|
|
|
@ -43,6 +43,8 @@ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
#include "opencl_kernels_imgproc.hpp" |
|
|
|
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
@ -60,15 +62,12 @@ struct Integral_SIMD |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#if CV_SSE2 |
|
|
|
|
#if CV_SIMD && CV_SIMD_WIDTH <= 64 |
|
|
|
|
|
|
|
|
|
template <> |
|
|
|
|
struct Integral_SIMD<uchar, int, double> |
|
|
|
|
{ |
|
|
|
|
Integral_SIMD() |
|
|
|
|
{ |
|
|
|
|
haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); |
|
|
|
|
} |
|
|
|
|
Integral_SIMD() {} |
|
|
|
|
|
|
|
|
|
bool operator()(const uchar * src, size_t _srcstep, |
|
|
|
|
int * sum, size_t _sumstep, |
|
|
|
@ -76,15 +75,12 @@ struct Integral_SIMD<uchar, int, double> |
|
|
|
|
int * tilted, size_t, |
|
|
|
|
int width, int height, int cn) const |
|
|
|
|
{ |
|
|
|
|
if (sqsum || tilted || cn != 1 || !haveSSE2) |
|
|
|
|
if (sqsum || tilted || cn != 1) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
// the first iteration
|
|
|
|
|
memset(sum, 0, (width + 1) * sizeof(int)); |
|
|
|
|
|
|
|
|
|
__m128i v_zero = _mm_setzero_si128(), prev = v_zero; |
|
|
|
|
int j = 0; |
|
|
|
|
|
|
|
|
|
// the others
|
|
|
|
|
for (int i = 0; i < height; ++i) |
|
|
|
|
{ |
|
|
|
@ -94,48 +90,113 @@ struct Integral_SIMD<uchar, int, double> |
|
|
|
|
|
|
|
|
|
sum_row[-1] = 0; |
|
|
|
|
|
|
|
|
|
prev = v_zero; |
|
|
|
|
j = 0; |
|
|
|
|
|
|
|
|
|
for ( ; j + 7 < width; j += 8) |
|
|
|
|
v_int32 prev = vx_setzero_s32(); |
|
|
|
|
int j = 0; |
|
|
|
|
for ( ; j + v_uint16::nlanes <= width; j += v_uint16::nlanes) |
|
|
|
|
{ |
|
|
|
|
__m128i vsuml = _mm_loadu_si128((const __m128i *)(prev_sum_row + j)); |
|
|
|
|
__m128i vsumh = _mm_loadu_si128((const __m128i *)(prev_sum_row + j + 4)); |
|
|
|
|
v_int16 el8 = v_reinterpret_as_s16(vx_load_expand(src_row + j)); |
|
|
|
|
v_int32 el4l, el4h; |
|
|
|
|
#if CV_AVX2 |
|
|
|
|
__m256i vsum = _mm256_add_epi16(el8.val, _mm256_slli_si256(el8.val, 2)); |
|
|
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 4)); |
|
|
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 8)); |
|
|
|
|
__m256i shmask = _mm256_set1_epi32(7); |
|
|
|
|
el4l.val = _mm256_add_epi32(_mm256_cvtepi16_epi32(_v256_extract_low(vsum)), prev.val); |
|
|
|
|
el4h.val = _mm256_add_epi32(_mm256_cvtepi16_epi32(_v256_extract_high(vsum)), _mm256_permutevar8x32_epi32(el4l.val, shmask)); |
|
|
|
|
prev.val = _mm256_permutevar8x32_epi32(el4h.val, shmask); |
|
|
|
|
#else |
|
|
|
|
el8 += v_rotate_left<1>(el8); |
|
|
|
|
el8 += v_rotate_left<2>(el8); |
|
|
|
|
#if CV_SIMD_WIDTH == 32 |
|
|
|
|
el8 += v_rotate_left<4>(el8); |
|
|
|
|
#if CV_SIMD_WIDTH == 64 |
|
|
|
|
el8 += v_rotate_left<8>(el8); |
|
|
|
|
#endif |
|
|
|
|
#endif |
|
|
|
|
v_expand(el8, el4l, el4h); |
|
|
|
|
el4l += prev; |
|
|
|
|
el4h += el4l; |
|
|
|
|
prev = vx_setall_s32(v_rotate_right<v_int32::nlanes - 1>(el4h).get0()); |
|
|
|
|
#endif |
|
|
|
|
v_store(sum_row + j , el4l + vx_load(prev_sum_row + j )); |
|
|
|
|
v_store(sum_row + j + v_int32::nlanes, el4h + vx_load(prev_sum_row + j + v_int32::nlanes)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__m128i el8shr0 = _mm_loadl_epi64((const __m128i *)(src_row + j)); |
|
|
|
|
__m128i el8shr1 = _mm_slli_si128(el8shr0, 1); |
|
|
|
|
__m128i el8shr2 = _mm_slli_si128(el8shr0, 2); |
|
|
|
|
__m128i el8shr3 = _mm_slli_si128(el8shr0, 3); |
|
|
|
|
for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < width; ++j) |
|
|
|
|
sum_row[j] = (v += src_row[j]) + prev_sum_row[j]; |
|
|
|
|
} |
|
|
|
|
vx_cleanup(); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
vsuml = _mm_add_epi32(vsuml, prev); |
|
|
|
|
vsumh = _mm_add_epi32(vsumh, prev); |
|
|
|
|
template <> |
|
|
|
|
struct Integral_SIMD<uchar, float, double> |
|
|
|
|
{ |
|
|
|
|
Integral_SIMD() {} |
|
|
|
|
|
|
|
|
|
__m128i el8shr12 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr1, v_zero), |
|
|
|
|
_mm_unpacklo_epi8(el8shr2, v_zero)); |
|
|
|
|
__m128i el8shr03 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr0, v_zero), |
|
|
|
|
_mm_unpacklo_epi8(el8shr3, v_zero)); |
|
|
|
|
__m128i el8 = _mm_add_epi16(el8shr12, el8shr03); |
|
|
|
|
bool operator()(const uchar * src, size_t _srcstep, |
|
|
|
|
float * sum, size_t _sumstep, |
|
|
|
|
double * sqsum, size_t, |
|
|
|
|
float * tilted, size_t, |
|
|
|
|
int width, int height, int cn) const |
|
|
|
|
{ |
|
|
|
|
if (sqsum || tilted || cn != 1) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
__m128i el4h = _mm_add_epi16(_mm_unpackhi_epi16(el8, v_zero), |
|
|
|
|
_mm_unpacklo_epi16(el8, v_zero)); |
|
|
|
|
// the first iteration
|
|
|
|
|
memset(sum, 0, (width + 1) * sizeof(int)); |
|
|
|
|
|
|
|
|
|
vsuml = _mm_add_epi32(vsuml, _mm_unpacklo_epi16(el8, v_zero)); |
|
|
|
|
vsumh = _mm_add_epi32(vsumh, el4h); |
|
|
|
|
// the others
|
|
|
|
|
for (int i = 0; i < height; ++i) |
|
|
|
|
{ |
|
|
|
|
const uchar * src_row = src + _srcstep * i; |
|
|
|
|
float * prev_sum_row = (float *)((uchar *)sum + _sumstep * i) + 1; |
|
|
|
|
float * sum_row = (float *)((uchar *)sum + _sumstep * (i + 1)) + 1; |
|
|
|
|
|
|
|
|
|
_mm_storeu_si128((__m128i *)(sum_row + j), vsuml); |
|
|
|
|
_mm_storeu_si128((__m128i *)(sum_row + j + 4), vsumh); |
|
|
|
|
sum_row[-1] = 0; |
|
|
|
|
|
|
|
|
|
prev = _mm_add_epi32(prev, _mm_shuffle_epi32(el4h, _MM_SHUFFLE(3, 3, 3, 3))); |
|
|
|
|
v_float32 prev = vx_setzero_f32(); |
|
|
|
|
int j = 0; |
|
|
|
|
for (; j + v_uint16::nlanes <= width; j += v_uint16::nlanes) |
|
|
|
|
{ |
|
|
|
|
v_int16 el8 = v_reinterpret_as_s16(vx_load_expand(src_row + j)); |
|
|
|
|
v_float32 el4l, el4h; |
|
|
|
|
#if CV_AVX2 |
|
|
|
|
__m256i vsum = _mm256_add_epi16(el8.val, _mm256_slli_si256(el8.val, 2)); |
|
|
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 4)); |
|
|
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 8)); |
|
|
|
|
__m256i shmask = _mm256_set1_epi32(7); |
|
|
|
|
el4l.val = _mm256_add_ps(_mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_v256_extract_low(vsum))), prev.val); |
|
|
|
|
el4h.val = _mm256_add_ps(_mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_v256_extract_high(vsum))), _mm256_permutevar8x32_ps(el4l.val, shmask)); |
|
|
|
|
prev.val = _mm256_permutevar8x32_ps(el4h.val, shmask); |
|
|
|
|
#else |
|
|
|
|
el8 += v_rotate_left<1>(el8); |
|
|
|
|
el8 += v_rotate_left<2>(el8); |
|
|
|
|
#if CV_SIMD_WIDTH == 32 |
|
|
|
|
el8 += v_rotate_left<4>(el8); |
|
|
|
|
#if CV_SIMD_WIDTH == 64 |
|
|
|
|
el8 += v_rotate_left<8>(el8); |
|
|
|
|
#endif |
|
|
|
|
#endif |
|
|
|
|
v_int32 el4li, el4hi; |
|
|
|
|
v_expand(el8, el4li, el4hi); |
|
|
|
|
el4l = v_cvt_f32(el4li) + prev; |
|
|
|
|
el4h = v_cvt_f32(el4hi) + el4l; |
|
|
|
|
prev = vx_setall_f32(v_rotate_right<v_float32::nlanes - 1>(el4h).get0()); |
|
|
|
|
#endif |
|
|
|
|
v_store(sum_row + j , el4l + vx_load(prev_sum_row + j )); |
|
|
|
|
v_store(sum_row + j + v_float32::nlanes, el4h + vx_load(prev_sum_row + j + v_float32::nlanes)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < width; ++j) |
|
|
|
|
for (float v = sum_row[j - 1] - prev_sum_row[j - 1]; j < width; ++j) |
|
|
|
|
sum_row[j] = (v += src_row[j]) + prev_sum_row[j]; |
|
|
|
|
} |
|
|
|
|
vx_cleanup(); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool haveSSE2; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|