(rowk+j-cn*2); p[k*5+1] = vop.wload(rowk+j-cn); |
|
|
|
|
p[k*5+2] = vop.wload(rowk+j); p[k*5+3] = vop.wload(rowk+j+cn); |
|
|
|
|
p[k*5+4] = vop.wload(rowk+j+cn*2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]); |
|
|
|
|
vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]); |
|
|
|
|
vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]); |
|
|
|
|
vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]); |
|
|
|
|
vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]); |
|
|
|
|
vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]); |
|
|
|
|
vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]); |
|
|
|
|
vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]); |
|
|
|
|
vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]); |
|
|
|
|
vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]); |
|
|
|
|
vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]); |
|
|
|
|
vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]); |
|
|
|
|
vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]); |
|
|
|
|
vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]); |
|
|
|
|
vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]); |
|
|
|
|
vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]); |
|
|
|
|
vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]); |
|
|
|
|
vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]); |
|
|
|
|
vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]); |
|
|
|
|
vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]); |
|
|
|
|
vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]); |
|
|
|
|
vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]); |
|
|
|
|
vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]); |
|
|
|
|
vop.store(dst+j, p[12]); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
for( ; j <= size.width - VecOp::SIZE - cn*2; j += VecOp::SIZE ) |
|
|
|
|
{ |
|
|
|
|
VT p[25]; |
|
|
|
|
for( k = 0; k < 5; k++ ) |
|
|
|
|
{ |
|
|
|
|
const T* rowk = row[k]; |
|
|
|
|
p[k*5] = vop.load(rowk+j-cn*2); p[k*5+1] = vop.load(rowk+j-cn); |
|
|
|
|
p[k*5+2] = vop.load(rowk+j); p[k*5+3] = vop.load(rowk+j+cn); |
|
|
|
|
p[k*5+4] = vop.load(rowk+j+cn*2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]); |
|
|
|
|
vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]); |
|
|
|
|
vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]); |
|
|
|
|
vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]); |
|
|
|
|
vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]); |
|
|
|
|
vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]); |
|
|
|
|
vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]); |
|
|
|
|
vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]); |
|
|
|
|
vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]); |
|
|
|
|
vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]); |
|
|
|
|
vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]); |
|
|
|
|
vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]); |
|
|
|
|
vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]); |
|
|
|
|
vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]); |
|
|
|
|
vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]); |
|
|
|
|
vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]); |
|
|
|
|
vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]); |
|
|
|
|
vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]); |
|
|
|
|
vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]); |
|
|
|
|
vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]); |
|
|
|
|
vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]); |
|
|
|
|
vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]); |
|
|
|
|
vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]); |
|
|
|
|
vop.store(dst+j, p[12]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
limit = size.width; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#if CV_SIMD |
|
|
|
|
vx_cleanup(); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
namespace cv { |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
@ -1160,7 +275,6 @@ static bool ipp_medianFilter(Mat &src0, Mat &dst, int ksize) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void medianBlur( InputArray _src0, OutputArray _dst, int ksize ) |
|
|
|
|
{ |
|
|
|
@ -1194,49 +308,10 @@ void medianBlur( InputArray _src0, OutputArray _dst, int ksize ) |
|
|
|
|
return; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
bool useSortNet = ksize == 3 || (ksize == 5 |
|
|
|
|
#if !(CV_SIMD) |
|
|
|
|
&& ( src0.depth() > CV_8U || src0.channels() == 2 || src0.channels() > 4 ) |
|
|
|
|
#endif |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
Mat src; |
|
|
|
|
if( useSortNet ) |
|
|
|
|
{ |
|
|
|
|
if( dst.data != src0.data ) |
|
|
|
|
src = src0; |
|
|
|
|
else |
|
|
|
|
src0.copyTo(src); |
|
|
|
|
|
|
|
|
|
if( src.depth() == CV_8U ) |
|
|
|
|
medianBlur_SortNet<MinMax8u, MinMaxVec8u>( src, dst, ksize ); |
|
|
|
|
else if( src.depth() == CV_16U ) |
|
|
|
|
medianBlur_SortNet<MinMax16u, MinMaxVec16u>( src, dst, ksize ); |
|
|
|
|
else if( src.depth() == CV_16S ) |
|
|
|
|
medianBlur_SortNet<MinMax16s, MinMaxVec16s>( src, dst, ksize ); |
|
|
|
|
else if( src.depth() == CV_32F ) |
|
|
|
|
medianBlur_SortNet<MinMax32f, MinMaxVec32f>( src, dst, ksize ); |
|
|
|
|
else |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat, ""); |
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cv::copyMakeBorder( src0, src, 0, 0, ksize/2, ksize/2, BORDER_REPLICATE|BORDER_ISOLATED); |
|
|
|
|
|
|
|
|
|
int cn = src0.channels(); |
|
|
|
|
CV_Assert( src.depth() == CV_8U && (cn == 1 || cn == 3 || cn == 4) ); |
|
|
|
|
|
|
|
|
|
double img_size_mp = (double)(src0.total())/(1 << 20); |
|
|
|
|
if( ksize <= 3 + (img_size_mp < 1 ? 12 : img_size_mp < 4 ? 6 : 2)* |
|
|
|
|
(CV_SIMD ? 1 : 3)) |
|
|
|
|
medianBlur_8u_Om( src, dst, ksize ); |
|
|
|
|
else |
|
|
|
|
medianBlur_8u_O1( src, dst, ksize ); |
|
|
|
|
} |
|
|
|
|
CV_CPU_DISPATCH(medianBlur, (src0, dst, ksize), |
|
|
|
|
CV_CPU_DISPATCH_MODES_ALL); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
/* End of file. */ |
|
|
|
|