|
|
|
@ -70,6 +70,54 @@ |
|
|
|
|
|
|
|
|
|
QUnit.module('Image Processing', {}); |
|
|
|
|
|
|
|
|
|
QUnit.test('applyColorMap', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let src = cv.matFromArray(2, 1, cv.CV_8U, [50,100]); |
|
|
|
|
cv.applyColorMap(src, src, cv.COLORMAP_BONE); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let expected = new Uint8Array([60,44,44,119,89,87]); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(src.data, expected); |
|
|
|
|
src.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
QUnit.test('blendLinear', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let src1 = cv.matFromArray(2, 1, cv.CV_8U, [50,100]); |
|
|
|
|
let src2 = cv.matFromArray(2, 1, cv.CV_8U, [200,20]); |
|
|
|
|
let weights1 = cv.matFromArray(2, 1, cv.CV_32F, [0.4,0.5]); |
|
|
|
|
let weights2 = cv.matFromArray(2, 1, cv.CV_32F, [0.6,0.5]); |
|
|
|
|
let dst = new cv.Mat(); |
|
|
|
|
cv.blendLinear(src1, src2, weights1, weights2, dst); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let expected = new Uint8Array([140,60]); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expected); |
|
|
|
|
src1.delete(); |
|
|
|
|
src2.delete(); |
|
|
|
|
weights1.delete(); |
|
|
|
|
weights2.delete(); |
|
|
|
|
dst.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
QUnit.test('createHanningWindow', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let dst = new cv.Mat(); |
|
|
|
|
cv.createHanningWindow(dst, new cv.Size(5, 3), cv.CV_32F); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let expected = cv.matFromArray(3, 5, cv.CV_32F, [0.,0.,0.,0.,0.,0.,0.70710677,1.,0.70710677,0.,0.,0.,0.,0.,0.]); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expected.data); |
|
|
|
|
dst.delete(); |
|
|
|
|
expected.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
QUnit.test('test_imgProc', function(assert) { |
|
|
|
|
// calcHist
|
|
|
|
|
{ |
|
|
|
@ -127,6 +175,7 @@ QUnit.test('test_imgProc', function(assert) { |
|
|
|
|
dest.delete(); |
|
|
|
|
source.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// equalizeHist
|
|
|
|
|
{ |
|
|
|
|
let source = new cv.Mat(10, 10, cv.CV_8UC1); |
|
|
|
@ -196,7 +245,9 @@ QUnit.test('test_imgProc', function(assert) { |
|
|
|
|
expected_img.delete(); |
|
|
|
|
compare_result.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
QUnit.test('Drawing Functions', function(assert) { |
|
|
|
|
// fillPoly
|
|
|
|
|
{ |
|
|
|
|
let img_width = 6; |
|
|
|
@ -359,6 +410,7 @@ QUnit.test('test_shape', function(assert) { |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
QUnit.test('test_min_enclosing', function(assert) { |
|
|
|
|
// minEnclosingCircle
|
|
|
|
|
{ |
|
|
|
|
let points = new cv.Mat(4, 1, cv.CV_32FC2); |
|
|
|
|
|
|
|
|
@ -378,6 +430,31 @@ QUnit.test('test_min_enclosing', function(assert) { |
|
|
|
|
|
|
|
|
|
points.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// minEnclosingTriangle
|
|
|
|
|
{ |
|
|
|
|
let dst = cv.Mat.zeros(80, 80, cv.CV_8U); |
|
|
|
|
let contours = new cv.MatVector(); |
|
|
|
|
let hierarchy = new cv.Mat(); |
|
|
|
|
let triangle = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.drawMarker(dst, new cv.Point(40, 40), new cv.Scalar(255)); |
|
|
|
|
cv.findContoursLinkRuns(dst,contours,hierarchy); |
|
|
|
|
cv.minEnclosingTriangle(contours.get(0),triangle); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
const triangleData = triangle.data32F; |
|
|
|
|
assert.deepEqual(triangleData[0], triangleData[4]); |
|
|
|
|
assert.deepEqual(triangleData[1], 20); |
|
|
|
|
assert.deepEqual(triangleData[2], 30); |
|
|
|
|
assert.deepEqual(triangleData[3], 40); |
|
|
|
|
assert.deepEqual(triangleData[5], 60); |
|
|
|
|
|
|
|
|
|
dst.delete(); |
|
|
|
|
contours.delete(); |
|
|
|
|
hierarchy.delete(); |
|
|
|
|
triangle.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
QUnit.test('test_filter', function(assert) { |
|
|
|
@ -427,34 +504,75 @@ QUnit.test('test_filter', function(assert) { |
|
|
|
|
assert.equal(mat2.channels(), 1); |
|
|
|
|
assert.equal(size.height, 7); |
|
|
|
|
assert.equal(size.width, 7); |
|
|
|
|
mat1.delete(); |
|
|
|
|
mat2.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// medianBlur
|
|
|
|
|
// spatialGradient
|
|
|
|
|
{ |
|
|
|
|
let mat1 = cv.Mat.ones(9, 9, cv.CV_8UC3); |
|
|
|
|
let mat2 = new cv.Mat(); |
|
|
|
|
let src = cv.matFromArray(4, 4, cv.CV_8U, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]); |
|
|
|
|
let dx = new cv.Mat(); |
|
|
|
|
let dy = new cv.Mat(); |
|
|
|
|
cv.spatialGradient(src, dx, dy); |
|
|
|
|
|
|
|
|
|
cv.medianBlur(mat1, mat2, 3); |
|
|
|
|
// Verify result.
|
|
|
|
|
let expected_dx = new cv.Mat(); |
|
|
|
|
let expected_dy = new cv.Mat(); |
|
|
|
|
cv.Sobel(src, expected_dx, cv.CV_16SC1, 1, 0, 3); |
|
|
|
|
cv.Sobel(src, expected_dy, cv.CV_16SC1, 0, 1, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dx.data, expected_dx.data); |
|
|
|
|
assert.deepEqual(dy.data, expected_dy.data); |
|
|
|
|
|
|
|
|
|
src.delete(); |
|
|
|
|
dx.delete(); |
|
|
|
|
dy.delete(); |
|
|
|
|
expected_dx.delete(); |
|
|
|
|
expected_dy.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// sqrBoxFilter
|
|
|
|
|
{ |
|
|
|
|
let src = cv.matFromArray(2, 3, cv.CV_8U, [1,2,1,1,2,1]); |
|
|
|
|
let dst = new cv.Mat(); |
|
|
|
|
cv.sqrBoxFilter(src, dst, cv.CV_32F, new cv.Size(3, 3)); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let size = mat2.size(); |
|
|
|
|
assert.equal(mat2.channels(), 3); |
|
|
|
|
assert.equal(size.height, 9); |
|
|
|
|
assert.equal(size.width, 9); |
|
|
|
|
let expected = cv.matFromArray(2, 3, cv.CV_32F,[3.0,2.0,3.0,3.0,2.0,3.0]); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expected.data); |
|
|
|
|
src.delete(); |
|
|
|
|
dst.delete(); |
|
|
|
|
expected.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// stackBlur
|
|
|
|
|
{ |
|
|
|
|
let src = cv.matFromArray(2, 3, cv.CV_8U, [10,25,30,45,50,60]); |
|
|
|
|
cv.stackBlur(src, src, new cv.Size(3, 3)); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let expected = new Uint8Array([22,29,36,38,43,50]); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(src.data, expected); |
|
|
|
|
src.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Transpose
|
|
|
|
|
// medianBlur
|
|
|
|
|
{ |
|
|
|
|
let mat1 = cv.Mat.eye(9, 9, cv.CV_8UC3); |
|
|
|
|
let mat1 = cv.Mat.ones(9, 9, cv.CV_8UC3); |
|
|
|
|
let mat2 = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.transpose(mat1, mat2); |
|
|
|
|
cv.medianBlur(mat1, mat2, 3); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let size = mat2.size(); |
|
|
|
|
|
|
|
|
|
assert.equal(mat2.channels(), 3); |
|
|
|
|
assert.equal(size.height, 9); |
|
|
|
|
assert.equal(size.width, 9); |
|
|
|
|
mat1.delete(); |
|
|
|
|
mat2.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// bilateralFilter
|
|
|
|
@ -481,8 +599,9 @@ QUnit.test('test_filter', function(assert) { |
|
|
|
|
mat1.delete(); |
|
|
|
|
mat2.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
// Watershed
|
|
|
|
|
QUnit.test('test_watershed', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let mat = cv.Mat.ones(11, 11, cv.CV_8UC3); |
|
|
|
|
let out = new cv.Mat(11, 11, cv.CV_32SC1); |
|
|
|
@ -499,44 +618,9 @@ QUnit.test('test_filter', function(assert) { |
|
|
|
|
mat.delete(); |
|
|
|
|
out.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
// Concat
|
|
|
|
|
{ |
|
|
|
|
let mat = cv.Mat.ones({height: 10, width: 5}, cv.CV_8UC3); |
|
|
|
|
let mat2 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3); |
|
|
|
|
let mat3 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let out = new cv.Mat(); |
|
|
|
|
let input = new cv.MatVector(); |
|
|
|
|
input.push_back(mat); |
|
|
|
|
input.push_back(mat2); |
|
|
|
|
input.push_back(mat3); |
|
|
|
|
|
|
|
|
|
cv.vconcat(input, out); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let size = out.size(); |
|
|
|
|
assert.equal(out.channels(), 3); |
|
|
|
|
assert.equal(size.height, 30); |
|
|
|
|
assert.equal(size.width, 5); |
|
|
|
|
assert.equal(out.elemSize1(), 1); |
|
|
|
|
|
|
|
|
|
cv.hconcat(input, out); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
size = out.size(); |
|
|
|
|
assert.equal(out.channels(), 3); |
|
|
|
|
assert.equal(size.height, 10); |
|
|
|
|
assert.equal(size.width, 15); |
|
|
|
|
assert.equal(out.elemSize1(), 1); |
|
|
|
|
|
|
|
|
|
input.delete(); |
|
|
|
|
out.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// distanceTransform letiants
|
|
|
|
|
QUnit.test('test_distanceTransform', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let mat = cv.Mat.ones(11, 11, cv.CV_8UC1); |
|
|
|
|
let out = new cv.Mat(11, 11, cv.CV_32FC1); |
|
|
|
@ -551,7 +635,6 @@ QUnit.test('test_filter', function(assert) { |
|
|
|
|
assert.equal(size.width, 11); |
|
|
|
|
assert.equal(out.elemSize1(), 4); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv.distanceTransformWithLabels(mat, out, labels, cv.DIST_L2, maskSize, |
|
|
|
|
cv.DIST_LABEL_CCOMP); |
|
|
|
|
|
|
|
|
@ -572,233 +655,9 @@ QUnit.test('test_filter', function(assert) { |
|
|
|
|
out.delete(); |
|
|
|
|
labels.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
// Min, Max
|
|
|
|
|
{ |
|
|
|
|
let data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9]); |
|
|
|
|
let data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0]); |
|
|
|
|
|
|
|
|
|
let expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0]); |
|
|
|
|
let expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9]); |
|
|
|
|
|
|
|
|
|
let dataPtr = cv._malloc(3*3*1); |
|
|
|
|
let dataPtr2 = cv._malloc(3*3*1); |
|
|
|
|
|
|
|
|
|
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); |
|
|
|
|
dataHeap.set(new Uint8Array(data1.buffer)); |
|
|
|
|
|
|
|
|
|
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); |
|
|
|
|
dataHeap2.set(new Uint8Array(data2.buffer)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); |
|
|
|
|
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); |
|
|
|
|
|
|
|
|
|
let mat3 = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.min(mat1, mat2, mat3); |
|
|
|
|
// Verify result.
|
|
|
|
|
let size = mat2.size(); |
|
|
|
|
assert.equal(mat2.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(mat3.data, expectedMin); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv.max(mat1, mat2, mat3); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = mat2.size(); |
|
|
|
|
assert.equal(mat2.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(mat3.data, expectedMax); |
|
|
|
|
|
|
|
|
|
cv._free(dataPtr); |
|
|
|
|
cv._free(dataPtr2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Bitwise operations
|
|
|
|
|
{ |
|
|
|
|
let data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]); |
|
|
|
|
let data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]); |
|
|
|
|
|
|
|
|
|
let expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]); |
|
|
|
|
let expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]); |
|
|
|
|
let expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]); |
|
|
|
|
|
|
|
|
|
let expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]); |
|
|
|
|
|
|
|
|
|
let dataPtr = cv._malloc(3*3*1); |
|
|
|
|
let dataPtr2 = cv._malloc(3*3*1); |
|
|
|
|
|
|
|
|
|
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); |
|
|
|
|
dataHeap.set(new Uint8Array(data1.buffer)); |
|
|
|
|
|
|
|
|
|
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); |
|
|
|
|
dataHeap2.set(new Uint8Array(data2.buffer)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); |
|
|
|
|
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); |
|
|
|
|
|
|
|
|
|
let mat3 = new cv.Mat(); |
|
|
|
|
let none = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.bitwise_not(mat1, mat3, none); |
|
|
|
|
// Verify result.
|
|
|
|
|
let size = mat3.size(); |
|
|
|
|
assert.equal(mat3.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(mat3.data, expectedNot); |
|
|
|
|
|
|
|
|
|
cv.bitwise_and(mat1, mat2, mat3, none); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = mat3.size(); |
|
|
|
|
assert.equal(mat3.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(mat3.data, expectedAnd); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv.bitwise_or(mat1, mat2, mat3, none); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = mat3.size(); |
|
|
|
|
assert.equal(mat3.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(mat3.data, expectedOr); |
|
|
|
|
|
|
|
|
|
cv.bitwise_xor(mat1, mat2, mat3, none); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = mat3.size(); |
|
|
|
|
assert.equal(mat3.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(mat3.data, expectedXor); |
|
|
|
|
|
|
|
|
|
cv._free(dataPtr); |
|
|
|
|
cv._free(dataPtr2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Arithmetic operations
|
|
|
|
|
{ |
|
|
|
|
let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]); |
|
|
|
|
let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]); |
|
|
|
|
let data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0]); |
|
|
|
|
|
|
|
|
|
// |data1 - data2|
|
|
|
|
|
let expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]); |
|
|
|
|
let expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24]); |
|
|
|
|
|
|
|
|
|
const alpha = 4; |
|
|
|
|
const beta = -1; |
|
|
|
|
const gamma = 3; |
|
|
|
|
// 4*data1 - data2 + 3
|
|
|
|
|
let expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19]); |
|
|
|
|
|
|
|
|
|
let dataPtr = cv._malloc(3*3*1); |
|
|
|
|
let dataPtr2 = cv._malloc(3*3*1); |
|
|
|
|
let dataPtr3 = cv._malloc(3*3*1); |
|
|
|
|
|
|
|
|
|
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); |
|
|
|
|
dataHeap.set(new Uint8Array(data1.buffer)); |
|
|
|
|
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); |
|
|
|
|
dataHeap2.set(new Uint8Array(data2.buffer)); |
|
|
|
|
let dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3*3*1); |
|
|
|
|
dataHeap3.set(new Uint8Array(data3.buffer)); |
|
|
|
|
|
|
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); |
|
|
|
|
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); |
|
|
|
|
let mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0); |
|
|
|
|
|
|
|
|
|
let dst = new cv.Mat(); |
|
|
|
|
let none = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.absdiff(mat1, mat2, dst); |
|
|
|
|
// Verify result.
|
|
|
|
|
let size = dst.size(); |
|
|
|
|
assert.equal(dst.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expectedAbsDiff); |
|
|
|
|
|
|
|
|
|
cv.add(mat1, mat2, dst, none, -1); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = dst.size(); |
|
|
|
|
assert.equal(dst.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expectedAdd); |
|
|
|
|
|
|
|
|
|
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = dst.size(); |
|
|
|
|
assert.equal(dst.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expectedWeightedAdd); |
|
|
|
|
|
|
|
|
|
// default parameter
|
|
|
|
|
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = dst.size(); |
|
|
|
|
assert.equal(dst.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expectedWeightedAdd); |
|
|
|
|
|
|
|
|
|
mat1.delete(); |
|
|
|
|
mat2.delete(); |
|
|
|
|
mat3.delete(); |
|
|
|
|
dst.delete(); |
|
|
|
|
none.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Integral letiants
|
|
|
|
|
{ |
|
|
|
|
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3); |
|
|
|
|
let sum = new cv.Mat(); |
|
|
|
|
let sqSum = new cv.Mat(); |
|
|
|
|
let title = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.integral(mat, sum, -1); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
let size = sum.size(); |
|
|
|
|
assert.equal(sum.channels(), 3); |
|
|
|
|
assert.equal(size.height, 100+1); |
|
|
|
|
assert.equal(size.width, 100+1); |
|
|
|
|
|
|
|
|
|
cv.integral2(mat, sum, sqSum, -1, -1); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = sum.size(); |
|
|
|
|
assert.equal(sum.channels(), 3); |
|
|
|
|
assert.equal(size.height, 100+1); |
|
|
|
|
assert.equal(size.width, 100+1); |
|
|
|
|
|
|
|
|
|
size = sqSum.size(); |
|
|
|
|
assert.equal(sqSum.channels(), 3); |
|
|
|
|
assert.equal(size.height, 100+1); |
|
|
|
|
assert.equal(size.width, 100+1); |
|
|
|
|
|
|
|
|
|
mat.delete(); |
|
|
|
|
sum.delete(); |
|
|
|
|
sqSum.delete(); |
|
|
|
|
title.delete(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Mean, meanSTDev
|
|
|
|
|
QUnit.test('test_integral', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3); |
|
|
|
|
let sum = new cv.Mat(); |
|
|
|
@ -830,129 +689,55 @@ QUnit.test('test_filter', function(assert) { |
|
|
|
|
sqSum.delete(); |
|
|
|
|
title.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
// Invert
|
|
|
|
|
{ |
|
|
|
|
let inv1 = new cv.Mat(); |
|
|
|
|
let inv2 = new cv.Mat(); |
|
|
|
|
let inv3 = new cv.Mat(); |
|
|
|
|
let inv4 = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let data1 = new Float32Array([1, 0, 0, |
|
|
|
|
0, 1, 0, |
|
|
|
|
0, 0, 1]); |
|
|
|
|
let data2 = new Float32Array([0, 0, 0, |
|
|
|
|
0, 5, 0, |
|
|
|
|
0, 0, 0]); |
|
|
|
|
let data3 = new Float32Array([1, 1, 1, 0, |
|
|
|
|
0, 3, 1, 2, |
|
|
|
|
2, 3, 1, 0, |
|
|
|
|
1, 0, 2, 1]); |
|
|
|
|
let data4 = new Float32Array([1, 4, 5, |
|
|
|
|
4, 2, 2, |
|
|
|
|
5, 2, 2]); |
|
|
|
|
|
|
|
|
|
let expected1 = new Float32Array([1, 0, 0, |
|
|
|
|
0, 1, 0, |
|
|
|
|
0, 0, 1]); |
|
|
|
|
// Inverse does not exist!
|
|
|
|
|
let expected3 = new Float32Array([-3, -1/2, 3/2, 1, |
|
|
|
|
1, 1/4, -1/4, -1/2, |
|
|
|
|
3, 1/4, -5/4, -1/2, |
|
|
|
|
-3, 0, 1, 1]); |
|
|
|
|
let expected4 = new Float32Array([0, -1, 1, |
|
|
|
|
-1, 23/2, -9, |
|
|
|
|
1, -9, 7]); |
|
|
|
|
|
|
|
|
|
let dataPtr1 = cv._malloc(3*3*4); |
|
|
|
|
let dataPtr2 = cv._malloc(3*3*4); |
|
|
|
|
let dataPtr3 = cv._malloc(4*4*4); |
|
|
|
|
let dataPtr4 = cv._malloc(3*3*4); |
|
|
|
|
|
|
|
|
|
let dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3*3); |
|
|
|
|
dataHeap.set(new Float32Array(data1.buffer)); |
|
|
|
|
let dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3*3); |
|
|
|
|
dataHeap2.set(new Float32Array(data2.buffer)); |
|
|
|
|
let dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4*4); |
|
|
|
|
dataHeap3.set(new Float32Array(data3.buffer)); |
|
|
|
|
let dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3*3); |
|
|
|
|
dataHeap4.set(new Float32Array(data4.buffer)); |
|
|
|
|
|
|
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0); |
|
|
|
|
let mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0); |
|
|
|
|
let mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0); |
|
|
|
|
let mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0); |
|
|
|
|
|
|
|
|
|
QUnit.assert.deepEqualWithTolerance = function( value, expected, tolerance ) { |
|
|
|
|
for (let i = 0; i < value.length; i= i+1) { |
|
|
|
|
this.pushResult( { |
|
|
|
|
result: Math.abs(value[i]-expected[i]) < tolerance, |
|
|
|
|
actual: value[i], |
|
|
|
|
expected: expected[i], |
|
|
|
|
} ); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
cv.invert(mat1, inv1, 0); |
|
|
|
|
// Verify result.
|
|
|
|
|
let size = inv1.size(); |
|
|
|
|
assert.equal(inv1.channels(), 1); |
|
|
|
|
assert.equal(size.height, 3); |
|
|
|
|
assert.equal(size.width, 3); |
|
|
|
|
assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv.invert(mat2, inv2, 0); |
|
|
|
|
// Verify result.
|
|
|
|
|
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); |
|
|
|
|
|
|
|
|
|
cv.invert(mat3, inv3, 0); |
|
|
|
|
// Verify result.
|
|
|
|
|
size = inv3.size(); |
|
|
|
|
assert.equal(inv3.channels(), 1); |
|
|
|
|
assert.equal(size.height, 4); |
|
|
|
|
assert.equal(size.width, 4); |
|
|
|
|
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); |
|
|
|
|
|
|
|
|
|
cv.invert(mat3, inv3, 1); |
|
|
|
|
// Verify result.
|
|
|
|
|
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); |
|
|
|
|
|
|
|
|
|
cv.invert(mat4, inv4, 2); |
|
|
|
|
// Verify result.
|
|
|
|
|
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001); |
|
|
|
|
|
|
|
|
|
cv.invert(mat4, inv4, 3); |
|
|
|
|
// Verify result.
|
|
|
|
|
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001); |
|
|
|
|
|
|
|
|
|
mat1.delete(); |
|
|
|
|
mat2.delete(); |
|
|
|
|
mat3.delete(); |
|
|
|
|
mat4.delete(); |
|
|
|
|
inv1.delete(); |
|
|
|
|
inv2.delete(); |
|
|
|
|
inv3.delete(); |
|
|
|
|
inv4.delete(); |
|
|
|
|
} |
|
|
|
|
//Rotate
|
|
|
|
|
QUnit.test('test_rotatedRectangleIntersection', function(assert) { |
|
|
|
|
{ |
|
|
|
|
let dst = new cv.Mat(); |
|
|
|
|
let src = cv.matFromArray(3, 2, cv.CV_8U, [1,2,3,4,5,6]); |
|
|
|
|
|
|
|
|
|
cv.rotate(src, dst, cv.ROTATE_90_CLOCKWISE); |
|
|
|
|
|
|
|
|
|
let size = dst.size(); |
|
|
|
|
assert.equal(size.height, 2, "ROTATE_HEIGHT"); |
|
|
|
|
assert.equal(size.width, 3, "ROTATE_WIGTH"); |
|
|
|
|
|
|
|
|
|
let expected = new Uint8Array([5,3,1,6,4,2]); |
|
|
|
|
|
|
|
|
|
assert.deepEqual(dst.data, expected); |
|
|
|
|
let dst = cv.Mat.zeros(80, 80, cv.CV_8U); |
|
|
|
|
let contours = new cv.MatVector(); |
|
|
|
|
let hierarchy = new cv.Mat(); |
|
|
|
|
let intersectionPoints = new cv.Mat(); |
|
|
|
|
|
|
|
|
|
cv.drawMarker(dst, new cv.Point(40, 40), new cv.Scalar(255)); |
|
|
|
|
cv.findContoursLinkRuns(dst,contours,hierarchy); |
|
|
|
|
let rr1 = cv.minAreaRect(contours.get(0)); |
|
|
|
|
let rr2 = cv.minAreaRect(contours.get(0)); |
|
|
|
|
let rr3 = new cv.RotatedRect({x: 40, y: 40}, {height: 10, width: 20}, 45); |
|
|
|
|
|
|
|
|
|
let intersectionType = cv.rotatedRectangleIntersection(rr1, rr2, intersectionPoints); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
assert.deepEqual(intersectionType, cv.INTERSECT_FULL); |
|
|
|
|
intersectionPoints.convertTo(intersectionPoints, cv.CV_32S); |
|
|
|
|
let intersectionPointsData = intersectionPoints.data32S; |
|
|
|
|
assert.deepEqual(intersectionPointsData[0], 30); |
|
|
|
|
assert.deepEqual(intersectionPointsData[1], 40); |
|
|
|
|
assert.deepEqual(intersectionPointsData[2], 40); |
|
|
|
|
assert.deepEqual(intersectionPointsData[3], 30); |
|
|
|
|
assert.deepEqual(intersectionPointsData[4], 50); |
|
|
|
|
assert.deepEqual(intersectionPointsData[5], 40); |
|
|
|
|
assert.deepEqual(intersectionPointsData[6], 40); |
|
|
|
|
assert.deepEqual(intersectionPointsData[7], 50); |
|
|
|
|
|
|
|
|
|
intersectionType = cv.rotatedRectangleIntersection(rr1, rr3, intersectionPoints); |
|
|
|
|
|
|
|
|
|
// Verify result.
|
|
|
|
|
assert.deepEqual(intersectionType, cv.INTERSECT_PARTIAL); |
|
|
|
|
intersectionPoints.convertTo(intersectionPoints, cv.CV_32S); |
|
|
|
|
intersectionPointsData = intersectionPoints.data32S; |
|
|
|
|
assert.deepEqual(intersectionPointsData[0], 39); |
|
|
|
|
assert.deepEqual(intersectionPointsData[1], 31); |
|
|
|
|
assert.deepEqual(intersectionPointsData[2], 49); |
|
|
|
|
assert.deepEqual(intersectionPointsData[3], 41); |
|
|
|
|
assert.deepEqual(intersectionPointsData[4], 41); |
|
|
|
|
assert.deepEqual(intersectionPointsData[5], 49); |
|
|
|
|
assert.deepEqual(intersectionPointsData[6], 31); |
|
|
|
|
assert.deepEqual(intersectionPointsData[7], 39); |
|
|
|
|
|
|
|
|
|
dst.delete(); |
|
|
|
|
src.delete(); |
|
|
|
|
contours.delete(); |
|
|
|
|
hierarchy.delete(); |
|
|
|
|
intersectionPoints.delete(); |
|
|
|
|
} |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
@ -973,7 +758,6 @@ QUnit.test('warpPolar', function(assert) { |
|
|
|
|
]); |
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
QUnit.test('IntelligentScissorsMB', function(assert) { |
|
|
|
|
const lines = new cv.Mat(50, 100, cv.CV_8U, new cv.Scalar(0)); |
|
|
|
|
lines.row(10).setTo(new cv.Scalar(255)); |
|
|
|
|