|
|
|
@ -41,14 +41,11 @@ |
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
#include <iostream> |
|
|
|
|
#include <utility> |
|
|
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::gpu; |
|
|
|
|
|
|
|
|
|
#define BLOCK_VERSION |
|
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
|
|
|
|
|
|
void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); } |
|
|
|
@ -56,12 +53,19 @@ void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_ |
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
#include <cufft.h> |
|
|
|
|
#include <NPP_staging.h> |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace imgproc |
|
|
|
|
{ |
|
|
|
|
namespace cv { namespace gpu { namespace imgproc
|
|
|
|
|
{
|
|
|
|
|
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a, |
|
|
|
|
const cufftComplex* b, cufftComplex* c); |
|
|
|
|
|
|
|
|
|
void matchTemplateNaive_CCORR_8U( |
|
|
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
|
void matchTemplateNaive_CCORR_32F( |
|
|
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
|
void matchTemplateNaive_SQDIFF_8U( |
|
|
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
@ -69,46 +73,193 @@ namespace cv { namespace gpu { namespace imgproc |
|
|
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_SQDIFF_8U( |
|
|
|
|
int w, int h, const DevMem2Df image_sumsq, float templ_sumsq, |
|
|
|
|
int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
|
|
|
|
|
unsigned int templ_sqsum, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_SQDIFF_NORMED_8U( |
|
|
|
|
int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
|
|
|
|
|
unsigned int templ_sqsum, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_8U( |
|
|
|
|
int w, int h, const DevMem2D_<unsigned int> image_sum, |
|
|
|
|
unsigned int templ_sum, DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_8UC2( |
|
|
|
|
int w, int h,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_r,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_g, |
|
|
|
|
unsigned int templ_sum_r, unsigned int templ_sum_g,
|
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_8UC3( |
|
|
|
|
int w, int h,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_r,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_g, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_b, |
|
|
|
|
unsigned int templ_sum_r,
|
|
|
|
|
unsigned int templ_sum_g,
|
|
|
|
|
unsigned int templ_sum_b,
|
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_8UC4( |
|
|
|
|
int w, int h,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_r,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_g, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_b, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_a, |
|
|
|
|
unsigned int templ_sum_r,
|
|
|
|
|
unsigned int templ_sum_g,
|
|
|
|
|
unsigned int templ_sum_b,
|
|
|
|
|
unsigned int templ_sum_a,
|
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8U( |
|
|
|
|
int w, int h, const DevMem2D_<unsigned int> image_sum,
|
|
|
|
|
const DevMem2D_<unsigned long long> image_sqsum, |
|
|
|
|
unsigned int templ_sum, unsigned int templ_sqsum, |
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC2( |
|
|
|
|
int w, int h,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_r, const DevMem2D_<unsigned long long> image_sqsum_r, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_g, const DevMem2D_<unsigned long long> image_sqsum_g, |
|
|
|
|
unsigned int templ_sum_r, unsigned int templ_sqsum_r, |
|
|
|
|
unsigned int templ_sum_g, unsigned int templ_sqsum_g, |
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC3( |
|
|
|
|
int w, int h,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_r, const DevMem2D_<unsigned long long> image_sqsum_r, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_g, const DevMem2D_<unsigned long long> image_sqsum_g, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_b, const DevMem2D_<unsigned long long> image_sqsum_b, |
|
|
|
|
unsigned int templ_sum_r, unsigned int templ_sqsum_r, |
|
|
|
|
unsigned int templ_sum_g, unsigned int templ_sqsum_g, |
|
|
|
|
unsigned int templ_sum_b, unsigned int templ_sqsum_b, |
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC4( |
|
|
|
|
int w, int h,
|
|
|
|
|
const DevMem2D_<unsigned int> image_sum_r, const DevMem2D_<unsigned long long> image_sqsum_r, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_g, const DevMem2D_<unsigned long long> image_sqsum_g, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_b, const DevMem2D_<unsigned long long> image_sqsum_b, |
|
|
|
|
const DevMem2D_<unsigned int> image_sum_a, const DevMem2D_<unsigned long long> image_sqsum_a, |
|
|
|
|
unsigned int templ_sum_r, unsigned int templ_sqsum_r, |
|
|
|
|
unsigned int templ_sum_g, unsigned int templ_sqsum_g, |
|
|
|
|
unsigned int templ_sum_b, unsigned int templ_sqsum_b, |
|
|
|
|
unsigned int templ_sum_a, unsigned int templ_sqsum_a, |
|
|
|
|
DevMem2Df result); |
|
|
|
|
|
|
|
|
|
void normalize_8U(int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
|
|
|
|
|
unsigned int templ_sqsum, DevMem2Df result, int cn); |
|
|
|
|
|
|
|
|
|
void extractFirstChannel_32F(const DevMem2D image, DevMem2Df result, int cn); |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
namespace
|
|
|
|
|
{ |
|
|
|
|
void matchTemplate_32F_SQDIFF(const GpuMat&, const GpuMat&, GpuMat&); |
|
|
|
|
void matchTemplate_32F_CCORR(const GpuMat&, const GpuMat&, GpuMat&); |
|
|
|
|
void matchTemplate_8U_SQDIFF(const GpuMat&, const GpuMat&, GpuMat&); |
|
|
|
|
void matchTemplate_8U_CCORR(const GpuMat&, const GpuMat&, GpuMat&); |
|
|
|
|
// Computes integral image. Result matrix will have data type 32S,
|
|
|
|
|
// while actuall data type is 32U
|
|
|
|
|
void integral_8U_32U(const GpuMat& src, GpuMat& sum); |
|
|
|
|
|
|
|
|
|
// Computes squared integral image. Result matrix will have data type 64F,
|
|
|
|
|
// while actual data type is 64U
|
|
|
|
|
void sqrIntegral_8U_64U(const GpuMat& src, GpuMat& sqsum); |
|
|
|
|
|
|
|
|
|
// Estimates optimal blocks size for FFT method
|
|
|
|
|
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh); |
|
|
|
|
|
|
|
|
|
// Performs FFT-based cross-correlation
|
|
|
|
|
void crossCorr_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
|
|
|
|
|
// Evaluates optimal template's area threshold. If
|
|
|
|
|
// template's area is less than the threshold, we use naive match
|
|
|
|
|
// template version, otherwise FFT-based (if available)
|
|
|
|
|
int getTemplateThreshold(int method, int depth); |
|
|
|
|
|
|
|
|
|
void matchTemplate_CCORR_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
void matchTemplate_CCORR_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
void matchTemplate_CCORR_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
|
|
|
|
|
void matchTemplate_SQDIFF_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
void matchTemplate_SQDIFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
void matchTemplate_SQDIFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
|
|
|
|
|
void matchTemplate_CCOFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
void matchTemplate_CCOFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void integral_8U_32U(const GpuMat& src, GpuMat& sum) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(src.type() == CV_8U); |
|
|
|
|
|
|
|
|
|
NppStSize32u roiSize; |
|
|
|
|
roiSize.width = src.cols; |
|
|
|
|
roiSize.height = src.rows; |
|
|
|
|
|
|
|
|
|
NppSt32u bufSize; |
|
|
|
|
nppSafeCall(nppiStIntegralGetSize_8u32u(roiSize, &bufSize)); |
|
|
|
|
GpuMat buf(1, bufSize, CV_8U); |
|
|
|
|
|
|
|
|
|
sum.create(src.rows + 1, src.cols + 1, CV_32S); |
|
|
|
|
nppSafeCall(nppiStIntegral_8u32u_C1R( |
|
|
|
|
const_cast<NppSt8u*>(src.ptr<NppSt8u>(0)), src.step,
|
|
|
|
|
sum.ptr<NppSt32u>(0), sum.step, roiSize,
|
|
|
|
|
buf.ptr<NppSt8u>(0), bufSize)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void sqrIntegral_8U_64U(const GpuMat& src, GpuMat& sqsum) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(src.type() == CV_8U); |
|
|
|
|
|
|
|
|
|
NppStSize32u roiSize; |
|
|
|
|
roiSize.width = src.cols; |
|
|
|
|
roiSize.height = src.rows; |
|
|
|
|
|
|
|
|
|
NppSt32u bufSize; |
|
|
|
|
nppSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize)); |
|
|
|
|
GpuMat buf(1, bufSize, CV_8U); |
|
|
|
|
|
|
|
|
|
sqsum.create(src.rows + 1, src.cols + 1, CV_64F); |
|
|
|
|
nppSafeCall(nppiStSqrIntegral_8u64u_C1R( |
|
|
|
|
const_cast<NppSt8u*>(src.ptr<NppSt8u>(0)), src.step,
|
|
|
|
|
sqsum.ptr<NppSt64u>(0), sqsum.step, roiSize,
|
|
|
|
|
buf.ptr<NppSt8u>(0), bufSize)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef BLOCK_VERSION |
|
|
|
|
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh) |
|
|
|
|
{ |
|
|
|
|
const int scale = 40; |
|
|
|
|
const int bh_min = 1024; |
|
|
|
|
const int bw_min = 1024; |
|
|
|
|
int major, minor; |
|
|
|
|
getComputeCapability(getDevice(), major, minor); |
|
|
|
|
|
|
|
|
|
int scale = 40; |
|
|
|
|
int bh_min = 1024; |
|
|
|
|
int bw_min = 1024; |
|
|
|
|
|
|
|
|
|
if (major >= 2) // Fermi generation or newer
|
|
|
|
|
{ |
|
|
|
|
bh_min = 2048; |
|
|
|
|
bw_min = 2048; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bw = std::max(tw * scale, bw_min); |
|
|
|
|
bh = std::max(th * scale, bh_min); |
|
|
|
|
bw = std::min(bw, w); |
|
|
|
|
bh = std::min(bh, h); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void matchTemplate_32F_SQDIFF(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
imgproc::matchTemplateNaive_SQDIFF_32F(image, templ, result, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef BLOCK_VERSION |
|
|
|
|
void matchTemplate_32F_CCORR(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
void crossCorr_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(image.type() == CV_32F); |
|
|
|
|
CV_Assert(templ.type() == CV_32F); |
|
|
|
|
|
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
|
|
|
|
|
Size block_size; |
|
|
|
|
estimateBlockSize(result.cols, result.rows, templ.cols, templ.rows, |
|
|
|
|
estimateBlockSize(result.cols, result.rows, templ.cols, templ.rows,
|
|
|
|
|
block_size.width, block_size.height); |
|
|
|
|
|
|
|
|
|
Size dft_size; |
|
|
|
@ -139,7 +290,7 @@ namespace |
|
|
|
|
|
|
|
|
|
GpuMat templ_roi(templ.size(), CV_32S, templ.data, templ.step); |
|
|
|
|
GpuMat templ_block(dft_size, CV_32S, templ_data, dft_size.width * sizeof(cufftReal)); |
|
|
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, |
|
|
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
|
|
|
|
templ_block.cols - templ_roi.cols, 0); |
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS); |
|
|
|
|
|
|
|
|
@ -148,16 +299,16 @@ namespace |
|
|
|
|
for (int y = 0; y < result.rows; y += block_size.height) |
|
|
|
|
{ |
|
|
|
|
for (int x = 0; x < result.cols; x += block_size.width) |
|
|
|
|
{ |
|
|
|
|
{
|
|
|
|
|
Size image_roi_size; |
|
|
|
|
image_roi_size.width = min(x + dft_size.width, image.cols) - x; |
|
|
|
|
image_roi_size.height = min(y + dft_size.height, image.rows) - y; |
|
|
|
|
GpuMat image_roi(image_roi_size, CV_32S, (void*)(image.ptr<float>(y) + x), image.step); |
|
|
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0, |
|
|
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0,
|
|
|
|
|
image_block.cols - image_roi.cols, 0); |
|
|
|
|
|
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS); |
|
|
|
|
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(), |
|
|
|
|
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(),
|
|
|
|
|
image_spect, templ_spect, result_spect); |
|
|
|
|
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS); |
|
|
|
|
|
|
|
|
@ -180,79 +331,236 @@ namespace |
|
|
|
|
cudaFree(templ_data); |
|
|
|
|
cudaFree(result_data); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
void matchTemplate_32F_CCORR(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int getTemplateThreshold(int method, int depth) |
|
|
|
|
{ |
|
|
|
|
Size opt_size; |
|
|
|
|
opt_size.width = getOptimalDFTSize(image.cols); |
|
|
|
|
opt_size.height = getOptimalDFTSize(image.rows); |
|
|
|
|
switch (method) |
|
|
|
|
{ |
|
|
|
|
case CV_TM_CCORR:
|
|
|
|
|
if (depth == CV_32F) return 250; |
|
|
|
|
if (depth == CV_8U) return 300; |
|
|
|
|
break; |
|
|
|
|
case CV_TM_SQDIFF: |
|
|
|
|
if (depth == CV_8U) return 500; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
CV_Error(CV_StsBadArg, "getTemplateThreshold: unsupported match template mode"); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cufftReal* image_data; |
|
|
|
|
cufftReal* templ_data; |
|
|
|
|
cufftReal* result_data; |
|
|
|
|
cudaMalloc((void**)&image_data, sizeof(cufftReal) * opt_size.area()); |
|
|
|
|
cudaMalloc((void**)&templ_data, sizeof(cufftReal) * opt_size.area()); |
|
|
|
|
cudaMalloc((void**)&result_data, sizeof(cufftReal) * opt_size.area()); |
|
|
|
|
|
|
|
|
|
void matchTemplate_CCORR_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
if (templ.size().area() < getTemplateThreshold(CV_TM_CCORR, CV_32F)) |
|
|
|
|
{ |
|
|
|
|
imgproc::matchTemplateNaive_CCORR_32F(image, templ, result, image.channels()); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int spect_len = opt_size.height * (opt_size.width / 2 + 1); |
|
|
|
|
cufftComplex* image_spect; |
|
|
|
|
cufftComplex* templ_spect; |
|
|
|
|
cufftComplex* result_spect; |
|
|
|
|
cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len); |
|
|
|
|
cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len); |
|
|
|
|
cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len); |
|
|
|
|
GpuMat result_; |
|
|
|
|
crossCorr_32F(image.reshape(1), templ.reshape(1), result_); |
|
|
|
|
imgproc::extractFirstChannel_32F(result_, result, image.channels()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
GpuMat image_(image.size(), CV_32S, image.data, image.step); |
|
|
|
|
GpuMat image_cont(opt_size, CV_32S, image_data, opt_size.width * sizeof(cufftReal)); |
|
|
|
|
copyMakeBorder(image_, image_cont, 0, image_cont.rows - image.rows, 0, |
|
|
|
|
image_cont.cols - image.cols, 0); |
|
|
|
|
|
|
|
|
|
GpuMat templ_(templ.size(), CV_32S, templ.data, templ.step); |
|
|
|
|
GpuMat templ_cont(opt_size, CV_32S, templ_data, opt_size.width * sizeof(cufftReal)); |
|
|
|
|
copyMakeBorder(templ_, templ_cont, 0, templ_cont.rows - templ.rows, 0, |
|
|
|
|
templ_cont.cols - templ.cols, 0); |
|
|
|
|
void matchTemplate_CCORR_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
if (templ.size().area() < getTemplateThreshold(CV_TM_CCORR, CV_8U)) |
|
|
|
|
{ |
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
imgproc::matchTemplateNaive_CCORR_8U(image, templ, result, image.channels()); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cufftHandle planR2C, planC2R; |
|
|
|
|
CV_Assert(cufftPlan2d(&planC2R, opt_size.height, opt_size.width, CUFFT_C2R) == CUFFT_SUCCESS); |
|
|
|
|
CV_Assert(cufftPlan2d(&planR2C, opt_size.height, opt_size.width, CUFFT_R2C) == CUFFT_SUCCESS); |
|
|
|
|
GpuMat imagef, templf; |
|
|
|
|
image.convertTo(imagef, CV_32F); |
|
|
|
|
templ.convertTo(templf, CV_32F); |
|
|
|
|
matchTemplate_CCORR_32F(imagef, templf, result); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS); |
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS); |
|
|
|
|
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / opt_size.area(), |
|
|
|
|
image_spect, templ_spect, result_spect); |
|
|
|
|
|
|
|
|
|
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS); |
|
|
|
|
void matchTemplate_CCORR_NORMED_8U(const GpuMat& image, const GpuMat& templ,
|
|
|
|
|
GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
matchTemplate_CCORR_8U(image, templ, result); |
|
|
|
|
|
|
|
|
|
cufftDestroy(planR2C); |
|
|
|
|
cufftDestroy(planC2R); |
|
|
|
|
GpuMat img_sqsum; |
|
|
|
|
sqrIntegral_8U_64U(image.reshape(1), img_sqsum); |
|
|
|
|
|
|
|
|
|
GpuMat result_cont(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F, |
|
|
|
|
result_data, opt_size.width * sizeof(cufftReal)); |
|
|
|
|
result_cont.copyTo(result); |
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ.reshape(1))[0]; |
|
|
|
|
imgproc::normalize_8U(templ.cols, templ.rows, img_sqsum, templ_sqsum,
|
|
|
|
|
result, image.channels()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cudaFree(image_spect); |
|
|
|
|
cudaFree(templ_spect); |
|
|
|
|
cudaFree(result_spect); |
|
|
|
|
cudaFree(image_data); |
|
|
|
|
cudaFree(templ_data); |
|
|
|
|
cudaFree(result_data); |
|
|
|
|
|
|
|
|
|
void matchTemplate_SQDIFF_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
imgproc::matchTemplateNaive_SQDIFF_32F(image, templ, result, image.channels()); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void matchTemplate_8U_SQDIFF(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
void matchTemplate_SQDIFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
imgproc::matchTemplateNaive_SQDIFF_8U(image, templ, result, 1); |
|
|
|
|
if (templ.size().area() < getTemplateThreshold(CV_TM_SQDIFF, CV_8U)) |
|
|
|
|
{ |
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
imgproc::matchTemplateNaive_SQDIFF_8U(image, templ, result, image.channels()); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
GpuMat img_sqsum; |
|
|
|
|
sqrIntegral_8U_64U(image.reshape(1), img_sqsum); |
|
|
|
|
|
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ.reshape(1))[0]; |
|
|
|
|
|
|
|
|
|
matchTemplate_CCORR_8U(image, templ, result); |
|
|
|
|
imgproc::matchTemplatePrepared_SQDIFF_8U( |
|
|
|
|
templ.cols, templ.rows, img_sqsum, templ_sqsum, result, image.channels()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void matchTemplate_SQDIFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
GpuMat img_sqsum; |
|
|
|
|
sqrIntegral_8U_64U(image.reshape(1), img_sqsum); |
|
|
|
|
|
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ.reshape(1))[0]; |
|
|
|
|
|
|
|
|
|
matchTemplate_CCORR_8U(image, templ, result); |
|
|
|
|
imgproc::matchTemplatePrepared_SQDIFF_NORMED_8U( |
|
|
|
|
templ.cols, templ.rows, img_sqsum, templ_sqsum, result, image.channels()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void matchTemplate_CCOFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
matchTemplate_CCORR_8U(image, templ, result); |
|
|
|
|
|
|
|
|
|
if (image.channels() == 1) |
|
|
|
|
{ |
|
|
|
|
GpuMat image_sum; |
|
|
|
|
integral_8U_32U(image, image_sum); |
|
|
|
|
|
|
|
|
|
unsigned int templ_sum = (unsigned int)sum(templ)[0]; |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows,
|
|
|
|
|
image_sum, templ_sum, result); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
std::vector<GpuMat> images; |
|
|
|
|
std::vector<GpuMat> image_sums(image.channels()); |
|
|
|
|
|
|
|
|
|
split(image, images); |
|
|
|
|
for (int i = 0; i < image.channels(); ++i) |
|
|
|
|
integral_8U_32U(images[i], image_sums[i]); |
|
|
|
|
|
|
|
|
|
Scalar templ_sum = sum(templ); |
|
|
|
|
|
|
|
|
|
switch (image.channels()) |
|
|
|
|
{ |
|
|
|
|
case 2: |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_8UC2( |
|
|
|
|
templ.cols, templ.rows, image_sums[0], image_sums[1], |
|
|
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], |
|
|
|
|
result); |
|
|
|
|
break; |
|
|
|
|
case 3: |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_8UC3( |
|
|
|
|
templ.cols, templ.rows, image_sums[0], image_sums[1], image_sums[2], |
|
|
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2], |
|
|
|
|
result); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_8UC4( |
|
|
|
|
templ.cols, templ.rows, image_sums[0], image_sums[1], image_sums[2], image_sums[3], |
|
|
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2], |
|
|
|
|
(unsigned int)templ_sum[3], result); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void matchTemplate_8U_CCORR(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
void matchTemplate_CCOFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result) |
|
|
|
|
{ |
|
|
|
|
GpuMat imagef, templf; |
|
|
|
|
image.convertTo(imagef, CV_32F); |
|
|
|
|
templ.convertTo(templf, CV_32F); |
|
|
|
|
matchTemplate_32F_CCORR(imagef, templf, result); |
|
|
|
|
matchTemplate_CCORR_32F(imagef, templf, result); |
|
|
|
|
|
|
|
|
|
if (image.channels() == 1) |
|
|
|
|
{ |
|
|
|
|
GpuMat image_sum, image_sqsum; |
|
|
|
|
integral_8U_32U(image, image_sum); |
|
|
|
|
sqrIntegral_8U_64U(image, image_sqsum); |
|
|
|
|
|
|
|
|
|
unsigned int templ_sum = (unsigned int)sum(templ)[0]; |
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ)[0]; |
|
|
|
|
|
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8U( |
|
|
|
|
templ.cols, templ.rows, image_sum, image_sqsum,
|
|
|
|
|
templ_sum, templ_sqsum, result); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
std::vector<GpuMat> images; |
|
|
|
|
std::vector<GpuMat> image_sums(image.channels()); |
|
|
|
|
std::vector<GpuMat> image_sqsums(image.channels()); |
|
|
|
|
|
|
|
|
|
split(image, images); |
|
|
|
|
for (int i = 0; i < image.channels(); ++i) |
|
|
|
|
{ |
|
|
|
|
integral_8U_32U(images[i], image_sums[i]); |
|
|
|
|
sqrIntegral_8U_64U(images[i], image_sqsums[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Scalar templ_sum = sum(templ); |
|
|
|
|
Scalar templ_sqsum = sqrSum(templ); |
|
|
|
|
|
|
|
|
|
switch (image.channels()) |
|
|
|
|
{ |
|
|
|
|
case 2: |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8UC2( |
|
|
|
|
templ.cols, templ.rows,
|
|
|
|
|
image_sums[0], image_sqsums[0], |
|
|
|
|
image_sums[1], image_sqsums[1], |
|
|
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sqsum[0], |
|
|
|
|
(unsigned int)templ_sum[1], (unsigned int)templ_sqsum[1], |
|
|
|
|
result); |
|
|
|
|
break; |
|
|
|
|
case 3: |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8UC3( |
|
|
|
|
templ.cols, templ.rows,
|
|
|
|
|
image_sums[0], image_sqsums[0], |
|
|
|
|
image_sums[1], image_sqsums[1], |
|
|
|
|
image_sums[2], image_sqsums[2], |
|
|
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sqsum[0], |
|
|
|
|
(unsigned int)templ_sum[1], (unsigned int)templ_sqsum[1], |
|
|
|
|
(unsigned int)templ_sum[2], (unsigned int)templ_sqsum[2], |
|
|
|
|
result); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8UC4( |
|
|
|
|
templ.cols, templ.rows,
|
|
|
|
|
image_sums[0], image_sqsums[0], |
|
|
|
|
image_sums[1], image_sqsums[1], |
|
|
|
|
image_sums[2], image_sqsums[2], |
|
|
|
|
image_sums[3], image_sqsums[3], |
|
|
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sqsum[0], |
|
|
|
|
(unsigned int)templ_sum[1], (unsigned int)templ_sqsum[1], |
|
|
|
|
(unsigned int)templ_sum[2], (unsigned int)templ_sqsum[2], |
|
|
|
|
(unsigned int)templ_sum[3], (unsigned int)templ_sqsum[3], |
|
|
|
|
result);
|
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -264,17 +572,18 @@ void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& re |
|
|
|
|
|
|
|
|
|
typedef void (*Caller)(const GpuMat&, const GpuMat&, GpuMat&); |
|
|
|
|
|
|
|
|
|
static const Caller callers8U[] = { ::matchTemplate_8U_SQDIFF, 0, |
|
|
|
|
::matchTemplate_8U_CCORR, 0, 0, 0 }; |
|
|
|
|
static const Caller callers32F[] = { ::matchTemplate_32F_SQDIFF, 0, |
|
|
|
|
::matchTemplate_32F_CCORR, 0, 0, 0 }; |
|
|
|
|
static const Caller callers8U[] = { ::matchTemplate_SQDIFF_8U, ::matchTemplate_SQDIFF_NORMED_8U,
|
|
|
|
|
::matchTemplate_CCORR_8U, ::matchTemplate_CCORR_NORMED_8U,
|
|
|
|
|
::matchTemplate_CCOFF_8U, ::matchTemplate_CCOFF_NORMED_8U }; |
|
|
|
|
static const Caller callers32F[] = { ::matchTemplate_SQDIFF_32F, 0,
|
|
|
|
|
::matchTemplate_CCORR_32F, 0, 0, 0 }; |
|
|
|
|
|
|
|
|
|
const Caller* callers = 0; |
|
|
|
|
switch (image.type()) |
|
|
|
|
const Caller* callers; |
|
|
|
|
switch (image.depth()) |
|
|
|
|
{ |
|
|
|
|
case CV_8U: callers = callers8U; break; |
|
|
|
|
case CV_32F: callers = callers32F; break; |
|
|
|
|
default: CV_Error(CV_StsBadArg, "matchTemplate: unsupported data type"); |
|
|
|
|
case CV_8U: callers = callers8U; break; |
|
|
|
|
case CV_32F: callers = callers32F; break; |
|
|
|
|
default: CV_Error(CV_StsBadArg, "matchTemplate: unsupported data type"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Caller caller = callers[method]; |
|
|
|
@ -284,3 +593,4 @@ void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& re |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|