|
|
@ -21,7 +21,6 @@ train_data, and next 250 samples as test_data. So let's prepare them first. |
|
|
|
@code{.py} |
|
|
|
@code{.py} |
|
|
|
import numpy as np |
|
|
|
import numpy as np |
|
|
|
import cv2 as cv |
|
|
|
import cv2 as cv |
|
|
|
from matplotlib import pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = cv.imread('digits.png') |
|
|
|
img = cv.imread('digits.png') |
|
|
|
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) |
|
|
|
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) |
|
|
@ -89,7 +88,6 @@ alphabets directly. |
|
|
|
@code{.py} |
|
|
|
@code{.py} |
|
|
|
import cv2 as cv |
|
|
|
import cv2 as cv |
|
|
|
import numpy as np |
|
|
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Load the data, converters convert the letter to a number |
|
|
|
# Load the data, converters convert the letter to a number |
|
|
|
data= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',', |
|
|
|
data= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',', |
|
|
|