|
|
|
@ -42,17 +42,17 @@ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
|
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::gpu; |
|
|
|
|
|
|
|
|
|
cv::gpu::GMG_GPU::GMG_GPU() { throw_no_cuda(); } |
|
|
|
|
void cv::gpu::GMG_GPU::initialize(cv::Size, float, float) { throw_no_cuda(); } |
|
|
|
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, cv::gpu::Stream&) { throw_no_cuda(); } |
|
|
|
|
void cv::gpu::GMG_GPU::release() {} |
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) || !defined(HAVE_OPENCV_GPUFILTERS) |
|
|
|
|
|
|
|
|
|
Ptr<gpu::BackgroundSubtractorGMG> cv::gpu::createBackgroundSubtractorGMG(int, double) { throw_no_cuda(); return Ptr<gpu::BackgroundSubtractorGMG>(); } |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace cudev { |
|
|
|
|
namespace bgfg_gmg |
|
|
|
|
namespace gmg |
|
|
|
|
{ |
|
|
|
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, |
|
|
|
|
float decisionThreshold, int maxFeatures, int numInitializationFrames); |
|
|
|
@ -63,103 +63,209 @@ namespace cv { namespace gpu { namespace cudev { |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
cv::gpu::GMG_GPU::GMG_GPU() |
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
maxFeatures = 64; |
|
|
|
|
learningRate = 0.025f; |
|
|
|
|
numInitializationFrames = 120; |
|
|
|
|
quantizationLevels = 16; |
|
|
|
|
backgroundPrior = 0.8f; |
|
|
|
|
decisionThreshold = 0.8f; |
|
|
|
|
smoothingRadius = 7; |
|
|
|
|
updateBackgroundModel = true; |
|
|
|
|
} |
|
|
|
|
class GMGImpl : public gpu::BackgroundSubtractorGMG |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
GMGImpl(int initializationFrames, double decisionThreshold); |
|
|
|
|
|
|
|
|
|
void cv::gpu::GMG_GPU::initialize(cv::Size frameSize, float min, float max) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::bgfg_gmg; |
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1); |
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream); |
|
|
|
|
|
|
|
|
|
CV_Assert(min < max); |
|
|
|
|
CV_Assert(maxFeatures > 0); |
|
|
|
|
CV_Assert(learningRate >= 0.0f && learningRate <= 1.0f); |
|
|
|
|
CV_Assert(numInitializationFrames >= 1); |
|
|
|
|
CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255); |
|
|
|
|
CV_Assert(backgroundPrior >= 0.0f && backgroundPrior <= 1.0f); |
|
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const; |
|
|
|
|
|
|
|
|
|
minVal_ = min; |
|
|
|
|
maxVal_ = max; |
|
|
|
|
int getMaxFeatures() const { return maxFeatures_; } |
|
|
|
|
void setMaxFeatures(int maxFeatures) { maxFeatures_ = maxFeatures; } |
|
|
|
|
|
|
|
|
|
frameSize_ = frameSize; |
|
|
|
|
double getDefaultLearningRate() const { return learningRate_; } |
|
|
|
|
void setDefaultLearningRate(double lr) { learningRate_ = (float) lr; } |
|
|
|
|
|
|
|
|
|
frameNum_ = 0; |
|
|
|
|
int getNumFrames() const { return numInitializationFrames_; } |
|
|
|
|
void setNumFrames(int nframes) { numInitializationFrames_ = nframes; } |
|
|
|
|
|
|
|
|
|
nfeatures_.create(frameSize_, CV_32SC1); |
|
|
|
|
colors_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32SC1); |
|
|
|
|
weights_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32FC1); |
|
|
|
|
int getQuantizationLevels() const { return quantizationLevels_; } |
|
|
|
|
void setQuantizationLevels(int nlevels) { quantizationLevels_ = nlevels; } |
|
|
|
|
|
|
|
|
|
nfeatures_.setTo(cv::Scalar::all(0)); |
|
|
|
|
double getBackgroundPrior() const { return backgroundPrior_; } |
|
|
|
|
void setBackgroundPrior(double bgprior) { backgroundPrior_ = (float) bgprior; } |
|
|
|
|
|
|
|
|
|
if (smoothingRadius > 0) |
|
|
|
|
boxFilter_ = cv::gpu::createBoxFilter(CV_8UC1, -1, cv::Size(smoothingRadius, smoothingRadius)); |
|
|
|
|
int getSmoothingRadius() const { return smoothingRadius_; } |
|
|
|
|
void setSmoothingRadius(int radius) { smoothingRadius_ = radius; } |
|
|
|
|
|
|
|
|
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, quantizationLevels, backgroundPrior, decisionThreshold, maxFeatures, numInitializationFrames); |
|
|
|
|
} |
|
|
|
|
double getDecisionThreshold() const { return decisionThreshold_; } |
|
|
|
|
void setDecisionThreshold(double thresh) { decisionThreshold_ = (float) thresh; } |
|
|
|
|
|
|
|
|
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float newLearningRate, cv::gpu::Stream& stream) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::bgfg_gmg; |
|
|
|
|
bool getUpdateBackgroundModel() const { return updateBackgroundModel_; } |
|
|
|
|
void setUpdateBackgroundModel(bool update) { updateBackgroundModel_ = update; } |
|
|
|
|
|
|
|
|
|
typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, |
|
|
|
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
|
|
|
|
static const func_t funcs[6][4] = |
|
|
|
|
{ |
|
|
|
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>}, |
|
|
|
|
{0,0,0,0}, |
|
|
|
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>}, |
|
|
|
|
{0,0,0,0}, |
|
|
|
|
{0,0,0,0}, |
|
|
|
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>} |
|
|
|
|
double getMinVal() const { return minVal_; } |
|
|
|
|
void setMinVal(double val) { minVal_ = (float) val; } |
|
|
|
|
|
|
|
|
|
double getMaxVal() const { return maxVal_; } |
|
|
|
|
void setMaxVal(double val) { maxVal_ = (float) val; } |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
void initialize(Size frameSize, float min, float max); |
|
|
|
|
|
|
|
|
|
//! Total number of distinct colors to maintain in histogram.
|
|
|
|
|
int maxFeatures_; |
|
|
|
|
|
|
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
|
|
|
|
float learningRate_; |
|
|
|
|
|
|
|
|
|
//! Number of frames of video to use to initialize histograms.
|
|
|
|
|
int numInitializationFrames_; |
|
|
|
|
|
|
|
|
|
//! Number of discrete levels in each channel to be used in histograms.
|
|
|
|
|
int quantizationLevels_; |
|
|
|
|
|
|
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
|
|
|
|
float backgroundPrior_; |
|
|
|
|
|
|
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image.
|
|
|
|
|
int smoothingRadius_; |
|
|
|
|
|
|
|
|
|
//! Value above which pixel is determined to be FG.
|
|
|
|
|
float decisionThreshold_; |
|
|
|
|
|
|
|
|
|
//! Perform background model update.
|
|
|
|
|
bool updateBackgroundModel_; |
|
|
|
|
|
|
|
|
|
float minVal_, maxVal_; |
|
|
|
|
|
|
|
|
|
Size frameSize_; |
|
|
|
|
int frameNum_; |
|
|
|
|
|
|
|
|
|
GpuMat nfeatures_; |
|
|
|
|
GpuMat colors_; |
|
|
|
|
GpuMat weights_; |
|
|
|
|
|
|
|
|
|
Ptr<gpu::Filter> boxFilter_; |
|
|
|
|
GpuMat buf_; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
CV_Assert(frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F); |
|
|
|
|
CV_Assert(frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4); |
|
|
|
|
GMGImpl::GMGImpl(int initializationFrames, double decisionThreshold) |
|
|
|
|
{ |
|
|
|
|
maxFeatures_ = 64; |
|
|
|
|
learningRate_ = 0.025f; |
|
|
|
|
numInitializationFrames_ = initializationFrames; |
|
|
|
|
quantizationLevels_ = 16; |
|
|
|
|
backgroundPrior_ = 0.8f; |
|
|
|
|
decisionThreshold_ = (float) decisionThreshold; |
|
|
|
|
smoothingRadius_ = 7; |
|
|
|
|
updateBackgroundModel_ = true; |
|
|
|
|
minVal_ = maxVal_ = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (newLearningRate != -1.0f) |
|
|
|
|
void GMGImpl::apply(InputArray image, OutputArray fgmask, double learningRate) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(newLearningRate >= 0.0f && newLearningRate <= 1.0f); |
|
|
|
|
learningRate = newLearningRate; |
|
|
|
|
apply(image, fgmask, learningRate, Stream::Null()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (frame.size() != frameSize_) |
|
|
|
|
initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f); |
|
|
|
|
void GMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate, Stream& stream) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::gmg; |
|
|
|
|
|
|
|
|
|
typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, |
|
|
|
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
|
|
|
|
static const func_t funcs[6][4] = |
|
|
|
|
{ |
|
|
|
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>}, |
|
|
|
|
{0,0,0,0}, |
|
|
|
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>}, |
|
|
|
|
{0,0,0,0}, |
|
|
|
|
{0,0,0,0}, |
|
|
|
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
GpuMat frame = _frame.getGpuMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert( frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F ); |
|
|
|
|
CV_Assert( frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4 ); |
|
|
|
|
|
|
|
|
|
if (newLearningRate != -1.0) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( newLearningRate >= 0.0 && newLearningRate <= 1.0 ); |
|
|
|
|
learningRate_ = (float) newLearningRate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (frame.size() != frameSize_) |
|
|
|
|
{ |
|
|
|
|
double minVal = minVal_; |
|
|
|
|
double maxVal = maxVal_; |
|
|
|
|
|
|
|
|
|
fgmask.create(frameSize_, CV_8UC1); |
|
|
|
|
fgmask.setTo(cv::Scalar::all(0), stream); |
|
|
|
|
if (minVal_ == 0 && maxVal_ == 0) |
|
|
|
|
{ |
|
|
|
|
minVal = 0; |
|
|
|
|
maxVal = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, updateBackgroundModel, cv::gpu::StreamAccessor::getStream(stream)); |
|
|
|
|
initialize(frame.size(), (float) minVal, (float) maxVal); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
_fgmask.create(frameSize_, CV_8UC1); |
|
|
|
|
GpuMat fgmask = _fgmask.getGpuMat(); |
|
|
|
|
|
|
|
|
|
fgmask.setTo(Scalar::all(0), stream); |
|
|
|
|
|
|
|
|
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, |
|
|
|
|
learningRate_, updateBackgroundModel_, StreamAccessor::getStream(stream)); |
|
|
|
|
|
|
|
|
|
// medianBlur
|
|
|
|
|
if (smoothingRadius_ > 0) |
|
|
|
|
{ |
|
|
|
|
boxFilter_->apply(fgmask, buf_, stream); |
|
|
|
|
const int minCount = (smoothingRadius_ * smoothingRadius_ + 1) / 2; |
|
|
|
|
const double thresh = 255.0 * minCount / (smoothingRadius_ * smoothingRadius_); |
|
|
|
|
gpu::threshold(buf_, fgmask, thresh, 255.0, THRESH_BINARY, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// keep track of how many frames we have processed
|
|
|
|
|
++frameNum_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// medianBlur
|
|
|
|
|
if (smoothingRadius > 0) |
|
|
|
|
void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const |
|
|
|
|
{ |
|
|
|
|
boxFilter_->apply(fgmask, buf_, stream); |
|
|
|
|
int minCount = (smoothingRadius * smoothingRadius + 1) / 2; |
|
|
|
|
double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius); |
|
|
|
|
cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream); |
|
|
|
|
(void) backgroundImage; |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Not implemented"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// keep track of how many frames we have processed
|
|
|
|
|
++frameNum_; |
|
|
|
|
void GMGImpl::initialize(Size frameSize, float min, float max) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::gmg; |
|
|
|
|
|
|
|
|
|
CV_Assert( maxFeatures_ > 0 ); |
|
|
|
|
CV_Assert( learningRate_ >= 0.0f && learningRate_ <= 1.0f); |
|
|
|
|
CV_Assert( numInitializationFrames_ >= 1); |
|
|
|
|
CV_Assert( quantizationLevels_ >= 1 && quantizationLevels_ <= 255); |
|
|
|
|
CV_Assert( backgroundPrior_ >= 0.0f && backgroundPrior_ <= 1.0f); |
|
|
|
|
|
|
|
|
|
minVal_ = min; |
|
|
|
|
maxVal_ = max; |
|
|
|
|
CV_Assert( minVal_ < maxVal_ ); |
|
|
|
|
|
|
|
|
|
frameSize_ = frameSize; |
|
|
|
|
|
|
|
|
|
frameNum_ = 0; |
|
|
|
|
|
|
|
|
|
nfeatures_.create(frameSize_, CV_32SC1); |
|
|
|
|
colors_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32SC1); |
|
|
|
|
weights_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32FC1); |
|
|
|
|
|
|
|
|
|
nfeatures_.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
if (smoothingRadius_ > 0) |
|
|
|
|
boxFilter_ = gpu::createBoxFilter(CV_8UC1, -1, Size(smoothingRadius_, smoothingRadius_)); |
|
|
|
|
|
|
|
|
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, |
|
|
|
|
quantizationLevels_, backgroundPrior_, decisionThreshold_, maxFeatures_, numInitializationFrames_); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::GMG_GPU::release() |
|
|
|
|
Ptr<gpu::BackgroundSubtractorGMG> cv::gpu::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold) |
|
|
|
|
{ |
|
|
|
|
frameSize_ = Size(); |
|
|
|
|
|
|
|
|
|
nfeatures_.release(); |
|
|
|
|
colors_.release(); |
|
|
|
|
weights_.release(); |
|
|
|
|
boxFilter_.release(); |
|
|
|
|
buf_.release(); |
|
|
|
|
return new GMGImpl(initializationFrames, decisionThreshold); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|