|
|
|
@ -151,12 +151,6 @@ TEST_P(Test_TensorFlow_layers, padding) |
|
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, padding_same) |
|
|
|
|
{ |
|
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
|
|
|
) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
|
|
|
#endif |
|
|
|
|
// Reference output values are in range [0.0006, 2.798]
|
|
|
|
|
runTensorFlowNet("padding_same"); |
|
|
|
|
} |
|
|
|
@ -432,14 +426,6 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD) |
|
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD) |
|
|
|
|
{ |
|
|
|
|
checkBackend(); |
|
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
|
|
|
) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt"); |
|
|
|
|
std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false); |
|
|
|
|
|
|
|
|
@ -456,7 +442,17 @@ TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD) |
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy")); |
|
|
|
|
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7e-3 : 1.5e-5; |
|
|
|
|
float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3; |
|
|
|
|
normAssertDetections(ref, out, "", 0.3, scoreDiff, iouDiff); |
|
|
|
|
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3; |
|
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
|
|
|
) |
|
|
|
|
scoreDiff = 0.061; |
|
|
|
|
iouDiff = 0.12; |
|
|
|
|
detectionConfThresh = 0.36; |
|
|
|
|
#endif |
|
|
|
|
normAssertDetections(ref, out, "", detectionConfThresh, scoreDiff, iouDiff); |
|
|
|
|
expectNoFallbacksFromIE(net); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -648,15 +644,8 @@ TEST_P(Test_TensorFlow_layers, fp16_weights) |
|
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, fp16_padding_same) |
|
|
|
|
{ |
|
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
|
|
|
) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Reference output values are in range [-3.504, -0.002]
|
|
|
|
|
runTensorFlowNet("fp16_padding_same", false, 6e-4, 4e-3); |
|
|
|
|
runTensorFlowNet("fp16_padding_same", false, 7e-4, 4e-3); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, defun) |
|
|
|
|