|
|
|
@ -547,45 +547,32 @@ static int run7Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix ) |
|
|
|
|
|
|
|
|
|
static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix ) |
|
|
|
|
{ |
|
|
|
|
double a[9*9], w[9], v[9*9]; |
|
|
|
|
Mat W( 9, 1, CV_64F, w ); |
|
|
|
|
Mat V( 9, 9, CV_64F, v ); |
|
|
|
|
Mat A( 9, 9, CV_64F, a ); |
|
|
|
|
Mat U, F0, TF; |
|
|
|
|
|
|
|
|
|
Point2d m1c(0,0), m2c(0,0); |
|
|
|
|
double t, scale1 = 0, scale2 = 0; |
|
|
|
|
|
|
|
|
|
const Point2f* m1 = _m1.ptr<Point2f>(); |
|
|
|
|
const Point2f* m2 = _m2.ptr<Point2f>(); |
|
|
|
|
double* fmatrix = _fmatrix.ptr<double>(); |
|
|
|
|
CV_Assert( (_m1.cols == 1 || _m1.rows == 1) && _m1.size() == _m2.size()); |
|
|
|
|
int i, j, k, count = _m1.checkVector(2); |
|
|
|
|
int i, count = _m1.checkVector(2); |
|
|
|
|
|
|
|
|
|
// compute centers and average distances for each of the two point sets
|
|
|
|
|
for( i = 0; i < count; i++ ) |
|
|
|
|
{ |
|
|
|
|
double x = m1[i].x, y = m1[i].y; |
|
|
|
|
m1c.x += x; m1c.y += y; |
|
|
|
|
|
|
|
|
|
x = m2[i].x, y = m2[i].y; |
|
|
|
|
m2c.x += x; m2c.y += y; |
|
|
|
|
m1c += Point2d(m1[i]); |
|
|
|
|
m2c += Point2d(m2[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// calculate the normalizing transformations for each of the point sets:
|
|
|
|
|
// after the transformation each set will have the mass center at the coordinate origin
|
|
|
|
|
// and the average distance from the origin will be ~sqrt(2).
|
|
|
|
|
t = 1./count; |
|
|
|
|
m1c.x *= t; m1c.y *= t; |
|
|
|
|
m2c.x *= t; m2c.y *= t; |
|
|
|
|
m1c *= t; |
|
|
|
|
m2c *= t; |
|
|
|
|
|
|
|
|
|
for( i = 0; i < count; i++ ) |
|
|
|
|
{ |
|
|
|
|
double x = m1[i].x - m1c.x, y = m1[i].y - m1c.y; |
|
|
|
|
scale1 += std::sqrt(x*x + y*y); |
|
|
|
|
|
|
|
|
|
x = m2[i].x - m2c.x, y = m2[i].y - m2c.y; |
|
|
|
|
scale2 += std::sqrt(x*x + y*y); |
|
|
|
|
scale1 += norm(Point2d(m1[i].x - m1c.x, m1[i].y - m1c.y)); |
|
|
|
|
scale2 += norm(Point2d(m2[i].x - m2c.x, m2[i].y - m2c.y)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
scale1 *= t; |
|
|
|
@ -597,7 +584,7 @@ static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix ) |
|
|
|
|
scale1 = std::sqrt(2.)/scale1; |
|
|
|
|
scale2 = std::sqrt(2.)/scale2; |
|
|
|
|
|
|
|
|
|
A.setTo(Scalar::all(0)); |
|
|
|
|
Matx<double, 9, 9> A; |
|
|
|
|
|
|
|
|
|
// form a linear system Ax=0: for each selected pair of points m1 & m2,
|
|
|
|
|
// the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0
|
|
|
|
@ -608,56 +595,50 @@ static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix ) |
|
|
|
|
double y1 = (m1[i].y - m1c.y)*scale1; |
|
|
|
|
double x2 = (m2[i].x - m2c.x)*scale2; |
|
|
|
|
double y2 = (m2[i].y - m2c.y)*scale2; |
|
|
|
|
double r[9] = { x2*x1, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1 }; |
|
|
|
|
for( j = 0; j < 9; j++ ) |
|
|
|
|
for( k = 0; k < 9; k++ ) |
|
|
|
|
a[j*9+k] += r[j]*r[k]; |
|
|
|
|
Vec<double, 9> r( x2*x1, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1 ); |
|
|
|
|
A += r*r.t(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Vec<double, 9> W; |
|
|
|
|
Matx<double, 9, 9> V; |
|
|
|
|
|
|
|
|
|
eigen(A, W, V); |
|
|
|
|
|
|
|
|
|
for( i = 0; i < 9; i++ ) |
|
|
|
|
{ |
|
|
|
|
if( fabs(w[i]) < DBL_EPSILON ) |
|
|
|
|
if( fabs(W[i]) < DBL_EPSILON ) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( i < 8 ) |
|
|
|
|
return 0; |
|
|
|
|
|
|
|
|
|
F0 = Mat( 3, 3, CV_64F, v + 9*8 ); // take the last column of v as a solution of Af = 0
|
|
|
|
|
Matx33d F0( V.val + 9*8 ); // take the last column of v as a solution of Af = 0
|
|
|
|
|
|
|
|
|
|
// make F0 singular (of rank 2) by decomposing it with SVD,
|
|
|
|
|
// zeroing the last diagonal element of W and then composing the matrices back.
|
|
|
|
|
|
|
|
|
|
// use v as a temporary storage for different 3x3 matrices
|
|
|
|
|
W = U = V = TF = F0; |
|
|
|
|
W = Mat(3, 1, CV_64F, v); |
|
|
|
|
U = Mat(3, 3, CV_64F, v + 9); |
|
|
|
|
V = Mat(3, 3, CV_64F, v + 18); |
|
|
|
|
TF = Mat(3, 3, CV_64F, v + 27); |
|
|
|
|
Vec3d w; |
|
|
|
|
Matx33d U; |
|
|
|
|
Matx33d Vt; |
|
|
|
|
|
|
|
|
|
SVDecomp( F0, W, U, V, SVD::MODIFY_A ); |
|
|
|
|
W.at<double>(2) = 0.; |
|
|
|
|
SVD::compute( F0, w, U, Vt); |
|
|
|
|
w[2] = 0.; |
|
|
|
|
|
|
|
|
|
// F0 <- U*diag([W(1), W(2), 0])*V'
|
|
|
|
|
gemm( U, Mat::diag(W), 1., 0, 0., TF, 0 ); |
|
|
|
|
gemm( TF, V, 1., 0, 0., F0, 0/*CV_GEMM_B_T*/ ); |
|
|
|
|
F0 = U*Matx33d::diag(w)*Vt; |
|
|
|
|
|
|
|
|
|
// apply the transformation that is inverse
|
|
|
|
|
// to what we used to normalize the point coordinates
|
|
|
|
|
double tt1[] = { scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 }; |
|
|
|
|
double tt2[] = { scale2, 0, -scale2*m2c.x, 0, scale2, -scale2*m2c.y, 0, 0, 1 }; |
|
|
|
|
Mat T1(3, 3, CV_64F, tt1), T2(3, 3, CV_64F, tt2); |
|
|
|
|
Matx33d T1( scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 ); |
|
|
|
|
Matx33d T2( scale2, 0, -scale2*m2c.x, 0, scale2, -scale2*m2c.y, 0, 0, 1 ); |
|
|
|
|
|
|
|
|
|
// F0 <- T2'*F0*T1
|
|
|
|
|
gemm( T2, F0, 1., 0, 0., TF, GEMM_1_T ); |
|
|
|
|
F0 = Mat(3, 3, CV_64F, fmatrix); |
|
|
|
|
gemm( TF, T1, 1., 0, 0., F0, 0 ); |
|
|
|
|
F0 = T2.t()*F0*T1; |
|
|
|
|
|
|
|
|
|
// make F(3,3) = 1
|
|
|
|
|
if( fabs(F0.at<double>(2,2)) > FLT_EPSILON ) |
|
|
|
|
F0 *= 1./F0.at<double>(2,2); |
|
|
|
|
if( fabs(F0(2,2)) > FLT_EPSILON ) |
|
|
|
|
F0 *= 1./F0(2,2); |
|
|
|
|
|
|
|
|
|
Mat(F0).copyTo(_fmatrix); |
|
|
|
|
|
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|