Fuse subgraphs from Keras

pull/10940/head
Dmitry Kurtaev 7 years ago
parent 9457bf10ab
commit 69a8f110b6
  1. 180
      modules/dnn/src/tensorflow/tf_graph_simplifier.cpp
  2. 0
      modules/dnn/src/tensorflow/tf_graph_simplifier.hpp
  3. 52
      modules/dnn/src/tensorflow/tf_importer.cpp
  4. 16
      modules/dnn/test/test_tf_importer.cpp

@ -7,7 +7,7 @@
#ifdef HAVE_PROTOBUF
#include "tf_graph_editor.hpp"
#include "tf_graph_simplifier.hpp"
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
@ -28,11 +28,19 @@ public:
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
inputs.push_back(inputs_);
return nodes.size() - 1;
}
@ -50,13 +58,18 @@ public:
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
fusedNodeInputs = std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs);
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
void setFusedNode(const std::string& op, const std::vector<int>& inputs_)
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
nodesToFuse.clear();
for (int i = 0; i < nodes.size(); ++i)
{
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end())
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end() &&
nodes[i] != "Const")
nodesToFuse.push_back(i);
}
}
@ -70,26 +83,32 @@ public:
const int numNodes = net.node_size();
for (int i = 0; i < numNodes; ++i)
{
const tensorflow::NodeDef& node = net.node(i);
if (node.name() == name)
return node;
if (net.node(i).name() == name)
return net.node(i);
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
return net.node(0); // just return something
}
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Returns true if nodes are matched and can be fused.
bool match(const tensorflow::GraphDef& net, int nodeId, int* numMatchedNodes)
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds)
{
*numMatchedNodes = 0;
matchedNodesIds.clear();
matchedNodesIds.reserve(nodesToFuse.size());
int numNodes = net.node_size();
for (int i = 0; i < nodesToFuse.size(); ++i)
{
if (nodeId + i > numNodes - 1)
while (nodeId < numNodes && net.node(nodeId).op() == "Const")
{
nodeId += 1;
}
if (nodeId > numNodes - 1)
return false;
const tensorflow::NodeDef &node = net.node(nodeId + i);
const tensorflow::NodeDef& node = net.node(nodeId);
if (node.op() != nodes[nodesToFuse[i]])
return false;
@ -105,25 +124,24 @@ public:
return false;
}
*numMatchedNodes += 1;
matchedNodesIds.push_back(nodeId);
nodeId += 1;
}
return true;
}
// Fuse matched subgraph.
void replace(tensorflow::GraphDef& net, int nodeId, int* numReplacedNodes)
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds)
{
*numReplacedNodes = 0;
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < nodesToFuse.size() && inpName.empty(); ++j)
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
const tensorflow::NodeDef &node = net.node(nodeId + j);
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[nodesToFuse[j]];
CV_Assert(node.input_size() == inpIndices.size());
@ -140,12 +158,12 @@ public:
inputsNames[i] = inpName;
}
// Remove all nodes except the last one.
*numReplacedNodes = nodesToFuse.size() - 1;
net.mutable_node()->DeleteSubrange(nodeId, *numReplacedNodes);
// Remove matched nodes except the last one. Indices in ascending order are expected.
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
// Modify the last node to be a fused one.
tensorflow::NodeDef* node = net.mutable_node(nodeId);
node->set_op(fusedNodeOp);
node->clear_input();
for (int i = 0; i < inputsNames.size(); ++i)
@ -153,16 +171,16 @@ public:
node->add_input(inputsNames[i]);
}
std::vector<tensorflow::NodeDef> inputNodes(inputsNames.size());
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = getInputNode(net, *node, i);
inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i);
}
finalize(net, node, inputNodes);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*,
const std::vector<tensorflow::NodeDef>&) {}
std::vector<tensorflow::NodeDef*>&) {}
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
@ -196,9 +214,9 @@ public:
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
const std::vector<tensorflow::NodeDef>& inputNodes)
std::vector<tensorflow::NodeDef*>& inputNodes)
{
Mat epsMat = getTensorContent(inputNodes.back().attr().at("value").tensor());
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1);
fusedNode->mutable_input()->ReleaseLast();
@ -231,9 +249,9 @@ public:
}
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
const std::vector<tensorflow::NodeDef>& inputNodes)
std::vector<tensorflow::NodeDef*>& inputNodes)
{
Mat epsMat = getTensorContent(inputNodes.back().attr().at("value").tensor());
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1);
fusedNode->mutable_input()->ReleaseLast();
@ -291,6 +309,97 @@ public:
}
};
// K.layers.Softmax
class SoftMaxKerasSubgraph : public Subgraph
{
public:
SoftMaxKerasSubgraph()
{
int input = addNodeToMatch("");
int maxReductionIndices = addNodeToMatch("Const");
int smMax = addNodeToMatch("Max", input, maxReductionIndices);
int smSub = addNodeToMatch("Sub", input, smMax);
int smExp = addNodeToMatch("Exp", smSub);
int sumReductionIndices = addNodeToMatch("Const");
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices);
addNodeToMatch("RealDiv", smExp, smSum);
setFusedNode("Softmax", input);
}
};
class ReLU6KerasSubgraph : public Subgraph
{
public:
ReLU6KerasSubgraph()
{
int input = addNodeToMatch("");
int relu = addNodeToMatch("Relu", input);
int maxValue = addNodeToMatch("Const");
int clipValue = addNodeToMatch("Const");
int minimum = addNodeToMatch("Minimum", relu, maxValue);
addNodeToMatch("Maximum", minimum, clipValue);
setFusedNode("Relu6", input);
}
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds)
{
if (!Subgraph::match(net, nodeId, matchedNodesIds))
return false;
Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor());
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
}
};
// Keras' reshape stores output shape in separate Const nodes by one value.
// Need to merge them into a single Const node.
class ReshapeKerasSubgraph : public Subgraph
{
public:
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
std::vector<int> ids(1 + numOutDims);
ids[0] = strided_slice;
for (int i = 0; i < numOutDims; ++i)
ids[1 + i] = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", ids);
addNodeToMatch("Reshape", input, pack);
ids[0] = input;
setFusedNode("Reshape", ids);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes)
{
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit.
shape[0] = -1;
for (int i = 0; i < numOutDims; ++i)
{
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0);
}
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1);
shapeTensor->clear_int_val();
for (int i = 0; i < shape.size(); ++i)
{
shapeTensor->add_int_val(shape[i]);
}
}
private:
int numOutDims;
};
void simplifySubgraphs(tensorflow::GraphDef& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
@ -298,17 +407,20 @@ void simplifySubgraphs(tensorflow::GraphDef& net)
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3)));
int numNodes = net.node_size();
int numMatchedNodes, numReplacedNodes;
std::vector<int> matchedNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < subgraphs.size(); ++j)
{
if (subgraphs[j]->match(net, i, &numMatchedNodes))
if (subgraphs[j]->match(net, i, matchedNodesIds))
{
subgraphs[j]->replace(net, i, &numReplacedNodes);
numNodes -= numReplacedNodes;
subgraphs[j]->replace(net, matchedNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}

@ -22,7 +22,7 @@ Implementation of Tensorflow models parser
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include "tf_io.hpp"
#include "tf_graph_editor.hpp"
#include "tf_graph_simplifier.hpp"
#endif
namespace cv {
@ -715,9 +715,9 @@ void TFImporter::populateNet(Net dstNet)
if (hasLayerAttr(layer, "data_format"))
{
std::string format = getLayerAttr(layer, "data_format").s();
if (format == "NHWC")
if (format == "NHWC" || format == "channels_last")
data_layouts[name] = DATA_LAYOUT_NHWC;
else if (format == "NCHW")
else if (format == "NCHW" || format == "channels_first")
data_layouts[name] = DATA_LAYOUT_NCHW;
else
CV_Error(Error::StsParseError, "Unknown data_format value: " + format);
@ -804,9 +804,9 @@ void TFImporter::populateNet(Net dstNet)
else if (type == "Reshape")
{
Pin inpId = parsePin(layer.input(0));
DictValue newShape = parseDims(getConstBlob(layer, value_id, 1));
Mat newShape = getTensorContent(getConstBlob(layer, value_id, 1));
if (newShape.size() != 4 && data_layouts[layer.input(0)] == DATA_LAYOUT_NHWC)
if (newShape.total() != 4 && data_layouts[layer.input(0)] == DATA_LAYOUT_NHWC)
{
LayerParams permLP;
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
@ -819,14 +819,19 @@ void TFImporter::populateNet(Net dstNet)
connect(layer_id, dstNet, inpId, permId, 0);
inpId = Pin(permName);
}
layerParams.set("dim", newShape);
else if (newShape.total() == 4 && data_layouts[layer.input(0)] == DATA_LAYOUT_NHWC)
{
// NHWC->NCHW
std::swap(*newShape.ptr<int32_t>(0, 2), *newShape.ptr<int32_t>(0, 3));
std::swap(*newShape.ptr<int32_t>(0, 1), *newShape.ptr<int32_t>(0, 2));
}
layerParams.set("dim", DictValue::arrayInt<int*>(newShape.ptr<int>(), newShape.total()));
int id = dstNet.addLayer(name, "Reshape", layerParams);
layer_id[name] = id;
// one input only
connect(layer_id, dstNet, inpId, id, 0);
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
}
else if (type == "Flatten" || type == "Squeeze")
{
@ -1488,6 +1493,39 @@ void TFImporter::populateNet(Net dstNet)
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
}
else if (type == "Mean")
{
Mat indices = getTensorContent(getConstBlob(layer, value_id, 1));
CV_Assert(indices.type() == CV_32SC1);
if (indices.total() != 2 || indices.at<int>(0) != 1 || indices.at<int>(1) != 2)
CV_Error(Error::StsNotImplemented, "Unsupported mode of reduce_mean operation.");
layerParams.set("pool", "ave");
layerParams.set("global_pooling", true);
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
// There are two attributes, "keepdims" and a deprecated "keep_dims".
bool keepDims = false;
if (hasLayerAttr(layer, "keepdims"))
keepDims = getLayerAttr(layer, "keepdims").b();
else if (hasLayerAttr(layer, "keep_dims"))
keepDims = getLayerAttr(layer, "keep_dims").b();
if (!keepDims)
{
LayerParams flattenLp;
std::string flattenName = name + "/flatten";
CV_Assert(layer_id.find(flattenName) == layer_id.end());
int flattenId = dstNet.addLayer(flattenName, "Flatten", flattenLp);
layer_id[flattenName] = flattenId;
connect(layer_id, dstNet, Pin(name), flattenId, 0);
}
}
else if (type == "Abs" || type == "Tanh" || type == "Sigmoid" ||
type == "Relu" || type == "Elu" ||
type == "Identity" || type == "Relu6")

@ -162,6 +162,7 @@ TEST_P(Test_TensorFlow_layers, pooling)
runTensorFlowNet("max_pool_odd_valid", targetId);
runTensorFlowNet("ave_pool_same", targetId);
runTensorFlowNet("max_pool_odd_same", targetId);
runTensorFlowNet("reduce_mean", targetId); // an average pooling over all spatial dimensions.
}
TEST_P(Test_TensorFlow_layers, deconvolution)
@ -337,6 +338,21 @@ TEST(Test_TensorFlow, slice)
runTensorFlowNet("slice_4d");
}
TEST(Test_TensorFlow, softmax)
{
runTensorFlowNet("keras_softmax");
}
TEST(Test_TensorFlow, relu6)
{
runTensorFlowNet("keras_relu6");
}
TEST(Test_TensorFlow, keras_mobilenet_head)
{
runTensorFlowNet("keras_mobilenet_head");
}
TEST(Test_TensorFlow, memory_read)
{
double l1 = 1e-5;

Loading…
Cancel
Save