Merge pull request #19752 from mpashchenkov:mp/onnx-int64-to-32

G-API: ONNX. Adding INT64-32 conversion for output.

* Added int64 to 32 conversion

* Added warning

* Added type checks for all toCV

* Added type checks for tests

* Small fixes

* Const for fixture in test

* std::tuple if retutn value for toCV

* Mistake

* Changed toCV for tests

* Added Assert

* Fix for comments

* One conversion for ONNX and IE

* Clean up

* One more fix

* Added copyFromONNX

* Removed warning

* Apply review comments
pull/18903/head
Maxim Pashchenkov 4 years ago committed by GitHub
parent 3f14cb073b
commit 69fc0acd1a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 6
      modules/gapi/src/backends/common/gbackend.hpp
  2. 16
      modules/gapi/src/backends/ie/giebackend.cpp
  3. 54
      modules/gapi/src/backends/onnx/gonnxbackend.cpp
  4. 157
      modules/gapi/test/infer/gapi_infer_onnx_test.cpp

@ -209,6 +209,12 @@ inline cv::util::optional<T> getCompileArg(const cv::GCompileArgs &args)
void GAPI_EXPORTS createMat(const cv::GMatDesc& desc, cv::Mat& mat);
inline void convertInt64ToInt32(const int64_t* src, int* dst, size_t size)
{
std::transform(src, src + size, dst,
[](int64_t el) { return static_cast<int>(el); });
}
}} // cv::gimpl
#endif // OPENCV_GAPI_GBACKEND_HPP

@ -106,7 +106,7 @@ inline IE::Precision toIE(int depth) {
case CV_8U: return IE::Precision::U8;
case CV_32S: return IE::Precision::I32;
case CV_32F: return IE::Precision::FP32;
default: GAPI_Assert(false && "Unsupported data type");
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return IE::Precision::UNSPECIFIED;
}
@ -115,7 +115,8 @@ inline int toCV(IE::Precision prec) {
case IE::Precision::U8: return CV_8U;
case IE::Precision::FP32: return CV_32F;
case IE::Precision::I32: return CV_32S;
default: GAPI_Assert(false && "Unsupported data type");
case IE::Precision::I64: return CV_32S;
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return -1;
}
@ -158,7 +159,7 @@ inline IE::Blob::Ptr wrapIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
HANDLE(32F, float);
HANDLE(32S, int);
#undef HANDLE
default: GAPI_Assert(false && "Unsupported data type");
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return IE::Blob::Ptr{};
}
@ -194,7 +195,14 @@ inline void copyFromIE(const IE::Blob::Ptr &blob, MatType &mat) {
HANDLE(FP32, float);
HANDLE(I32, int);
#undef HANDLE
default: GAPI_Assert(false && "Unsupported data type");
case IE::Precision::I64: {
GAPI_LOG_WARNING(NULL, "INT64 isn't supported for cv::Mat. Conversion to INT32 is used.");
cv::gimpl::convertInt64ToInt32(blob->buffer().as<int64_t*>(),
reinterpret_cast<int*>(mat.data),
mat.total());
break;
}
default: GAPI_Assert(false && "IE. Unsupported data type");
}
}

@ -170,7 +170,8 @@ inline int toCV(ONNXTensorElementDataType prec) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
default: GAPI_Assert(false && "Unsupported data type");
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
default: GAPI_Assert(false && "ONNX. Unsupported data type");
}
return -1;
}
@ -184,11 +185,30 @@ inline std::vector<int> toCV(const std::vector<int64_t> &vsz) {
return result;
}
inline cv::Mat toCV(Ort::Value &v) {
auto info = v.GetTensorTypeAndShapeInfo();
return cv::Mat(toCV(info.GetShape()),
toCV(info.GetElementType()),
reinterpret_cast<void*>(v.GetTensorMutableData<uint8_t*>()));
inline void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
const auto info = v.GetTensorTypeAndShapeInfo();
const auto prec = info.GetElementType();
const auto shape = toCV(info.GetShape());
mat.create(shape, toCV(prec));
switch (prec) {
#define HANDLE(E,T) \
case E: std::copy_n(v.GetTensorMutableData<T>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
#undef HANDLE
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
GAPI_LOG_WARNING(NULL, "INT64 isn't supported for cv::Mat. Conversion to INT32 is used.");
cv::gimpl::convertInt64ToInt32(v.GetTensorMutableData<int64_t>(),
reinterpret_cast<int*>(mat.data),
mat.total());
break;
}
default: GAPI_Assert(false && "ONNX. Unsupported data type");
}
}
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
@ -199,12 +219,13 @@ inline void preprocess(const cv::Mat& src,
const cv::gimpl::onnx::TensorInfo& ti,
cv::Mat& dst) {
GAPI_Assert(src.depth() == CV_32F || src.depth() == CV_8U);
// CNN input type
const auto type = toCV(ti.type);
if (src.depth() == CV_32F) {
// Just pass the tensor as-is.
// No layout or dimension transformations done here!
// TODO: This needs to be aligned across all NN backends.
GAPI_Assert(toCV(ti.type) == CV_32F && "Only 32F model input is supported for 32F data");
GAPI_Assert(type == CV_32F && "Only 32F model input is supported for 32F input data");
const auto tensor_dims = toORT(src.size);
if (tensor_dims.size() == ti.dims.size()) {
for (size_t i = 0; i < ti.dims.size(); ++i) {
@ -218,16 +239,15 @@ inline void preprocess(const cv::Mat& src,
dst = src;
} else {
// 8U input: full preprocessing path
GAPI_Assert(src.depth() == CV_8U && "Only 8U data type is supported for preproc");
GAPI_Assert(src.depth() == CV_8U && "Only 8U data type is supported for preproc");
GAPI_Assert((ti.dims.size() == 4u || ti.dims.size() == 3u)
&& "Only NCHW/NHWC/CHW/HWC layouts are supported for preproc");
const bool with_batch = ti.dims.size() == 4u ? true : false;
const int shift = with_batch ? 0 : 1;
const auto ddepth = toCV(ti.type);
GAPI_Assert((ddepth == CV_8U || ddepth == CV_32F)
&& "Only 8U and 32F model input is supported for 8U data");
GAPI_Assert((type == CV_8U || type == CV_32F)
&& "Only 8U and 32F model input is supported for 8U input data");
// Assess the expected input layout
const bool is_hwc = [&](int ch) {
@ -261,8 +281,8 @@ inline void preprocess(const cv::Mat& src,
cv::Mat rsz, pp;
cv::resize(csc, rsz, cv::Size(new_w, new_h));
if (src.depth() == CV_8U && ddepth == CV_32F) {
rsz.convertTo(pp, ddepth, ti.normalize ? 1.f / 255 : 1.f);
if (src.depth() == CV_8U && type == CV_32F) {
rsz.convertTo(pp, type, ti.normalize ? 1.f / 255 : 1.f);
if (ti.mstd.has_value()) {
pp -= ti.mstd->mean;
pp /= ti.mstd->stdev;
@ -273,7 +293,7 @@ inline void preprocess(const cv::Mat& src,
if (!is_hwc && new_c > 1) {
// Convert to CHW
dst.create(cv::Size(new_w, new_h * new_c), ddepth);
dst.create(cv::Size(new_w, new_h * new_c), type);
std::vector<cv::Mat> planes(new_c);
for (int ch = 0; ch < new_c; ++ch) {
planes[ch] = dst.rowRange(ch * new_h, (ch + 1) * new_h);
@ -347,7 +367,7 @@ inline Ort::Value createTensor(const Ort::MemoryInfo& memory_info,
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
return createTensor<int32_t>(memory_info, tensor_params, data);
default:
GAPI_Assert(false && "Unsupported data type");
GAPI_Assert(false && "ONNX. Unsupported data type");
}
return Ort::Value{nullptr};
}
@ -796,7 +816,7 @@ void ONNXCompiled::Run(const std::vector<cv::Mat>& ins,
ade::util::toRange(outputs))) {
const auto &out_name = std::get<0>(iter).name;
auto &out_tensor = std::get<1>(iter);
onnx_outputs[out_name] = toCV(out_tensor);
copyFromONNX(out_tensor, onnx_outputs[out_name]);
}
// Fill in G-API outputs

@ -122,16 +122,44 @@ inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
cv::split(src, planes);
}
inline int toCV(const ONNXTensorElementDataType prec) {
inline int toCV(ONNXTensorElementDataType prec) {
switch (prec) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
default: GAPI_Assert(false && "Unsupported data type");
}
return -1;
}
void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
const auto info = v.GetTensorTypeAndShapeInfo();
const auto prec = info.GetElementType();
const auto shape = info.GetShape();
const std::vector<int> dims(shape.begin(), shape.end());
mat.create(dims, toCV(prec));
switch (prec) {
#define HANDLE(E,T) \
case E: std::copy_n(v.GetTensorMutableData<T>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
#undef HANDLE
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
const auto o_ptr = v.GetTensorMutableData<int64_t>();
const auto g_ptr = reinterpret_cast<int*>(mat.data);
std::transform(o_ptr, o_ptr + mat.total(), g_ptr,
[](int64_t el) { return static_cast<int>(el); });
break;
}
default: GAPI_Assert(false && "ONNX. Unsupported data type");
}
}
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
return cv::to_own<int64_t>(sz);
}
@ -237,6 +265,26 @@ void remapSSDPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output);
}
void remapRCNNPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("6379");
const cv::Mat& in_labels = onnx.at("6381");
const cv::Mat& in_scores = onnx.at("6383");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_labels.depth() == CV_32S);
GAPI_Assert(in_scores.depth() == CV_32F);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_labels = gapi.at("out2");
cv::Mat& out_scores = gapi.at("out3");
copyToOut<float>(in_boxes, out_boxes);
copyToOut<int>(in_labels, out_labels);
copyToOut<float>(in_scores, out_scores);
}
class ONNXtest : public ::testing::Test {
public:
std::string model_path;
@ -250,7 +298,6 @@ public:
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
out_gapi.resize(1);
out_onnx.resize(1);
// FIXME: It should be an image from own (gapi) directory in opencv extra
in_mat1 = cv::imread(findDataFile("cv/dpm/cat.png"));
}
@ -301,14 +348,13 @@ public:
num_out);
// Copy outputs
GAPI_Assert(result.size() == num_out);
outs.resize(num_out);
for (size_t i = 0; i < num_out; ++i) {
const auto info = result[i].GetTensorTypeAndShapeInfo();
const auto shape = info.GetShape();
const auto type = info.GetElementType();
cv::Mat mt(std::vector<int>(shape.begin(), shape.end()), toCV(type),
reinterpret_cast<void*>(result[i].GetTensorMutableData<uint8_t*>()));
mt.copyTo(outs[i]);
const auto type = toCV(info.GetElementType());
const std::vector<int> dims(shape.begin(), shape.end());
outs.emplace_back(dims, type);
copyFromONNX(result[i], outs.back());
}
}
// One input/output overload
@ -357,7 +403,7 @@ public:
// Rois for InferList, InferList2
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
};
void preprocess(const cv::Mat& src, cv::Mat& dst) {
@ -426,6 +472,37 @@ public:
}
};
class ONNXRCNN : public ONNXWithRemap {
private:
const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 };
const float range_max = 1333;
const float range_min = 800;
public:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
cv::Mat rsz, cvt, chw, mn;
const auto get_ratio = [&](const int dim) -> float {
return ((dim > range_max) || (dim < range_min))
? dim > range_max
? range_max / dim
: range_min / dim
: 1.f;
};
const auto ratio_h = get_ratio(src.rows);
const auto ratio_w = get_ratio(src.cols);
const auto new_h = static_cast<int>(ratio_h * src.rows);
const auto new_w = static_cast<int>(ratio_w * src.cols);
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, 1.f);
toCHW(cvt, chw);
mn = chw - rcnn_mean;
const int padded_h = std::ceil(new_h / 32.f) * 32;
const int padded_w = std::ceil(new_w / 32.f) * 32;
cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f);
pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn;
dst = pad_im.reshape(1, {3, padded_h, padded_w});
}
};
class ONNXYoloV3MultiInput : public ONNXWithRemap {
public:
std::vector<cv::Mat> ins;
@ -459,7 +536,7 @@ TEST_F(ONNXClassificationTest, Infer)
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat1, processed_mat);
infer<float>(processed_mat, out_onnx.front());
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
@ -482,7 +559,7 @@ TEST_F(ONNXClassificationTest, InferTensor)
cv::Mat tensor;
preprocess(in_mat1, tensor);
// ONNX_API code
infer<float>(tensor, out_onnx.front());
infer<float>(tensor, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
@ -499,11 +576,11 @@ TEST_F(ONNXClassificationTest, InferTensor)
TEST_F(ONNXClassificationTest, InferROI)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto ROI = rois.at(1);
const auto ROI = rois.at(0);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat1(ROI), roi_mat);
infer<float>(roi_mat, out_onnx.front());
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
@ -524,11 +601,10 @@ TEST_F(ONNXClassificationTest, InferROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -550,11 +626,10 @@ TEST_F(ONNXClassificationTest, Infer2ROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -582,7 +657,7 @@ TEST_F(ONNXWithRemap, InferDynamicInputTensor)
toCHW(cvt, tensor);
tensor = tensor.reshape(1, {1, 3, 416, 416});
// ONNX_API code
infer<float>(tensor, out_onnx.front());
infer<float>(tensor, out_onnx);
// G_API code
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
cv::GMat in;
@ -604,7 +679,7 @@ TEST_F(ONNXGRayScaleTest, InferImage)
// ONNX_API code
cv::Mat prep_mat;
preprocess(in_mat1, prep_mat);
infer<float>(prep_mat, out_onnx.front());
infer<float>(prep_mat, out_onnx);
// G_API code
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
cv::GMat in;
@ -650,7 +725,7 @@ TEST_F(ONNXMediaFrameTest, InferBGR)
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat1, processed_mat);
infer<float>(processed_mat, out_onnx.front());
infer<float>(processed_mat, out_onnx);
// G_API code
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -676,7 +751,7 @@ TEST_F(ONNXMediaFrameTest, InferYUV)
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat processed_mat;
preprocess(pp, processed_mat);
infer<float>(processed_mat, out_onnx.front());
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
@ -699,7 +774,7 @@ TEST_F(ONNXMediaFrameTest, InferROIBGR)
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat1(rois.front()), roi_mat);
infer<float>(roi_mat, out_onnx.front());
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
@ -725,7 +800,7 @@ TEST_F(ONNXMediaFrameTest, InferROIYUV)
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat roi_mat;
preprocess(pp(rois.front()), roi_mat);
infer<float>(roi_mat, out_onnx.front());
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
@ -747,11 +822,10 @@ TEST_F(ONNXMediaFrameTest, InferListBGR)
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
// ONNX_API code
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -776,11 +850,10 @@ TEST_F(ONNXMediaFrameTest, InferListYUV)
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -803,11 +876,10 @@ TEST_F(ONNXMediaFrameTest, InferList2BGR)
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
// ONNX_API code
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -832,11 +904,10 @@ TEST_F(ONNXMediaFrameTest, InferList2YUV)
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
@ -917,6 +988,32 @@ TEST_F(ONNXYoloV3MultiInput, InferBSConstInput)
// Validate
validate();
}
TEST_F(ONNXRCNN, ConversionInt64to32)
{
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
cv::Mat dst;
preprocess(in_mat1, dst);
// ONNX_API code
infer<float>(dst, out_onnx);
// G_API code
using FRCNNOUT = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
cv::GMatDesc{CV_32S, {7}},
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPorts);
cv::GMat in, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<FasterRCNN>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(dst),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
} // namespace opencv_test
#endif // HAVE_ONNX

Loading…
Cancel
Save