adding new ali's feature

pull/2942/head
Ernest Galbrun 11 years ago
parent f417c79d16
commit 6a6f24b170
  1. 60
      modules/video/src/tvl1flow.cpp

@ -100,6 +100,7 @@ protected:
double tau; double tau;
double lambda; double lambda;
double theta; double theta;
double gamma;
int nscales; int nscales;
int warps; int warps;
double epsilon; double epsilon;
@ -121,6 +122,7 @@ private:
std::vector<Mat_<float> > I1s; std::vector<Mat_<float> > I1s;
std::vector<Mat_<float> > u1s; std::vector<Mat_<float> > u1s;
std::vector<Mat_<float> > u2s; std::vector<Mat_<float> > u2s;
std::vector<Mat_<float> > u3s;
Mat_<float> I1x_buf; Mat_<float> I1x_buf;
Mat_<float> I1y_buf; Mat_<float> I1y_buf;
@ -142,14 +144,19 @@ private:
Mat_<float> p12_buf; Mat_<float> p12_buf;
Mat_<float> p21_buf; Mat_<float> p21_buf;
Mat_<float> p22_buf; Mat_<float> p22_buf;
Mat_<float> p31_buf;
Mat_<float> p32_buf;
Mat_<float> div_p1_buf; Mat_<float> div_p1_buf;
Mat_<float> div_p2_buf; Mat_<float> div_p2_buf;
Mat_<float> div_p3_buf;
Mat_<float> u1x_buf; Mat_<float> u1x_buf;
Mat_<float> u1y_buf; Mat_<float> u1y_buf;
Mat_<float> u2x_buf; Mat_<float> u2x_buf;
Mat_<float> u2y_buf; Mat_<float> u2y_buf;
Mat_<float> u3x_buf;
Mat_<float> u3y_buf;
} dm; } dm;
struct dataUMat struct dataUMat
{ {
@ -343,6 +350,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
nscales = 5; nscales = 5;
warps = 5; warps = 5;
epsilon = 0.01; epsilon = 0.01;
gamma = 1.;
innerIterations = 30; innerIterations = 30;
outerIterations = 10; outerIterations = 10;
useInitialFlow = false; useInitialFlow = false;
@ -368,12 +376,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm.I1s.resize(nscales); dm.I1s.resize(nscales);
dm.u1s.resize(nscales); dm.u1s.resize(nscales);
dm.u2s.resize(nscales); dm.u2s.resize(nscales);
dm.u3s.resize(nscales);
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
dm.u1s[0].create(I0.size()); dm.u1s[0].create(I0.size());
dm.u2s[0].create(I0.size()); dm.u2s[0].create(I0.size());
dm.u3s[0].create(I0.size());
if (useInitialFlow) if (useInitialFlow)
{ {
@ -401,14 +411,19 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm.p12_buf.create(I0.size()); dm.p12_buf.create(I0.size());
dm.p21_buf.create(I0.size()); dm.p21_buf.create(I0.size());
dm.p22_buf.create(I0.size()); dm.p22_buf.create(I0.size());
dm.p31_buf.create(I0.size());
dm.p32_buf.create(I0.size());
dm.div_p1_buf.create(I0.size()); dm.div_p1_buf.create(I0.size());
dm.div_p2_buf.create(I0.size()); dm.div_p2_buf.create(I0.size());
dm.div_p3_buf.create(I0.size());
dm.u1x_buf.create(I0.size()); dm.u1x_buf.create(I0.size());
dm.u1y_buf.create(I0.size()); dm.u1y_buf.create(I0.size());
dm.u2x_buf.create(I0.size()); dm.u2x_buf.create(I0.size());
dm.u2y_buf.create(I0.size()); dm.u2y_buf.create(I0.size());
dm.u3x_buf.create(I0.size());
dm.u3y_buf.create(I0.size());
// create the scales // create the scales
for (int s = 1; s < nscales; ++s) for (int s = 1; s < nscales; ++s)
@ -435,14 +450,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm.u1s[s].create(dm.I0s[s].size()); dm.u1s[s].create(dm.I0s[s].size());
dm.u2s[s].create(dm.I0s[s].size()); dm.u2s[s].create(dm.I0s[s].size());
} }
dm.u3s[s].create(dm.I0s[s].size());
} }
if (!useInitialFlow) if (!useInitialFlow)
{ {
dm.u1s[nscales - 1].setTo(Scalar::all(0)); dm.u1s[nscales - 1].setTo(Scalar::all(0));
dm.u2s[nscales - 1].setTo(Scalar::all(0)); dm.u2s[nscales - 1].setTo(Scalar::all(0));
} }
dm.u3s[nscales - 1].setTo(Scalar::all(0));
// pyramidal structure for computing the optical flow // pyramidal structure for computing the optical flow
for (int s = nscales - 1; s >= 0; --s) for (int s = nscales - 1; s >= 0; --s)
{ {
@ -458,8 +473,9 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
// zoom the optical flow for the next finer scale // zoom the optical flow for the next finer scale
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size());
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size());
resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size());
// scale the optical flow with the appropriate zoom factor // scale the optical flow with the appropriate zoom factor (don't scale u3!)
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]);
multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]); multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]);
} }
@ -872,6 +888,10 @@ void CalcGradRhoBody::operator() (const Range& range) const
// compute the constant part of the rho function // compute the constant part of the rho function
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]); rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
//It = I1wRow[x] - I0Row[x]
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
// gamma * w = gamma * u3
} }
} }
} }
@ -912,11 +932,14 @@ struct EstimateVBody : ParallelLoopBody
Mat_<float> I1wy; Mat_<float> I1wy;
Mat_<float> u1; Mat_<float> u1;
Mat_<float> u2; Mat_<float> u2;
Mat_<float> u3;
Mat_<float> grad; Mat_<float> grad;
Mat_<float> rho_c; Mat_<float> rho_c;
mutable Mat_<float> v1; mutable Mat_<float> v1;
mutable Mat_<float> v2; mutable Mat_<float> v2;
mutable Mat_<float> v3;
float l_t; float l_t;
float gamma;
}; };
void EstimateVBody::operator() (const Range& range) const void EstimateVBody::operator() (const Range& range) const
@ -927,52 +950,61 @@ void EstimateVBody::operator() (const Range& range) const
const float* I1wyRow = I1wy[y]; const float* I1wyRow = I1wy[y];
const float* u1Row = u1[y]; const float* u1Row = u1[y];
const float* u2Row = u2[y]; const float* u2Row = u2[y];
const float* u3Row = u3[y];
const float* gradRow = grad[y]; const float* gradRow = grad[y];
const float* rhoRow = rho_c[y]; const float* rhoRow = rho_c[y];
float* v1Row = v1[y]; float* v1Row = v1[y];
float* v2Row = v2[y]; float* v2Row = v2[y];
float* v3Row = v3[y];
for (int x = 0; x < I1wx.cols; ++x) for (int x = 0; x < I1wx.cols; ++x)
{ {
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x];
float d1 = 0.0f; float d1 = 0.0f;
float d2 = 0.0f; float d2 = 0.0f;
float d3 = 0.0f;
// add d3 for 3 cases
if (rho < -l_t * gradRow[x]) if (rho < -l_t * gradRow[x])
{ {
d1 = l_t * I1wxRow[x]; d1 = l_t * I1wxRow[x];
d2 = l_t * I1wyRow[x]; d2 = l_t * I1wyRow[x];
d3 = l_t * gamma;
} }
else if (rho > l_t * gradRow[x]) else if (rho > l_t * gradRow[x])
{ {
d1 = -l_t * I1wxRow[x]; d1 = -l_t * I1wxRow[x];
d2 = -l_t * I1wyRow[x]; d2 = -l_t * I1wyRow[x];
d3 = -l_t * gamma;
} }
else if (gradRow[x] > std::numeric_limits<float>::epsilon()) else if (gradRow[x] > std::numeric_limits<float>::epsilon())
{ {
float fi = -rho / gradRow[x]; float fi = -rho / gradRow[x];
d1 = fi * I1wxRow[x]; d1 = fi * I1wxRow[x];
d2 = fi * I1wyRow[x]; d2 = fi * I1wyRow[x];
d3 = fi * gamma;
} }
v1Row[x] = u1Row[x] + d1; v1Row[x] = u1Row[x] + d1;
v2Row[x] = u2Row[x] + d2; v2Row[x] = u2Row[x] + d2;
v3Row[x] = u3Row[x] + d3;
} }
} }
} }
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c, void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& u3, const Mat_<float>& grad, const Mat_<float>& rho_c,
Mat_<float>& v1, Mat_<float>& v2, float l_t) Mat_<float>& v1, Mat_<float>& v2, Mat_<float>& v3, float l_t, float gamma)
{ {
CV_DbgAssert( I1wy.size() == I1wx.size() ); CV_DbgAssert( I1wy.size() == I1wx.size() );
CV_DbgAssert( u1.size() == I1wx.size() ); CV_DbgAssert( u1.size() == I1wx.size() );
CV_DbgAssert( u2.size() == I1wx.size() ); CV_DbgAssert( u2.size() == I1wx.size() );
CV_DbgAssert( u3.size() == I1wx.size() );
CV_DbgAssert( grad.size() == I1wx.size() ); CV_DbgAssert( grad.size() == I1wx.size() );
CV_DbgAssert( rho_c.size() == I1wx.size() ); CV_DbgAssert( rho_c.size() == I1wx.size() );
CV_DbgAssert( v1.size() == I1wx.size() ); CV_DbgAssert( v1.size() == I1wx.size() );
CV_DbgAssert( v2.size() == I1wx.size() ); CV_DbgAssert( v2.size() == I1wx.size() );
CV_DbgAssert( v3.size() == I1wx.size() );
EstimateVBody body; EstimateVBody body;
@ -980,11 +1012,14 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa
body.I1wy = I1wy; body.I1wy = I1wy;
body.u1 = u1; body.u1 = u1;
body.u2 = u2; body.u2 = u2;
body.u3 = u3;
body.grad = grad; body.grad = grad;
body.rho_c = rho_c; body.rho_c = rho_c;
body.v1 = v1; body.v1 = v1;
body.v2 = v2; body.v2 = v2;
body.v3 = v3;
body.l_t = l_t; body.l_t = l_t;
body.gamma = gamma;
parallel_for_(Range(0, I1wx.rows), body); parallel_for_(Range(0, I1wx.rows), body);
} }
@ -1019,6 +1054,8 @@ float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>&
u1Row[x] = v1Row[x] + theta * divP1Row[x]; u1Row[x] = v1Row[x] + theta * divP1Row[x];
u2Row[x] = v2Row[x] + theta * divP2Row[x]; u2Row[x] = v2Row[x] + theta * divP2Row[x];
//u3
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
} }
} }
@ -1218,18 +1255,25 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows));
p11.setTo(Scalar::all(0)); p11.setTo(Scalar::all(0));
p12.setTo(Scalar::all(0)); p12.setTo(Scalar::all(0));
p21.setTo(Scalar::all(0)); p21.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0)); p22.setTo(Scalar::all(0));
p31.setTo(Scalar::all(0));
p32.setTo(Scalar::all(0));
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p3 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda * theta); const float l_t = static_cast<float>(lambda * theta);
const float taut = static_cast<float>(tau / theta); const float taut = static_cast<float>(tau / theta);
@ -1241,7 +1285,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC); remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC);
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC); remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC);
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC); remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC);
//calculate I1(x+u0) and its gradient
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c); calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);
float error = std::numeric_limits<float>::max(); float error = std::numeric_limits<float>::max();

Loading…
Cancel
Save