|
|
@ -100,6 +100,7 @@ protected: |
|
|
|
double tau; |
|
|
|
double tau; |
|
|
|
double lambda; |
|
|
|
double lambda; |
|
|
|
double theta; |
|
|
|
double theta; |
|
|
|
|
|
|
|
double gamma; |
|
|
|
int nscales; |
|
|
|
int nscales; |
|
|
|
int warps; |
|
|
|
int warps; |
|
|
|
double epsilon; |
|
|
|
double epsilon; |
|
|
@ -121,6 +122,7 @@ private: |
|
|
|
std::vector<Mat_<float> > I1s; |
|
|
|
std::vector<Mat_<float> > I1s; |
|
|
|
std::vector<Mat_<float> > u1s; |
|
|
|
std::vector<Mat_<float> > u1s; |
|
|
|
std::vector<Mat_<float> > u2s; |
|
|
|
std::vector<Mat_<float> > u2s; |
|
|
|
|
|
|
|
std::vector<Mat_<float> > u3s; |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> I1x_buf; |
|
|
|
Mat_<float> I1x_buf; |
|
|
|
Mat_<float> I1y_buf; |
|
|
|
Mat_<float> I1y_buf; |
|
|
@ -142,14 +144,19 @@ private: |
|
|
|
Mat_<float> p12_buf; |
|
|
|
Mat_<float> p12_buf; |
|
|
|
Mat_<float> p21_buf; |
|
|
|
Mat_<float> p21_buf; |
|
|
|
Mat_<float> p22_buf; |
|
|
|
Mat_<float> p22_buf; |
|
|
|
|
|
|
|
Mat_<float> p31_buf; |
|
|
|
|
|
|
|
Mat_<float> p32_buf; |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> div_p1_buf; |
|
|
|
Mat_<float> div_p1_buf; |
|
|
|
Mat_<float> div_p2_buf; |
|
|
|
Mat_<float> div_p2_buf; |
|
|
|
|
|
|
|
Mat_<float> div_p3_buf; |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> u1x_buf; |
|
|
|
Mat_<float> u1x_buf; |
|
|
|
Mat_<float> u1y_buf; |
|
|
|
Mat_<float> u1y_buf; |
|
|
|
Mat_<float> u2x_buf; |
|
|
|
Mat_<float> u2x_buf; |
|
|
|
Mat_<float> u2y_buf; |
|
|
|
Mat_<float> u2y_buf; |
|
|
|
|
|
|
|
Mat_<float> u3x_buf; |
|
|
|
|
|
|
|
Mat_<float> u3y_buf; |
|
|
|
} dm; |
|
|
|
} dm; |
|
|
|
struct dataUMat |
|
|
|
struct dataUMat |
|
|
|
{ |
|
|
|
{ |
|
|
@ -343,6 +350,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1() |
|
|
|
nscales = 5; |
|
|
|
nscales = 5; |
|
|
|
warps = 5; |
|
|
|
warps = 5; |
|
|
|
epsilon = 0.01; |
|
|
|
epsilon = 0.01; |
|
|
|
|
|
|
|
gamma = 1.; |
|
|
|
innerIterations = 30; |
|
|
|
innerIterations = 30; |
|
|
|
outerIterations = 10; |
|
|
|
outerIterations = 10; |
|
|
|
useInitialFlow = false; |
|
|
|
useInitialFlow = false; |
|
|
@ -368,12 +376,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
dm.I1s.resize(nscales); |
|
|
|
dm.I1s.resize(nscales); |
|
|
|
dm.u1s.resize(nscales); |
|
|
|
dm.u1s.resize(nscales); |
|
|
|
dm.u2s.resize(nscales); |
|
|
|
dm.u2s.resize(nscales); |
|
|
|
|
|
|
|
dm.u3s.resize(nscales); |
|
|
|
|
|
|
|
|
|
|
|
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
|
|
|
|
|
|
|
|
dm.u1s[0].create(I0.size()); |
|
|
|
dm.u1s[0].create(I0.size()); |
|
|
|
dm.u2s[0].create(I0.size()); |
|
|
|
dm.u2s[0].create(I0.size()); |
|
|
|
|
|
|
|
dm.u3s[0].create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
if (useInitialFlow) |
|
|
|
if (useInitialFlow) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -401,14 +411,19 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
dm.p12_buf.create(I0.size()); |
|
|
|
dm.p12_buf.create(I0.size()); |
|
|
|
dm.p21_buf.create(I0.size()); |
|
|
|
dm.p21_buf.create(I0.size()); |
|
|
|
dm.p22_buf.create(I0.size()); |
|
|
|
dm.p22_buf.create(I0.size()); |
|
|
|
|
|
|
|
dm.p31_buf.create(I0.size()); |
|
|
|
|
|
|
|
dm.p32_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
dm.div_p1_buf.create(I0.size()); |
|
|
|
dm.div_p1_buf.create(I0.size()); |
|
|
|
dm.div_p2_buf.create(I0.size()); |
|
|
|
dm.div_p2_buf.create(I0.size()); |
|
|
|
|
|
|
|
dm.div_p3_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
dm.u1x_buf.create(I0.size()); |
|
|
|
dm.u1x_buf.create(I0.size()); |
|
|
|
dm.u1y_buf.create(I0.size()); |
|
|
|
dm.u1y_buf.create(I0.size()); |
|
|
|
dm.u2x_buf.create(I0.size()); |
|
|
|
dm.u2x_buf.create(I0.size()); |
|
|
|
dm.u2y_buf.create(I0.size()); |
|
|
|
dm.u2y_buf.create(I0.size()); |
|
|
|
|
|
|
|
dm.u3x_buf.create(I0.size()); |
|
|
|
|
|
|
|
dm.u3y_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
// create the scales
|
|
|
|
// create the scales
|
|
|
|
for (int s = 1; s < nscales; ++s) |
|
|
|
for (int s = 1; s < nscales; ++s) |
|
|
@ -435,14 +450,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
dm.u1s[s].create(dm.I0s[s].size()); |
|
|
|
dm.u1s[s].create(dm.I0s[s].size()); |
|
|
|
dm.u2s[s].create(dm.I0s[s].size()); |
|
|
|
dm.u2s[s].create(dm.I0s[s].size()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
dm.u3s[s].create(dm.I0s[s].size()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (!useInitialFlow) |
|
|
|
if (!useInitialFlow) |
|
|
|
{ |
|
|
|
{ |
|
|
|
dm.u1s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
dm.u1s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
dm.u2s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
dm.u2s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
dm.u3s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
// pyramidal structure for computing the optical flow
|
|
|
|
// pyramidal structure for computing the optical flow
|
|
|
|
for (int s = nscales - 1; s >= 0; --s) |
|
|
|
for (int s = nscales - 1; s >= 0; --s) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -458,8 +473,9 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
// zoom the optical flow for the next finer scale
|
|
|
|
// zoom the optical flow for the next finer scale
|
|
|
|
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
|
|
|
resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
|
|
|
|
|
|
|
// scale the optical flow with the appropriate zoom factor
|
|
|
|
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
|
|
|
|
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); |
|
|
|
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); |
|
|
|
multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]); |
|
|
|
multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]); |
|
|
|
} |
|
|
|
} |
|
|
@ -872,6 +888,10 @@ void CalcGradRhoBody::operator() (const Range& range) const |
|
|
|
|
|
|
|
|
|
|
|
// compute the constant part of the rho function
|
|
|
|
// compute the constant part of the rho function
|
|
|
|
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]); |
|
|
|
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]); |
|
|
|
|
|
|
|
//It = I1wRow[x] - I0Row[x]
|
|
|
|
|
|
|
|
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
|
|
|
|
|
|
|
|
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
|
|
|
|
|
|
|
|
// gamma * w = gamma * u3
|
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -912,11 +932,14 @@ struct EstimateVBody : ParallelLoopBody |
|
|
|
Mat_<float> I1wy; |
|
|
|
Mat_<float> I1wy; |
|
|
|
Mat_<float> u1; |
|
|
|
Mat_<float> u1; |
|
|
|
Mat_<float> u2; |
|
|
|
Mat_<float> u2; |
|
|
|
|
|
|
|
Mat_<float> u3; |
|
|
|
Mat_<float> grad; |
|
|
|
Mat_<float> grad; |
|
|
|
Mat_<float> rho_c; |
|
|
|
Mat_<float> rho_c; |
|
|
|
mutable Mat_<float> v1; |
|
|
|
mutable Mat_<float> v1; |
|
|
|
mutable Mat_<float> v2; |
|
|
|
mutable Mat_<float> v2; |
|
|
|
|
|
|
|
mutable Mat_<float> v3; |
|
|
|
float l_t; |
|
|
|
float l_t; |
|
|
|
|
|
|
|
float gamma; |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
void EstimateVBody::operator() (const Range& range) const |
|
|
|
void EstimateVBody::operator() (const Range& range) const |
|
|
@ -927,52 +950,61 @@ void EstimateVBody::operator() (const Range& range) const |
|
|
|
const float* I1wyRow = I1wy[y]; |
|
|
|
const float* I1wyRow = I1wy[y]; |
|
|
|
const float* u1Row = u1[y]; |
|
|
|
const float* u1Row = u1[y]; |
|
|
|
const float* u2Row = u2[y]; |
|
|
|
const float* u2Row = u2[y]; |
|
|
|
|
|
|
|
const float* u3Row = u3[y]; |
|
|
|
const float* gradRow = grad[y]; |
|
|
|
const float* gradRow = grad[y]; |
|
|
|
const float* rhoRow = rho_c[y]; |
|
|
|
const float* rhoRow = rho_c[y]; |
|
|
|
|
|
|
|
|
|
|
|
float* v1Row = v1[y]; |
|
|
|
float* v1Row = v1[y]; |
|
|
|
float* v2Row = v2[y]; |
|
|
|
float* v2Row = v2[y]; |
|
|
|
|
|
|
|
float* v3Row = v3[y]; |
|
|
|
|
|
|
|
|
|
|
|
for (int x = 0; x < I1wx.cols; ++x) |
|
|
|
for (int x = 0; x < I1wx.cols; ++x) |
|
|
|
{ |
|
|
|
{ |
|
|
|
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); |
|
|
|
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x]; |
|
|
|
|
|
|
|
|
|
|
|
float d1 = 0.0f; |
|
|
|
float d1 = 0.0f; |
|
|
|
float d2 = 0.0f; |
|
|
|
float d2 = 0.0f; |
|
|
|
|
|
|
|
float d3 = 0.0f; |
|
|
|
|
|
|
|
// add d3 for 3 cases
|
|
|
|
if (rho < -l_t * gradRow[x]) |
|
|
|
if (rho < -l_t * gradRow[x]) |
|
|
|
{ |
|
|
|
{ |
|
|
|
d1 = l_t * I1wxRow[x]; |
|
|
|
d1 = l_t * I1wxRow[x]; |
|
|
|
d2 = l_t * I1wyRow[x]; |
|
|
|
d2 = l_t * I1wyRow[x]; |
|
|
|
|
|
|
|
d3 = l_t * gamma; |
|
|
|
} |
|
|
|
} |
|
|
|
else if (rho > l_t * gradRow[x]) |
|
|
|
else if (rho > l_t * gradRow[x]) |
|
|
|
{ |
|
|
|
{ |
|
|
|
d1 = -l_t * I1wxRow[x]; |
|
|
|
d1 = -l_t * I1wxRow[x]; |
|
|
|
d2 = -l_t * I1wyRow[x]; |
|
|
|
d2 = -l_t * I1wyRow[x]; |
|
|
|
|
|
|
|
d3 = -l_t * gamma; |
|
|
|
} |
|
|
|
} |
|
|
|
else if (gradRow[x] > std::numeric_limits<float>::epsilon()) |
|
|
|
else if (gradRow[x] > std::numeric_limits<float>::epsilon()) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float fi = -rho / gradRow[x]; |
|
|
|
float fi = -rho / gradRow[x]; |
|
|
|
d1 = fi * I1wxRow[x]; |
|
|
|
d1 = fi * I1wxRow[x]; |
|
|
|
d2 = fi * I1wyRow[x]; |
|
|
|
d2 = fi * I1wyRow[x]; |
|
|
|
|
|
|
|
d3 = fi * gamma; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
v1Row[x] = u1Row[x] + d1; |
|
|
|
v1Row[x] = u1Row[x] + d1; |
|
|
|
v2Row[x] = u2Row[x] + d2; |
|
|
|
v2Row[x] = u2Row[x] + d2; |
|
|
|
|
|
|
|
v3Row[x] = u3Row[x] + d3; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c, |
|
|
|
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& u3, const Mat_<float>& grad, const Mat_<float>& rho_c, |
|
|
|
Mat_<float>& v1, Mat_<float>& v2, float l_t) |
|
|
|
Mat_<float>& v1, Mat_<float>& v2, Mat_<float>& v3, float l_t, float gamma) |
|
|
|
{ |
|
|
|
{ |
|
|
|
CV_DbgAssert( I1wy.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( I1wy.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( u1.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( u1.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( u2.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( u2.size() == I1wx.size() ); |
|
|
|
|
|
|
|
CV_DbgAssert( u3.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( grad.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( grad.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( rho_c.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( rho_c.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( v1.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( v1.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( v2.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( v2.size() == I1wx.size() ); |
|
|
|
|
|
|
|
CV_DbgAssert( v3.size() == I1wx.size() ); |
|
|
|
|
|
|
|
|
|
|
|
EstimateVBody body; |
|
|
|
EstimateVBody body; |
|
|
|
|
|
|
|
|
|
|
@ -980,11 +1012,14 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa |
|
|
|
body.I1wy = I1wy; |
|
|
|
body.I1wy = I1wy; |
|
|
|
body.u1 = u1; |
|
|
|
body.u1 = u1; |
|
|
|
body.u2 = u2; |
|
|
|
body.u2 = u2; |
|
|
|
|
|
|
|
body.u3 = u3; |
|
|
|
body.grad = grad; |
|
|
|
body.grad = grad; |
|
|
|
body.rho_c = rho_c; |
|
|
|
body.rho_c = rho_c; |
|
|
|
body.v1 = v1; |
|
|
|
body.v1 = v1; |
|
|
|
body.v2 = v2; |
|
|
|
body.v2 = v2; |
|
|
|
|
|
|
|
body.v3 = v3; |
|
|
|
body.l_t = l_t; |
|
|
|
body.l_t = l_t; |
|
|
|
|
|
|
|
body.gamma = gamma; |
|
|
|
|
|
|
|
|
|
|
|
parallel_for_(Range(0, I1wx.rows), body); |
|
|
|
parallel_for_(Range(0, I1wx.rows), body); |
|
|
|
} |
|
|
|
} |
|
|
@ -1019,6 +1054,8 @@ float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& |
|
|
|
u1Row[x] = v1Row[x] + theta * divP1Row[x]; |
|
|
|
u1Row[x] = v1Row[x] + theta * divP1Row[x]; |
|
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x]; |
|
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//u3
|
|
|
|
|
|
|
|
|
|
|
|
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); |
|
|
|
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -1218,18 +1255,25 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
p11.setTo(Scalar::all(0)); |
|
|
|
p11.setTo(Scalar::all(0)); |
|
|
|
p12.setTo(Scalar::all(0)); |
|
|
|
p12.setTo(Scalar::all(0)); |
|
|
|
p21.setTo(Scalar::all(0)); |
|
|
|
p21.setTo(Scalar::all(0)); |
|
|
|
p22.setTo(Scalar::all(0)); |
|
|
|
p22.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
p31.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
p32.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
Mat_<float> div_p3 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
|
|
const float l_t = static_cast<float>(lambda * theta); |
|
|
|
const float l_t = static_cast<float>(lambda * theta); |
|
|
|
const float taut = static_cast<float>(tau / theta); |
|
|
|
const float taut = static_cast<float>(tau / theta); |
|
|
@ -1241,7 +1285,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
|
|
|
|
//calculate I1(x+u0) and its gradient
|
|
|
|
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c); |
|
|
|
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c); |
|
|
|
|
|
|
|
|
|
|
|
float error = std::numeric_limits<float>::max(); |
|
|
|
float error = std::numeric_limits<float>::max(); |
|
|
|