implement optimized version of gpu::BruteForceMatcher::knnMatch when k == 2

pull/13383/head
Vladislav Vinogradov 13 years ago
parent c92b040c48
commit 6e3a1f7b49
  1. 21
      modules/gpu/src/brute_force_matcher.cpp
  2. 282
      modules/gpu/src/cuda/brute_force_matcher.cu
  3. 2
      modules/gpu/test/test_features2d.cpp
  4. 6
      samples/gpu/performance/tests.cpp

@ -105,13 +105,13 @@ namespace cv { namespace gpu { namespace bfmatcher
template <typename T>
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template <typename T>
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template <typename T>
void knnMatchHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template <typename T>
void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
@ -428,7 +428,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
using namespace cv::gpu::bfmatcher;
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
static const match_caller_t match_callers[3][8] =
{
@ -454,23 +454,28 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
ensureSizeIsEnough(nQuery, k, CV_32F, distance);
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
if (k != 2)
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
if (stream)
{
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
stream.enqueueMemSet(allDist, Scalar::all(numeric_limits<float>::max()));
if (k != 2)
stream.enqueueMemSet(allDist, Scalar::all(numeric_limits<float>::max()));
}
else
{
trainIdx.setTo(Scalar::all(-1));
allDist.setTo(Scalar::all(numeric_limits<float>::max()));
if (k != 2)
allDist.setTo(Scalar::all(numeric_limits<float>::max()));
}
match_caller_t func = match_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
bool cc_12 = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream));
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist, cc_12, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,

@ -87,9 +87,8 @@ namespace cv { namespace gpu { namespace bfmatcher
PtrStep curMask;
};
class WithOutMask
struct WithOutMask
{
public:
__device__ __forceinline__ void nextMask() const
{
}
@ -102,21 +101,19 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// Reduce Sum
template <int BLOCK_DIM_X> struct SumReductor;
template <int BLOCK_DIM_X> struct SumReductor;
template <> struct SumReductor<16>
{
template <typename T> static __device__ void reduce(T* sdiff_row, T& mySum)
template <typename T> static __device__ void reduce(volatile T* sdiff_row, T& mySum)
{
volatile T* smem = sdiff_row;
smem[threadIdx.x] = mySum;
sdiff_row[threadIdx.x] = mySum;
if (threadIdx.x < 8)
{
smem[threadIdx.x] = mySum += smem[threadIdx.x + 8];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 4];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 2];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 1];
sdiff_row[threadIdx.x] = mySum += sdiff_row[threadIdx.x + 8];
sdiff_row[threadIdx.x] = mySum += sdiff_row[threadIdx.x + 4];
sdiff_row[threadIdx.x] = mySum += sdiff_row[threadIdx.x + 2];
sdiff_row[threadIdx.x] = mySum += sdiff_row[threadIdx.x + 1];
}
}
};
@ -344,7 +341,7 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// warpReduceMinIdxIdx
template <int BLOCK_DIM_Y> struct MinIdxIdxWarpReductor;
template <int BLOCK_DIM_Y> struct MinIdxIdxWarpReductor;
template <> struct MinIdxIdxWarpReductor<16>
{
template <typename T>
@ -435,6 +432,7 @@ namespace cv { namespace gpu { namespace bfmatcher
__device__ __forceinline__ void prepare(const T* queryDescs, int desc_len, U* smem)
{
loadDescsVals<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, queryVals, smem);
__syncthreads();
}
template <typename Dist>
@ -778,6 +776,173 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////// Knn Match ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename ReduceDescCalculator, typename T, typename Mask>
__device__ void distanceCalcLoop(const PtrStep_<T>& query, const DevMem2D_<T>& train, const Mask& m, int queryIdx,
typename Dist::ResultType& distMin1, typename Dist::ResultType& distMin2, int& bestTrainIdx1, int& bestTrainIdx2,
typename Dist::ResultType* smem)
{
ReduceDescCalculator reduceDescCalc;
reduceDescCalc.prepare(query.ptr(queryIdx), train.cols, (typename Dist::ValueType*)smem);
typename Dist::ResultType* sdiffRow = smem + BLOCK_DIM_X * threadIdx.y;
for (int trainIdx = threadIdx.y; trainIdx < train.rows; trainIdx += BLOCK_DIM_Y)
{
if (m(queryIdx, trainIdx))
{
Dist dist;
const T* trainRow = train.ptr(trainIdx);
reduceDescCalc.calc(trainRow, train.cols, dist, sdiffRow);
if (threadIdx.x == 0)
{
typename Dist::ResultType val = dist;
if (val < distMin1)
{
distMin1 = val;
bestTrainIdx1 = trainIdx;
}
else if (val < distMin2)
{
distMin2 = val;
bestTrainIdx2 = trainIdx;
}
}
}
}
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename ReduceDescCalculator, typename T, typename Mask>
__global__ void knnMatch2(const PtrStep_<T> query, const DevMem2D_<T> train, const Mask m, PtrStep_<int2> trainIdx, PtrStep_<float2> distance)
{
typedef typename Dist::ResultType ResultType;
typedef typename Dist::ValueType ValueType;
__shared__ ResultType smem[BLOCK_DIM_X * BLOCK_DIM_Y];
const int queryIdx = blockIdx.x;
ResultType distMin1 = numeric_limits<ResultType>::max();
ResultType distMin2 = numeric_limits<ResultType>::max();
int bestTrainIdx1 = -1;
int bestTrainIdx2 = -1;
distanceCalcLoop<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, ReduceDescCalculator>(query, train, m, queryIdx,
distMin1, distMin2, bestTrainIdx1, bestTrainIdx2, smem);
__syncthreads();
volatile ResultType* sdistMinRow = smem;
volatile int* sbestTrainIdxRow = (int*)(sdistMinRow + 2 * BLOCK_DIM_Y);
if (threadIdx.x == 0)
{
sdistMinRow[threadIdx.y] = distMin1;
sdistMinRow[threadIdx.y + BLOCK_DIM_Y] = distMin2;
sbestTrainIdxRow[threadIdx.y] = bestTrainIdx1;
sbestTrainIdxRow[threadIdx.y + BLOCK_DIM_Y] = bestTrainIdx2;
}
__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0)
{
distMin1 = numeric_limits<ResultType>::max();
distMin2 = numeric_limits<ResultType>::max();
bestTrainIdx1 = -1;
bestTrainIdx2 = -1;
#pragma unroll
for (int i = 0; i < BLOCK_DIM_Y; ++i)
{
ResultType val = sdistMinRow[i];
if (val < distMin1)
{
distMin1 = val;
bestTrainIdx1 = sbestTrainIdxRow[i];
}
else if (val < distMin2)
{
distMin2 = val;
bestTrainIdx2 = sbestTrainIdxRow[i];
}
}
#pragma unroll
for (int i = BLOCK_DIM_Y; i < 2 * BLOCK_DIM_Y; ++i)
{
ResultType val = sdistMinRow[i];
if (val < distMin2)
{
distMin2 = val;
bestTrainIdx2 = sbestTrainIdxRow[i];
}
}
trainIdx.ptr(queryIdx)[0] = make_int2(bestTrainIdx1, bestTrainIdx2);
distance.ptr(queryIdx)[0] = make_float2(distMin1, distMin2);
}
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void knnMatch2Simple_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance, cudaStream_t stream)
{
dim3 grid(queryDescs.rows, 1, 1);
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
knnMatch2<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, ReduceDescCalculatorSimple<BLOCK_DIM_X, T>, T>
<<<grid, threads, 0, stream>>>(queryDescs, trainDescs, mask, trainIdx, distance);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename Dist, typename T, typename Mask>
void knnMatch2Cached_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance, cudaStream_t stream)
{
StaticAssert<BLOCK_DIM_X * BLOCK_DIM_Y >= MAX_DESCRIPTORS_LEN>::check(); // block size must be greter than descriptors length
StaticAssert<MAX_DESCRIPTORS_LEN % BLOCK_DIM_X == 0>::check(); // max descriptors length must divide to blockDimX
dim3 grid(queryDescs.rows, 1, 1);
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
knnMatch2<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, ReduceDescCalculatorCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, T, typename Dist::ValueType>, T>
<<<grid, threads, 0, stream>>>(queryDescs, trainDescs, mask, trainIdx, distance);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename Dist, typename T, typename Mask>
void knnMatch2Dispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance, bool cc_12, cudaStream_t stream)
{
if (query.cols < 64)
knnMatch2Cached_caller<16, 16, 64, false, Dist>(query, train, mask, trainIdx, distance, stream);
else if (query.cols == 64)
knnMatch2Cached_caller<16, 16, 64, true, Dist>(query, train, mask, trainIdx, distance, stream);
else if (query.cols < 128)
knnMatch2Cached_caller<16, 16, 128, false, Dist>(query, train, mask, trainIdx, distance, stream);
else if (query.cols == 128 && cc_12)
knnMatch2Cached_caller<16, 16, 128, true, Dist>(query, train, mask, trainIdx, distance, stream);
else if (query.cols < 256 && cc_12)
knnMatch2Cached_caller<16, 16, 256, false, Dist>(query, train, mask, trainIdx, distance, stream);
else if (query.cols == 256 && cc_12)
knnMatch2Cached_caller<16, 16, 256, true, Dist>(query, train, mask, trainIdx, distance, stream);
else
knnMatch2Simple_caller<16, 16, Dist>(query, train, mask, trainIdx, distance, stream);
}
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel
@ -1026,77 +1191,74 @@ namespace cv { namespace gpu { namespace bfmatcher
findKnnMatch_caller<256>(knn, trainIdx, distance, allDist, stream);
}
template <typename T>
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
template < typename Dist, typename T >
void knnMatchDispatcher(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream)
{
if (mask.data)
{
calcDistanceDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, SingleMask(mask), allDist, stream);
if (knn == 2)
{
knnMatch2Dispatcher<Dist>(queryDescs, trainDescs, SingleMask(mask), (DevMem2D_<int2>)trainIdx, (DevMem2D_<float2>)distance, cc_12, stream);
return;
}
calcDistanceDispatcher<Dist>(queryDescs, trainDescs, SingleMask(mask), allDist, stream);
}
else
{
calcDistanceDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, WithOutMask(), allDist, stream);
if (knn == 2)
{
knnMatch2Dispatcher<Dist>(queryDescs, trainDescs, WithOutMask(), (DevMem2D_<int2>)trainIdx, (DevMem2D_<float2>)distance, cc_12, stream);
return;
}
calcDistanceDispatcher<Dist>(queryDescs, trainDescs, WithOutMask(), allDist, stream);
}
findKnnMatchDispatcher(knn, trainIdx, distance, allDist, stream);
}
template void knnMatchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template <typename T>
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream)
{
knnMatchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, knn, mask, trainIdx, distance, allDist, cc_12, stream);
}
template void knnMatchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template <typename T>
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream)
{
if (mask.data)
{
calcDistanceDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
SingleMask(mask), allDist, stream);
}
else
{
calcDistanceDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
WithOutMask(), allDist, stream);
}
findKnnMatchDispatcher(knn, trainIdx, distance, allDist, stream);
knnMatchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, knn, mask, trainIdx, distance, allDist, cc_12, stream);
}
template void knnMatchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template <typename T>
void knnMatchHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream)
{
if (mask.data)
{
calcDistanceDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
SingleMask(mask), allDist, stream);
}
else
{
calcDistanceDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
WithOutMask(), allDist, stream);
}
findKnnMatchDispatcher(knn, trainIdx, distance, allDist, stream);
knnMatchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, knn, mask, trainIdx, distance, allDist, cc_12, stream);
}
template void knnMatchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
template void knnMatchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, bool cc_12, cudaStream_t stream);
///////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// Radius Match //////////////////////////////////

@ -320,7 +320,7 @@ TEST_P(BruteForceMatcher, KnnMatch)
PRINT_PARAM(distStr);
PRINT_PARAM(dim);
const int knn = 3;
const int knn = 2;
std::vector< std::vector<cv::DMatch> > matches;

@ -286,7 +286,7 @@ TEST(BruteForceMatcher)
{
// Init CPU matcher
int desc_len = 128;
int desc_len = 64;
BruteForceMatcher< L2<float> > matcher;
@ -328,7 +328,7 @@ TEST(BruteForceMatcher)
d_matcher.knnMatch(d_query, d_train, d_matches, knn);
GPU_OFF;
SUBTEST << "radiusMatch";
/*SUBTEST << "radiusMatch";
float max_distance = 3.8f;
CPU_ON;
@ -337,7 +337,7 @@ TEST(BruteForceMatcher)
GPU_ON;
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
GPU_OFF;
GPU_OFF;*/
}

Loading…
Cancel
Save