mirror of https://github.com/opencv/opencv.git
Merge pull request #723 from virtuald:2.4
commit
6bf0181d87
1 changed files with 100 additions and 0 deletions
@ -0,0 +1,100 @@ |
|||||||
|
#/usr/bin/env python |
||||||
|
|
||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
import sys |
||||||
|
|
||||||
|
|
||||||
|
def shift_dft(src, dst=None): |
||||||
|
''' |
||||||
|
Rearrange the quadrants of Fourier image so that the origin is at |
||||||
|
the image center. Swaps quadrant 1 with 3, and 2 with 4. |
||||||
|
|
||||||
|
src and dst arrays must be equal size & type |
||||||
|
''' |
||||||
|
|
||||||
|
if dst is None: |
||||||
|
dst = np.empty(src.shape, src.dtype) |
||||||
|
elif src.shape != dst.shape: |
||||||
|
raise ValueError("src and dst must have equal sizes") |
||||||
|
elif src.dtype != dst.dtype: |
||||||
|
raise TypeError("src and dst must have equal types") |
||||||
|
|
||||||
|
if src is dst: |
||||||
|
ret = np.empty(src.shape, src.dtype) |
||||||
|
else: |
||||||
|
ret = dst |
||||||
|
|
||||||
|
h, w = src.shape[:2] |
||||||
|
|
||||||
|
cx1 = cx2 = w/2 |
||||||
|
cy1 = cy2 = h/2 |
||||||
|
|
||||||
|
# if the size is odd, then adjust the bottom/right quadrants |
||||||
|
if w % 2 != 0: |
||||||
|
cx2 += 1 |
||||||
|
if h % 2 != 0: |
||||||
|
cy2 += 1 |
||||||
|
|
||||||
|
# swap quadrants |
||||||
|
|
||||||
|
# swap q1 and q3 |
||||||
|
ret[h-cy1:, w-cx1:] = src[0:cy1 , 0:cx1 ] # q1 -> q3 |
||||||
|
ret[0:cy2 , 0:cx2 ] = src[h-cy2:, w-cx2:] # q3 -> q1 |
||||||
|
|
||||||
|
# swap q2 and q4 |
||||||
|
ret[0:cy2 , w-cx2:] = src[h-cy2:, 0:cx2 ] # q2 -> q4 |
||||||
|
ret[h-cy1:, 0:cx1 ] = src[0:cy1 , w-cx1:] # q4 -> q2 |
||||||
|
|
||||||
|
if src is dst: |
||||||
|
dst[:,:] = ret |
||||||
|
|
||||||
|
return dst |
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
|
||||||
|
if len(sys.argv)>1: |
||||||
|
im = cv2.imread(sys.argv[1]) |
||||||
|
else : |
||||||
|
im = cv2.imread('../c/baboon.jpg') |
||||||
|
print "usage : python dft.py <image_file>" |
||||||
|
|
||||||
|
# convert to grayscale |
||||||
|
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) |
||||||
|
h, w = im.shape[:2] |
||||||
|
|
||||||
|
realInput = im.astype(np.float64) |
||||||
|
|
||||||
|
# perform an optimally sized dft |
||||||
|
dft_M = cv2.getOptimalDFTSize(w) |
||||||
|
dft_N = cv2.getOptimalDFTSize(h) |
||||||
|
|
||||||
|
# copy A to dft_A and pad dft_A with zeros |
||||||
|
dft_A = np.zeros((dft_N, dft_M, 2), dtype=np.float64) |
||||||
|
dft_A[:h, :w, 0] = realInput |
||||||
|
|
||||||
|
# no need to pad bottom part of dft_A with zeros because of |
||||||
|
# use of nonzeroRows parameter in cv2.dft() |
||||||
|
cv2.dft(dft_A, dst=dft_A, nonzeroRows=h) |
||||||
|
|
||||||
|
cv2.imshow("win", im) |
||||||
|
|
||||||
|
# Split fourier into real and imaginary parts |
||||||
|
image_Re, image_Im = cv2.split(dft_A) |
||||||
|
|
||||||
|
# Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) |
||||||
|
magnitude = cv2.sqrt(image_Re**2.0 + image_Im**2.0) |
||||||
|
|
||||||
|
# Compute log(1 + Mag) |
||||||
|
log_spectrum = cv2.log(1.0 + magnitude) |
||||||
|
|
||||||
|
# Rearrange the quadrants of Fourier image so that the origin is at |
||||||
|
# the image center |
||||||
|
shift_dft(log_spectrum, log_spectrum) |
||||||
|
|
||||||
|
# normalize and display the results as rgb |
||||||
|
cv2.normalize(log_spectrum, log_spectrum, 0.0, 1.0, cv2.cv.CV_MINMAX) |
||||||
|
cv2.imshow("magnitude", log_spectrum) |
||||||
|
|
||||||
|
cv2.waitKey(0) |
||||||
|
cv2.destroyAllWindows() |
Loading…
Reference in new issue