dnn::blobFromImage with OutputArray

pull/10588/head
Dmitry Kurtaev 7 years ago
parent 0c00652f6b
commit 6a395d88ff
  1. 21
      modules/dnn/include/opencv2/dnn/dnn.hpp
  2. 53
      modules/dnn/src/dnn.cpp
  3. 10
      modules/dnn/test/test_misc.cpp

@ -695,6 +695,16 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/ */
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(), CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true); const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from image.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
const Size& size = Size(), const Scalar& mean = Scalar(),
bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor, * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels. * swap Blue and Red channels.
@ -711,9 +721,18 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order. * @returns 4-dimansional Mat with NCHW dimensions order.
*/ */
CV_EXPORTS_W Mat blobFromImages(const std::vector<Mat>& images, double scalefactor=1.0, CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true); Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from series of images.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
double scalefactor=1.0, Size size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Convert all weights of Caffe network to half precision floating point. /** @brief Convert all weights of Caffe network to half precision floating point.
* @param src Path to origin model from Caffe framework contains single * @param src Path to origin model from Caffe framework contains single
* precision floating point weights (usually has `.caffemodel` extension). * precision floating point weights (usually has `.caffemodel` extension).

@ -81,27 +81,39 @@ namespace
}; };
} }
template<typename T> Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
static String toString(const T &v) const Scalar& mean, bool swapRB, bool crop)
{ {
std::ostringstream ss; CV_TRACE_FUNCTION();
ss << v; Mat blob;
return ss.str(); blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop);
return blob;
} }
Mat blobFromImage(InputArray image, double scalefactor, const Size& size, void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
const Scalar& mean, bool swapRB, bool crop) const Size& size, const Scalar& mean, bool swapRB, bool crop)
{ {
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
std::vector<Mat> images(1, image.getMat()); std::vector<Mat> images(1, image.getMat());
return blobFromImages(images, scalefactor, size, mean, swapRB, crop); blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop);
} }
Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size size, Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
const Scalar& mean_, bool swapRB, bool crop) const Scalar& mean, bool swapRB, bool crop)
{ {
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
std::vector<Mat> images = images_; Mat blob;
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop);
return blob;
}
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
Size size, const Scalar& mean_, bool swapRB, bool crop)
{
CV_TRACE_FUNCTION();
std::vector<Mat> images;
images_.getMatVector(images);
CV_Assert(!images.empty());
for (int i = 0; i < images.size(); i++) for (int i = 0; i < images.size(); i++)
{ {
Size imgSize = images[i].size(); Size imgSize = images[i].size();
@ -133,16 +145,15 @@ Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size siz
} }
size_t i, nimages = images.size(); size_t i, nimages = images.size();
if(nimages == 0)
return Mat();
Mat image0 = images[0]; Mat image0 = images[0];
int nch = image0.channels(); int nch = image0.channels();
CV_Assert(image0.dims == 2); CV_Assert(image0.dims == 2);
Mat blob, image; Mat image;
if (nch == 3 || nch == 4) if (nch == 3 || nch == 4)
{ {
int sz[] = { (int)nimages, nch, image0.rows, image0.cols }; int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
blob = Mat(4, sz, CV_32F); blob_.create(4, sz, CV_32F);
Mat blob = blob_.getMat();
Mat ch[4]; Mat ch[4];
for( i = 0; i < nimages; i++ ) for( i = 0; i < nimages; i++ )
@ -164,7 +175,8 @@ Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size siz
{ {
CV_Assert(nch == 1); CV_Assert(nch == 1);
int sz[] = { (int)nimages, 1, image0.rows, image0.cols }; int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
blob = Mat(4, sz, CV_32F); blob_.create(4, sz, CV_32F);
Mat blob = blob_.getMat();
for( i = 0; i < nimages; i++ ) for( i = 0; i < nimages; i++ )
{ {
@ -177,7 +189,6 @@ Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size siz
image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0))); image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0)));
} }
} }
return blob;
} }
class OpenCLBackendWrapper : public BackendWrapper class OpenCLBackendWrapper : public BackendWrapper
@ -886,7 +897,8 @@ struct Net::Impl
{ {
LayerPin storedFrom = ld.inputBlobsId[inNum]; LayerPin storedFrom = ld.inputBlobsId[inNum];
if (storedFrom.valid() && !storedFrom.equal(from)) if (storedFrom.valid() && !storedFrom.equal(from))
CV_Error(Error::StsError, "Input #" + toString(inNum) + "of layer \"" + ld.name + "\" already was connected"); CV_Error(Error::StsError, format("Input #%d of layer \"%s\" already was connected",
inNum, ld.name.c_str()));
} }
ld.inputBlobsId[inNum] = from; ld.inputBlobsId[inNum] = from;
@ -1665,8 +1677,9 @@ struct Net::Impl
LayerData &ld = layers[pin.lid]; LayerData &ld = layers[pin.lid];
if ((size_t)pin.oid >= ld.outputBlobs.size()) if ((size_t)pin.oid >= ld.outputBlobs.size())
{ {
CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) + CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, "
" outputs, the #" + toString(pin.oid) + " was requsted"); "the #%d was requsted", ld.name.c_str(),
ld.outputBlobs.size(), pin.oid));
} }
if (preferableTarget != DNN_TARGET_CPU) if (preferableTarget != DNN_TARGET_CPU)
{ {

@ -27,4 +27,14 @@ TEST(blobFromImage_4ch, Regression)
} }
} }
TEST(blobFromImage, allocated)
{
int size[] = {1, 3, 4, 5};
Mat img(size[2], size[3], CV_32FC(size[1]));
Mat blob(4, size, CV_32F);
void* blobData = blob.data;
dnn::blobFromImage(img, blob, 1.0 / 255, Size(), Scalar(), false, false);
ASSERT_EQ(blobData, blob.data);
}
} }

Loading…
Cancel
Save