Merge branch 'master' of git://code.opencv.org/opencv

pull/7/head
yao 12 years ago
commit 687d7639a8
  1. 108
      modules/core/include/opencv2/core/parallel_tool.hpp
  2. 112
      modules/core/src/parallel_tool.cpp
  3. 1
      modules/core/src/precomp.hpp
  4. 936
      modules/gpu/src/cascadeclassifier.cpp
  5. 38
      modules/imgproc/perf/perf_bilateral.cpp
  6. 1
      modules/imgproc/src/precomp.hpp
  7. 254
      modules/imgproc/src/smooth.cpp
  8. 290
      modules/imgproc/test/test_bilateral_filter.cpp
  9. 2
      modules/ocl/include/opencv2/ocl/matrix_operations.hpp
  10. 1
      modules/ocl/include/opencv2/ocl/ocl.hpp
  11. 102
      modules/ocl/src/arithm.cpp
  12. 34
      modules/ocl/src/imgproc.cpp
  13. 26
      modules/ocl/src/initialization.cpp
  14. 36
      modules/ocl/src/kernels/arithm_addWeighted.cl
  15. 4
      modules/ocl/src/kernels/arithm_cartToPolar.cl
  16. 131
      modules/ocl/src/kernels/arithm_div.cl
  17. 4
      modules/ocl/src/kernels/arithm_exp.cl
  18. 4
      modules/ocl/src/kernels/arithm_log.cl
  19. 171
      modules/ocl/src/kernels/convertC3C4.cl
  20. 209
      modules/ocl/src/kernels/imgproc_resize.cl
  21. 60
      modules/ocl/src/kernels/operator_setTo.cl
  22. 114
      modules/ocl/src/kernels/operator_setToM.cl
  23. 519
      modules/ocl/src/matrix_operations.cpp
  24. 6
      modules/ocl/src/precomp.hpp
  25. 2
      modules/ocl/test/test_imgproc.cpp
  26. 100
      modules/ocl/test/test_matrix_operation.cpp

@ -0,0 +1,108 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PARALLEL_TOOL_HPP__
#define __OPENCV_PARALLEL_TOOL_HPP__
#ifdef HAVE_CVCONFIG_H
# include <cvconfig.h>
#endif // HAVE_CVCONFIG_H
/*
HAVE_TBB - using TBB
HAVE_GCD - using GCD
HAVE_OPENMP - using OpenMP
HAVE_CONCURRENCY - using visual studio 2010 concurrency
*/
#ifdef HAVE_TBB
# include "tbb/tbb_stddef.h"
# if TBB_VERSION_MAJOR*100 + TBB_VERSION_MINOR >= 202
# include "tbb/tbb.h"
# include "tbb/task.h"
# undef min
# undef max
# else
# undef HAVE_TBB
# endif // end TBB version
#endif // HAVE_TBB
#ifdef __cplusplus
namespace cv
{
// a base body class
class CV_EXPORTS ParallelLoopBody
{
public:
virtual void operator() (const Range& range) const = 0;
virtual ~ParallelLoopBody();
};
CV_EXPORTS void parallel_for_(const Range& range, const ParallelLoopBody& body);
template <typename Iterator, typename Body> inline
CV_EXPORTS void parallel_do_(Iterator first, Iterator last, const Body& body)
{
#ifdef HAVE_TBB
tbb::parallel_do(first, last, body);
#else
for ( ; first != last; ++first)
body(*first);
#endif // HAVE_TBB
}
template <typename Body> inline
CV_EXPORTS void parallel_reduce_(const Range& range, Body& body)
{
#ifdef HAVE_TBB
tbb::parallel_reduce(tbb::blocked_range<int>(range.start, range.end), body);
#else
body(range);
#endif // end HAVE_TBB
}
} // namespace cv
#endif // __cplusplus
#endif // __OPENCV_PARALLEL_TOOL_HPP__

@ -0,0 +1,112 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CONCURRENCY
# include <ppl.h>
#elif defined HAVE_OPENMP
# include <omp.h>
#elif defined HAVE_GCD
# include <dispatch/dispatch.h>
#endif // HAVE_CONCURRENCY
namespace cv
{
ParallelLoopBody::~ParallelLoopBody() { }
#ifdef HAVE_TBB
class TbbProxyLoopBody
{
public:
TbbProxyLoopBody(const ParallelLoopBody& _body) :
body(&_body)
{ }
void operator ()(const tbb::blocked_range<int>& range) const
{
body->operator()(Range(range.begin(), range.end()));
}
private:
const ParallelLoopBody* body;
};
#endif // end HAVE_TBB
#ifdef HAVE_GCD
static
void block_function(void* context, size_t index)
{
ParallelLoopBody* ptr_body = static_cast<ParallelLoopBody*>(context);
ptr_body->operator()(Range(index, index + 1));
}
#endif // HAVE_GCD
void parallel_for_(const Range& range, const ParallelLoopBody& body)
{
#ifdef HAVE_TBB
tbb::parallel_for(tbb::blocked_range<int>(range.start, range.end), TbbProxyLoopBody(body));
#elif defined HAVE_CONCURRENCY
Concurrency::parallel_for(range.start, range.end, body);
#elif defined HAVE_OPENMP
#pragma omp parallel for schedule(dynamic)
for (int i = range.start; i < range.end; ++i)
body(Range(i, i + 1));
#elif defined (HAVE_GCD)
dispatch_queue_t concurrent_queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_apply_f(range.end - range.start, concurrent_queue, &const_cast<ParallelLoopBody&>(body), block_function);
#else
body(range);
#endif // end HAVE_TBB
}
} // namespace cv

@ -50,6 +50,7 @@
#include "opencv2/core/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include "opencv2/core/parallel_tool.hpp"
#include <assert.h>
#include <ctype.h>

File diff suppressed because it is too large Load Diff

@ -0,0 +1,38 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using namespace testing;
using std::tr1::make_tuple;
using std::tr1::get;
CV_ENUM(Mat_Type, CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3)
typedef TestBaseWithParam< tr1::tuple<Size, int, Mat_Type> > TestBilateralFilter;
PERF_TEST_P( TestBilateralFilter, BilateralFilter,
Combine(
Values( szVGA, sz1080p ), // image size
Values( 3, 5 ), // d
ValuesIn( Mat_Type::all() ) // image type
)
)
{
Size sz;
int d, type;
const double sigmaColor = 1., sigmaSpace = 1.;
sz = get<0>(GetParam());
d = get<1>(GetParam());
type = get<2>(GetParam());
Mat src(sz, type);
Mat dst(sz, type);
declare.in(src, WARMUP_RNG).out(dst).time(20);
TEST_CYCLE() bilateralFilter(src, dst, d, sigmaColor, sigmaSpace, BORDER_DEFAULT);
SANITY_CHECK(dst);
}

@ -50,6 +50,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/internal.hpp"
#include "opencv2/core/parallel_tool.hpp"
#include <math.h>
#include <assert.h>
#include <string.h>

@ -1288,48 +1288,119 @@ void cv::medianBlur( InputArray _src0, OutputArray _dst, int ksize )
namespace cv
{
class BilateralFilter_8u_Invoker :
public ParallelLoopBody
{
public:
BilateralFilter_8u_Invoker(const Mat &_src, Mat& _dst, Mat _temp, int _radius, int _maxk,
int* _space_ofs, float *_space_weight, float *_color_weight) :
ParallelLoopBody(), src(_src), dst(_dst), temp(_temp), radius(_radius),
maxk(_maxk), space_ofs(_space_ofs), space_weight(_space_weight), color_weight(_color_weight)
{
}
virtual void operator() (const Range& range) const
{
int i, j, cn = src.channels(), k;
Size size = src.size();
for( i = range.start; i < range.end; i++ )
{
const uchar* sptr = temp.data + (i+radius)*temp.step + radius*cn;
uchar* dptr = dst.data + i*dst.step;
if( cn == 1 )
{
for( j = 0; j < size.width; j++ )
{
float sum = 0, wsum = 0;
int val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
int val = sptr[j + space_ofs[k]];
float w = space_weight[k]*color_weight[std::abs(val - val0)];
sum += val*w;
wsum += w;
}
// overflow is not possible here => there is no need to use CV_CAST_8U
dptr[j] = (uchar)cvRound(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const uchar* sptr_k = sptr + j + space_ofs[k];
int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float w = space_weight[k]*color_weight[std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0)];
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = cvRound(sum_b*wsum);
g0 = cvRound(sum_g*wsum);
r0 = cvRound(sum_r*wsum);
dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0;
}
}
}
}
private:
const Mat& src;
Mat &dst, temp;
int radius, maxk, * space_ofs;
float *space_weight, *color_weight;
};
static void
bilateralFilter_8u( const Mat& src, Mat& dst, int d,
double sigma_color, double sigma_space,
int borderType )
double sigma_color, double sigma_space,
int borderType )
{
int cn = src.channels();
int i, j, k, maxk, radius;
int i, j, maxk, radius;
Size size = src.size();
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if( sigma_color <= 0 )
sigma_color = 1;
if( sigma_space <= 0 )
sigma_space = 1;
double gauss_color_coeff = -0.5/(sigma_color*sigma_color);
double gauss_space_coeff = -0.5/(sigma_space*sigma_space);
if( d <= 0 )
radius = cvRound(sigma_space*1.5);
else
radius = d/2;
radius = MAX(radius, 1);
d = radius*2 + 1;
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
vector<float> _color_weight(cn*256);
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
float* color_weight = &_color_weight[0];
float* space_weight = &_space_weight[0];
int* space_ofs = &_space_ofs[0];
// initialize color-related bilateral filter coefficients
for( i = 0; i < 256*cn; i++ )
color_weight[i] = (float)std::exp(i*i*gauss_color_coeff);
// initialize space-related bilateral filter coefficients
for( i = -radius, maxk = 0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
@ -1340,55 +1411,89 @@ bilateralFilter_8u( const Mat& src, Mat& dst, int d,
space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff);
space_ofs[maxk++] = (int)(i*temp.step + j*cn);
}
BilateralFilter_8u_Invoker body(src, dst, temp, radius, maxk, space_ofs, space_weight, color_weight);
parallel_for_(Range(0, size.height), body);
}
for( i = 0; i < size.height; i++ )
class BilateralFilter_32f_Invoker :
public ParallelLoopBody
{
public:
BilateralFilter_32f_Invoker(int _cn, int _radius, int _maxk, int *_space_ofs,
Mat _temp, Mat *_dest, Size _size,
float _scale_index, float *_space_weight, float *_expLUT) :
ParallelLoopBody(), cn(_cn), radius(_radius), maxk(_maxk), space_ofs(_space_ofs),
temp(_temp), dest(_dest), size(_size), scale_index(_scale_index), space_weight(_space_weight), expLUT(_expLUT)
{
const uchar* sptr = temp.data + (i+radius)*temp.step + radius*cn;
uchar* dptr = dst.data + i*dst.step;
}
if( cn == 1 )
virtual void operator() (const Range& range) const
{
Mat& dst = *dest;
int i, j, k;
for( i = range.start; i < range.end; i++ )
{
for( j = 0; j < size.width; j++ )
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (float*)(dst.data + i*dst.step);
if( cn == 1 )
{
float sum = 0, wsum = 0;
int val0 = sptr[j];
for( k = 0; k < maxk; k++ )
for( j = 0; j < size.width; j++ )
{
int val = sptr[j + space_ofs[k]];
float w = space_weight[k]*color_weight[std::abs(val - val0)];
sum += val*w;
wsum += w;
float sum = 0, wsum = 0;
float val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (float)(std::abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (float)(sum/wsum);
}
// overflow is not possible here => there is no need to use CV_CAST_8U
dptr[j] = (uchar)cvRound(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
else
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
const uchar* sptr_k = sptr + j + space_ofs[k];
int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float w = space_weight[k]*color_weight[std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0)];
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float alpha = (float)((std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
}
wsum = 1.f/wsum;
b0 = cvRound(sum_b*wsum);
g0 = cvRound(sum_g*wsum);
r0 = cvRound(sum_r*wsum);
dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0;
}
}
}
}
private:
int cn, radius, maxk, *space_ofs;
Mat temp, *dest;
Size size;
float scale_index, *space_weight, *expLUT;
};
static void
bilateralFilter_32f( const Mat& src, Mat& dst, int d,
@ -1396,7 +1501,7 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d,
int borderType )
{
int cn = src.channels();
int i, j, k, maxk, radius;
int i, j, maxk, radius;
double minValSrc=-1, maxValSrc=1;
const int kExpNumBinsPerChannel = 1 << 12;
int kExpNumBins = 0;
@ -1474,57 +1579,10 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d,
space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn);
}
for( i = 0; i < size.height; i++ )
{
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (float*)(dst.data + i*dst.step);
// parallel_for usage
if( cn == 1 )
{
for( j = 0; j < size.width; j++ )
{
float sum = 0, wsum = 0;
float val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (float)(std::abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (float)(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float alpha = (float)((std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
}
}
}
BilateralFilter_32f_Invoker body(cn, radius, maxk, space_ofs, temp, &dst, size, scale_index, space_weight, expLUT);
parallel_for_(Range(0, size.height), body);
}
}

@ -0,0 +1,290 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
namespace cvtest
{
class CV_BilateralFilterTest :
public cvtest::BaseTest
{
public:
enum
{
MAX_WIDTH = 1920, MIN_WIDTH = 1,
MAX_HEIGHT = 1080, MIN_HEIGHT = 1
};
CV_BilateralFilterTest();
~CV_BilateralFilterTest();
protected:
virtual void run_func();
virtual int prepare_test_case(int test_case_index);
virtual int validate_test_results(int test_case_index);
private:
void reference_bilateral_filter(const Mat& src, Mat& dst, int d, double sigma_color,
double sigma_space, int borderType = BORDER_DEFAULT);
int getRandInt(RNG& rng, int min_value, int max_value) const;
double _sigma_color;
double _sigma_space;
Mat _src;
Mat _parallel_dst;
int _d;
};
CV_BilateralFilterTest::CV_BilateralFilterTest() :
cvtest::BaseTest(), _src(), _parallel_dst(), _d()
{
test_case_count = 1000;
}
CV_BilateralFilterTest::~CV_BilateralFilterTest()
{
}
int CV_BilateralFilterTest::getRandInt(RNG& rng, int min_value, int max_value) const
{
double rand_value = rng.uniform(log(min_value), log(max_value + 1));
return cvRound(exp(rand_value));
}
void CV_BilateralFilterTest::reference_bilateral_filter(const Mat &src, Mat &dst, int d,
double sigma_color, double sigma_space, int borderType)
{
int cn = src.channels();
int i, j, k, maxk, radius;
double minValSrc = -1, maxValSrc = 1;
const int kExpNumBinsPerChannel = 1 << 12;
int kExpNumBins = 0;
float lastExpVal = 1.f;
float len, scale_index;
Size size = src.size();
dst.create(size, src.type());
CV_Assert( (src.type() == CV_32FC1 || src.type() == CV_32FC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if( sigma_color <= 0 )
sigma_color = 1;
if( sigma_space <= 0 )
sigma_space = 1;
double gauss_color_coeff = -0.5/(sigma_color*sigma_color);
double gauss_space_coeff = -0.5/(sigma_space*sigma_space);
if( d <= 0 )
radius = cvRound(sigma_space*1.5);
else
radius = d/2;
radius = MAX(radius, 1);
d = radius*2 + 1;
// compute the min/max range for the input image (even if multichannel)
minMaxLoc( src.reshape(1), &minValSrc, &maxValSrc );
if(std::abs(minValSrc - maxValSrc) < FLT_EPSILON)
{
src.copyTo(dst);
return;
}
// temporary copy of the image with borders for easy processing
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
patchNaNs(temp);
// allocate lookup tables
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
float* space_weight = &_space_weight[0];
int* space_ofs = &_space_ofs[0];
// assign a length which is slightly more than needed
len = (float)(maxValSrc - minValSrc) * cn;
kExpNumBins = kExpNumBinsPerChannel * cn;
vector<float> _expLUT(kExpNumBins+2);
float* expLUT = &_expLUT[0];
scale_index = kExpNumBins/len;
// initialize the exp LUT
for( i = 0; i < kExpNumBins+2; i++ )
{
if( lastExpVal > 0.f )
{
double val = i / scale_index;
expLUT[i] = (float)std::exp(val * val * gauss_color_coeff);
lastExpVal = expLUT[i];
}
else
expLUT[i] = 0.f;
}
// initialize space-related bilateral filter coefficients
for( i = -radius, maxk = 0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
double r = std::sqrt((double)i*i + (double)j*j);
if( r > radius )
continue;
space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff);
space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn);
}
for( i = 0; i < size.height; i++ )
{
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (float*)(dst.data + i*dst.step);
if( cn == 1 )
{
for( j = 0; j < size.width; j++ )
{
float sum = 0, wsum = 0;
float val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (float)(std::abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (float)(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float alpha = (float)((std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
}
}
}
}
int CV_BilateralFilterTest::prepare_test_case(int /* test_case_index */)
{
const static int types[] = { CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3 };
RNG& rng = ts->get_rng();
Size size(getRandInt(rng, MIN_WIDTH, MAX_WIDTH), getRandInt(rng, MIN_HEIGHT, MAX_HEIGHT));
int type = types[rng(sizeof(types) / sizeof(types[0]))];
_d = rng.uniform(0., 1.) > 0.5 ? 5 : 3;
_src.create(size, type);
rng.fill(_src, RNG::UNIFORM, 0, 256);
_sigma_color = _sigma_space = 1.;
return 1;
}
int CV_BilateralFilterTest::validate_test_results(int test_case_index)
{
static const double eps = 1;
Mat reference_dst, reference_src;
if (_src.depth() == CV_32F)
reference_bilateral_filter(_src, reference_dst, _d, _sigma_color, _sigma_space);
else
{
int type = _src.type();
_src.convertTo(reference_src, CV_32F);
reference_bilateral_filter(reference_src, reference_dst, _d, _sigma_color, _sigma_space);
reference_dst.convertTo(reference_dst, type);
}
double e = norm(reference_dst, _parallel_dst);
if (e > eps)
{
ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
else
ts->set_failed_test_info(cvtest::TS::OK);
return BaseTest::validate_test_results(test_case_index);
}
void CV_BilateralFilterTest::run_func()
{
bilateralFilter(_src, _parallel_dst, _d, _sigma_color, _sigma_space);
}
TEST(Imgproc_BilateralFilter, accuracy)
{
CV_BilateralFilterTest test;
test.safe_run();
}
} // end of namespace cvtest

@ -49,7 +49,7 @@ namespace cv
namespace ocl
{
////////////////////////////////////OpenCL kernel strings//////////////////////////
extern const char *convertC3C4;
//extern const char *convertC3C4;
////////////////////////////////////////////////////////////////////////
//////////////////////////////// oclMat ////////////////////////////////

@ -49,6 +49,7 @@
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
namespace cv
{

@ -455,13 +455,12 @@ void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, doub
}
void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar)
{
if(src1.clCxt -> impl -> double_support ==0)
{
CV_Error(-217,"Selected device don't support double\r\n");
return;
}
arithmetic_run<double>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar));
if(src1.clCxt -> impl -> double_support !=0)
arithmetic_run<double>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar));
else
arithmetic_run<float>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar));
}
template <typename WT ,typename CL_WT>
void arithmetic_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar)
@ -579,7 +578,14 @@ void arithmetic_scalar_run(const oclMat &src, oclMat &dst, string kernelName, co
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
args.push_back( make_pair( sizeof(cl_double), (void *)&scalar ));
if(src.clCxt -> impl -> double_support !=0)
args.push_back( make_pair( sizeof(cl_double), (void *)&scalar ));
else
{
float f_scalar = (float)scalar;
args.push_back( make_pair( sizeof(cl_float), (void *)&f_scalar));
}
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth);
}
@ -670,9 +676,9 @@ void compare_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string ker
int cols = divUp(dst.cols + offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
@ -1253,7 +1259,11 @@ void arithmetic_exp_log_run(const oclMat &src, oclMat &dst, string kernelName, c
CV_Assert( src.type() == CV_32F || src.type() == CV_64F);
Context *clCxt = src.clCxt;
if(clCxt -> impl -> double_support ==0 && src.type() == CV_64F)
{
CV_Error(-217,"Selected device don't support double\r\n");
return;
}
//int channels = dst.channels();
int depth = dst.depth();
@ -2193,56 +2203,46 @@ void cv::ocl::addWeighted(const oclMat &src1, double alpha, const oclMat &src2,
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
if(sizeof(double) == 8)
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset));
if(src1.clCxt -> impl -> double_support != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_double), (void *)&alpha ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_double), (void *)&beta ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset));
args.push_back( make_pair( sizeof(cl_double), (void *)&gama ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
}
else
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_float), (void *)&alpha ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_float), (void *)&beta ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&gama ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
}
}
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
openCLExecuteKernel(clCxt, &arithm_addWeighted, "addWeighted", globalThreads, localThreads, args, -1, depth);
}
void cv::ocl::magnitudeSqr(const oclMat &src1, const oclMat &src2, oclMat &dst)
{
CV_Assert(src1.type() == src2.type() && src1.size() == src2.size() &&
(src1.depth() == CV_32F ));
(src1.depth() == CV_32F ));
dst.create(src1.size(), src1.type());
@ -2265,9 +2265,9 @@ void cv::ocl::magnitudeSqr(const oclMat &src1, const oclMat &src2, oclMat &dst)
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
@ -2313,9 +2313,9 @@ void cv::ocl::magnitudeSqr(const oclMat &src1, oclMat &dst)
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
divUp(dst.rows, localThreads[1]) * localThreads[1],
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
@ -2348,9 +2348,9 @@ void arithmetic_pow_run(const oclMat &src1, double p, oclMat &dst, string kernel
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
divUp(rows, localThreads[1]) * localThreads[1],
1
};
divUp(rows, localThreads[1]) * localThreads[1],
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;

@ -410,7 +410,11 @@ namespace cv
float ify = 1. / fy;
double ifx_d = 1. / fx;
double ify_d = 1. / fy;
int srcStep_in_pixel = src.step1() / src.channels();
int srcoffset_in_pixel = src.offset / src.elemSize();
int dstStep_in_pixel = dst.step1() / dst.channels();
int dstoffset_in_pixel = dst.offset / dst.elemSize();
//printf("%d %d\n",src.step1() , dst.elemSize());
string kernelName;
if(interpolation == INTER_LINEAR)
kernelName = "resizeLN";
@ -438,25 +442,33 @@ namespace cv
{
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair(sizeof(cl_double), (void *)&ifx_d));
args.push_back( make_pair(sizeof(cl_double), (void *)&ify_d));
if(src.clCxt -> impl -> double_support != 0)
{
args.push_back( make_pair(sizeof(cl_double), (void *)&ifx_d));
args.push_back( make_pair(sizeof(cl_double), (void *)&ify_d));
}
else
{
args.push_back( make_pair(sizeof(cl_float), (void *)&ifx));
args.push_back( make_pair(sizeof(cl_float), (void *)&ify));
}
}
else
{
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));

@ -378,20 +378,36 @@ namespace cv
void openCLMemcpy2D(Context *clCxt, void *dst, size_t dpitch,
const void *src, size_t spitch,
size_t width, size_t height, enum openCLMemcpyKind kind)
size_t width, size_t height, enum openCLMemcpyKind kind, int channels)
{
size_t buffer_origin[3] = {0, 0, 0};
size_t host_origin[3] = {0, 0, 0};
size_t region[3] = {width, height, 1};
if(kind == clMemcpyHostToDevice)
{
openCLSafeCall(clEnqueueWriteBufferRect(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE,
buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0));
if(dpitch == width || channels==3)
{
openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE,
0, width*height, src, 0, NULL, NULL));
}
else
{
openCLSafeCall(clEnqueueWriteBufferRect(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE,
buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0));
}
}
else if(kind == clMemcpyDeviceToHost)
{
openCLSafeCall(clEnqueueReadBufferRect(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE,
buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0));
if(spitch == width || channels==3)
{
openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE,
0, width*height, dst, 0, NULL, NULL));
}
else
{
openCLSafeCall(clEnqueueReadBufferRect(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE,
buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0));
}
}
}

@ -51,9 +51,9 @@ typedef float F;
//////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////addWeighted//////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////
__kernel void addWeighted_D0 (__global uchar *src1, F alpha,int src1_step,int src1_offset,
__global uchar *src2, F beta, int src2_step,int src2_offset,
F gama,
__kernel void addWeighted_D0 (__global uchar *src1,int src1_step,int src1_offset,
__global uchar *src2, int src2_step,int src2_offset,
F alpha,F beta,F gama,
__global uchar *dst, int dst_step,int dst_offset,
int rows, int cols,int dst_step1)
{
@ -99,9 +99,9 @@ __kernel void addWeighted_D0 (__global uchar *src1, F alpha,int src1_step,int sr
__kernel void addWeighted_D2 (__global ushort *src1, F alpha,int src1_step,int src1_offset,
__global ushort *src2, F beta, int src2_step,int src2_offset,
F gama,
__kernel void addWeighted_D2 (__global ushort *src1, int src1_step,int src1_offset,
__global ushort *src2, int src2_step,int src2_offset,
F alpha,F beta,F gama,
__global ushort *dst, int dst_step,int dst_offset,
int rows, int cols,int dst_step1)
{
@ -145,9 +145,9 @@ __kernel void addWeighted_D2 (__global ushort *src1, F alpha,int src1_step,int s
}
__kernel void addWeighted_D3 (__global short *src1, F alpha,int src1_step,int src1_offset,
__global short *src2, F beta, int src2_step,int src2_offset,
F gama,
__kernel void addWeighted_D3 (__global short *src1, int src1_step,int src1_offset,
__global short *src2, int src2_step,int src2_offset,
F alpha,F beta,F gama,
__global short *dst, int dst_step,int dst_offset,
int rows, int cols,int dst_step1)
{
@ -190,9 +190,9 @@ __kernel void addWeighted_D3 (__global short *src1, F alpha,int src1_step,int sr
}
__kernel void addWeighted_D4 (__global int *src1, F alpha,int src1_step,int src1_offset,
__global int *src2, F beta, int src2_step,int src2_offset,
F gama,
__kernel void addWeighted_D4 (__global int *src1, int src1_step,int src1_offset,
__global int *src2, int src2_step,int src2_offset,
F alpha,F beta, F gama,
__global int *dst, int dst_step,int dst_offset,
int rows, int cols,int dst_step1)
{
@ -238,9 +238,9 @@ __kernel void addWeighted_D4 (__global int *src1, F alpha,int src1_step,int src1
}
__kernel void addWeighted_D5 (__global float *src1, F alpha,int src1_step,int src1_offset,
__global float *src2, F beta, int src2_step,int src2_offset,
F gama,
__kernel void addWeighted_D5 (__global float *src1,int src1_step,int src1_offset,
__global float *src2, int src2_step,int src2_offset,
F alpha,F beta, F gama,
__global float *dst, int dst_step,int dst_offset,
int rows, int cols,int dst_step1)
{
@ -286,9 +286,9 @@ __kernel void addWeighted_D5 (__global float *src1, F alpha,int src1_step,int sr
}
#if defined (DOUBLE_SUPPORT)
__kernel void addWeighted_D6 (__global double *src1, F alpha,int src1_step,int src1_offset,
__global double *src2, F beta, int src2_step,int src2_offset,
F gama,
__kernel void addWeighted_D6 (__global double *src1, int src1_step,int src1_offset,
__global double *src2, int src2_step,int src2_offset,
F alpha,F beta, F gama,
__global double *dst, int dst_step,int dst_offset,
int rows, int cols,int dst_step1)
{

@ -49,6 +49,10 @@
#define CV_PI 3.1415926535897932384626433832795
#ifndef DBL_EPSILON
#define DBL_EPSILON 0x1.0p-52
#endif
__kernel void arithm_cartToPolar_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *src2, int src2_step, int src2_offset,
__global float *dst1, int dst1_step, int dst1_offset, //magnitude

@ -45,36 +45,45 @@
#if defined (DOUBLE_SUPPORT)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
typedef double F ;
typedef double4 F4;
#define convert_F4 convert_double4
#define convert_F convert_double
#else
typedef float F;
typedef float4 F4;
#define convert_F4 convert_float4
#define convert_F convert_float
#endif
uchar round2_uchar(double v){
uchar round2_uchar(F v){
uchar v1 = convert_uchar_sat(v);
uchar v2 = convert_uchar_sat(v+(v>=0 ? 0.5 : -0.5));
uchar v1 = convert_uchar_sat(round(v));
//uchar v2 = convert_uchar_sat(v+(v>=0 ? 0.5 : -0.5));
return (((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
return v1;//(((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
}
ushort round2_ushort(double v){
ushort round2_ushort(F v){
ushort v1 = convert_ushort_sat(v);
ushort v2 = convert_ushort_sat(v+(v>=0 ? 0.5 : -0.5));
ushort v1 = convert_ushort_sat(round(v));
//ushort v2 = convert_ushort_sat(v+(v>=0 ? 0.5 : -0.5));
return (((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
return v1;//(((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
}
short round2_short(double v){
short round2_short(F v){
short v1 = convert_short_sat(v);
short v2 = convert_short_sat(v+(v>=0 ? 0.5 : -0.5));
short v1 = convert_short_sat(round(v));
//short v2 = convert_short_sat(v+(v>=0 ? 0.5 : -0.5));
return (((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
return v1;//(((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
}
int round2_int(double v){
int round2_int(F v){
int v1 = convert_int_sat(v);
int v2 = convert_int_sat(v+(v>=0 ? 0.5 : -0.5));
int v1 = convert_int_sat(round(v));
//int v2 = convert_int_sat(v+(v>=0 ? 0.5 : -0.5));
return (((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
return v1;//(((v-v1)==0.5) && (v1%2==0)) ? v1 : v2;
}
///////////////////////////////////////////////////////////////////////////////////////
////////////////////////////divide///////////////////////////////////////////////////
@ -83,7 +92,7 @@ int round2_int(double v){
__kernel void arithm_div_D0 (__global uchar *src1, int src1_step, int src1_offset,
__global uchar *src2, int src2_step, int src2_offset,
__global uchar *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -104,13 +113,13 @@ __kernel void arithm_div_D0 (__global uchar *src1, int src1_step, int src1_offse
uchar4 src2_data = vload4(0, src2 + src2_index);
uchar4 dst_data = *((__global uchar4 *)(dst + dst_index));
double4 tmp = convert_double4(src1_data) * scalar;
F4 tmp = convert_F4(src1_data) * scalar;
uchar4 tmp_data;
tmp_data.x = ((tmp.x == 0) || (src2_data.x == 0)) ? 0 : round2_uchar(tmp.x / (double)src2_data.x);
tmp_data.y = ((tmp.y == 0) || (src2_data.y == 0)) ? 0 : round2_uchar(tmp.y / (double)src2_data.y);
tmp_data.z = ((tmp.z == 0) || (src2_data.z == 0)) ? 0 : round2_uchar(tmp.z / (double)src2_data.z);
tmp_data.w = ((tmp.w == 0) || (src2_data.w == 0)) ? 0 : round2_uchar(tmp.w / (double)src2_data.w);
tmp_data.x = ((tmp.x == 0) || (src2_data.x == 0)) ? 0 : round2_uchar(tmp.x / (F)src2_data.x);
tmp_data.y = ((tmp.y == 0) || (src2_data.y == 0)) ? 0 : round2_uchar(tmp.y / (F)src2_data.y);
tmp_data.z = ((tmp.z == 0) || (src2_data.z == 0)) ? 0 : round2_uchar(tmp.z / (F)src2_data.z);
tmp_data.w = ((tmp.w == 0) || (src2_data.w == 0)) ? 0 : round2_uchar(tmp.w / (F)src2_data.w);
dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x;
dst_data.y = ((dst_index + 1 >= dst_start) && (dst_index + 1 < dst_end)) ? tmp_data.y : dst_data.y;
@ -124,7 +133,7 @@ __kernel void arithm_div_D0 (__global uchar *src1, int src1_step, int src1_offse
__kernel void arithm_div_D2 (__global ushort *src1, int src1_step, int src1_offset,
__global ushort *src2, int src2_step, int src2_offset,
__global ushort *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -145,13 +154,13 @@ __kernel void arithm_div_D2 (__global ushort *src1, int src1_step, int src1_offs
ushort4 src2_data = vload4(0, (__global ushort *)((__global char *)src2 + src2_index));
ushort4 dst_data = *((__global ushort4 *)((__global char *)dst + dst_index));
double4 tmp = convert_double4(src1_data) * scalar;
F4 tmp = convert_F4(src1_data) * scalar;
ushort4 tmp_data;
tmp_data.x = ((tmp.x == 0) || (src2_data.x == 0)) ? 0 : round2_ushort(tmp.x / (double)src2_data.x);
tmp_data.y = ((tmp.y == 0) || (src2_data.y == 0)) ? 0 : round2_ushort(tmp.y / (double)src2_data.y);
tmp_data.z = ((tmp.z == 0) || (src2_data.z == 0)) ? 0 : round2_ushort(tmp.z / (double)src2_data.z);
tmp_data.w = ((tmp.w == 0) || (src2_data.w == 0)) ? 0 : round2_ushort(tmp.w / (double)src2_data.w);
tmp_data.x = ((tmp.x == 0) || (src2_data.x == 0)) ? 0 : round2_ushort(tmp.x / (F)src2_data.x);
tmp_data.y = ((tmp.y == 0) || (src2_data.y == 0)) ? 0 : round2_ushort(tmp.y / (F)src2_data.y);
tmp_data.z = ((tmp.z == 0) || (src2_data.z == 0)) ? 0 : round2_ushort(tmp.z / (F)src2_data.z);
tmp_data.w = ((tmp.w == 0) || (src2_data.w == 0)) ? 0 : round2_ushort(tmp.w / (F)src2_data.w);
dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x;
dst_data.y = ((dst_index + 2 >= dst_start) && (dst_index + 2 < dst_end)) ? tmp_data.y : dst_data.y;
@ -164,7 +173,7 @@ __kernel void arithm_div_D2 (__global ushort *src1, int src1_step, int src1_offs
__kernel void arithm_div_D3 (__global short *src1, int src1_step, int src1_offset,
__global short *src2, int src2_step, int src2_offset,
__global short *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -185,13 +194,13 @@ __kernel void arithm_div_D3 (__global short *src1, int src1_step, int src1_offse
short4 src2_data = vload4(0, (__global short *)((__global char *)src2 + src2_index));
short4 dst_data = *((__global short4 *)((__global char *)dst + dst_index));
double4 tmp = convert_double4(src1_data) * scalar;
F4 tmp = convert_F4(src1_data) * scalar;
short4 tmp_data;
tmp_data.x = ((tmp.x == 0) || (src2_data.x == 0)) ? 0 : round2_short(tmp.x / (double)src2_data.x);
tmp_data.y = ((tmp.y == 0) || (src2_data.y == 0)) ? 0 : round2_short(tmp.y / (double)src2_data.y);
tmp_data.z = ((tmp.z == 0) || (src2_data.z == 0)) ? 0 : round2_short(tmp.z / (double)src2_data.z);
tmp_data.w = ((tmp.w == 0) || (src2_data.w == 0)) ? 0 : round2_short(tmp.w / (double)src2_data.w);
tmp_data.x = ((tmp.x == 0) || (src2_data.x == 0)) ? 0 : round2_short(tmp.x / (F)src2_data.x);
tmp_data.y = ((tmp.y == 0) || (src2_data.y == 0)) ? 0 : round2_short(tmp.y / (F)src2_data.y);
tmp_data.z = ((tmp.z == 0) || (src2_data.z == 0)) ? 0 : round2_short(tmp.z / (F)src2_data.z);
tmp_data.w = ((tmp.w == 0) || (src2_data.w == 0)) ? 0 : round2_short(tmp.w / (F)src2_data.w);
dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x;
@ -206,7 +215,7 @@ __kernel void arithm_div_D3 (__global short *src1, int src1_step, int src1_offse
__kernel void arithm_div_D4 (__global int *src1, int src1_step, int src1_offset,
__global int *src2, int src2_step, int src2_offset,
__global int *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -220,8 +229,8 @@ __kernel void arithm_div_D4 (__global int *src1, int src1_step, int src1_offset,
int data1 = *((__global int *)((__global char *)src1 + src1_index));
int data2 = *((__global int *)((__global char *)src2 + src2_index));
double tmp = convert_double(data1) * scalar;
int tmp_data = (tmp == 0 || data2 == 0) ? 0 : round2_int(tmp / (convert_double)(data2));
F tmp = convert_F(data1) * scalar;
int tmp_data = (tmp == 0 || data2 == 0) ? 0 : round2_int(tmp / (convert_F)(data2));
*((__global int *)((__global char *)dst + dst_index)) =tmp_data;
}
@ -230,7 +239,7 @@ __kernel void arithm_div_D4 (__global int *src1, int src1_step, int src1_offset,
__kernel void arithm_div_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *src2, int src2_step, int src2_offset,
__global float *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -244,13 +253,14 @@ __kernel void arithm_div_D5 (__global float *src1, int src1_step, int src1_offse
float data1 = *((__global float *)((__global char *)src1 + src1_index));
float data2 = *((__global float *)((__global char *)src2 + src2_index));
double tmp = convert_double(data1) * scalar;
float tmp_data = (tmp == 0 || data2 == 0) ? 0 : convert_float(tmp / (convert_double)(data2));
F tmp = convert_F(data1) * scalar;
float tmp_data = (tmp == 0 || data2 == 0) ? 0 : convert_float(tmp / (convert_F)(data2));
*((__global float *)((__global char *)dst + dst_index)) = tmp_data;
}
}
#if defined (DOUBLE_SUPPORT)
__kernel void arithm_div_D6 (__global double *src1, int src1_step, int src1_offset,
__global double *src2, int src2_step, int src2_offset,
__global double *dst, int dst_step, int dst_offset,
@ -274,10 +284,11 @@ __kernel void arithm_div_D6 (__global double *src1, int src1_step, int src1_offs
*((__global double *)((__global char *)dst + dst_index)) = tmp_data;
}
}
#endif
/************************************div with scalar************************************/
__kernel void arithm_s_div_D0 (__global uchar *src, int src_step, int src_offset,
__global uchar *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -297,10 +308,10 @@ __kernel void arithm_s_div_D0 (__global uchar *src, int src_step, int src_offset
uchar4 dst_data = *((__global uchar4 *)(dst + dst_index));
uchar4 tmp_data;
tmp_data.x = ((scalar == 0) || (src_data.x == 0)) ? 0 : round2_uchar(scalar / (double)src_data.x);
tmp_data.y = ((scalar == 0) || (src_data.y == 0)) ? 0 : round2_uchar(scalar / (double)src_data.y);
tmp_data.z = ((scalar == 0) || (src_data.z == 0)) ? 0 : round2_uchar(scalar / (double)src_data.z);
tmp_data.w = ((scalar == 0) || (src_data.w == 0)) ? 0 : round2_uchar(scalar / (double)src_data.w);
tmp_data.x = ((scalar == 0) || (src_data.x == 0)) ? 0 : round2_uchar(scalar / (F)src_data.x);
tmp_data.y = ((scalar == 0) || (src_data.y == 0)) ? 0 : round2_uchar(scalar / (F)src_data.y);
tmp_data.z = ((scalar == 0) || (src_data.z == 0)) ? 0 : round2_uchar(scalar / (F)src_data.z);
tmp_data.w = ((scalar == 0) || (src_data.w == 0)) ? 0 : round2_uchar(scalar / (F)src_data.w);
dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x;
dst_data.y = ((dst_index + 1 >= dst_start) && (dst_index + 1 < dst_end)) ? tmp_data.y : dst_data.y;
@ -313,7 +324,7 @@ __kernel void arithm_s_div_D0 (__global uchar *src, int src_step, int src_offset
__kernel void arithm_s_div_D2 (__global ushort *src, int src_step, int src_offset,
__global ushort *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -333,10 +344,10 @@ __kernel void arithm_s_div_D2 (__global ushort *src, int src_step, int src_offse
ushort4 dst_data = *((__global ushort4 *)((__global char *)dst + dst_index));
ushort4 tmp_data;
tmp_data.x = ((scalar == 0) || (src_data.x == 0)) ? 0 : round2_ushort(scalar / (double)src_data.x);
tmp_data.y = ((scalar == 0) || (src_data.y == 0)) ? 0 : round2_ushort(scalar / (double)src_data.y);
tmp_data.z = ((scalar == 0) || (src_data.z == 0)) ? 0 : round2_ushort(scalar / (double)src_data.z);
tmp_data.w = ((scalar == 0) || (src_data.w == 0)) ? 0 : round2_ushort(scalar / (double)src_data.w);
tmp_data.x = ((scalar == 0) || (src_data.x == 0)) ? 0 : round2_ushort(scalar / (F)src_data.x);
tmp_data.y = ((scalar == 0) || (src_data.y == 0)) ? 0 : round2_ushort(scalar / (F)src_data.y);
tmp_data.z = ((scalar == 0) || (src_data.z == 0)) ? 0 : round2_ushort(scalar / (F)src_data.z);
tmp_data.w = ((scalar == 0) || (src_data.w == 0)) ? 0 : round2_ushort(scalar / (F)src_data.w);
dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x;
dst_data.y = ((dst_index + 2 >= dst_start) && (dst_index + 2 < dst_end)) ? tmp_data.y : dst_data.y;
@ -348,7 +359,7 @@ __kernel void arithm_s_div_D2 (__global ushort *src, int src_step, int src_offse
}
__kernel void arithm_s_div_D3 (__global short *src, int src_step, int src_offset,
__global short *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -368,10 +379,10 @@ __kernel void arithm_s_div_D3 (__global short *src, int src_step, int src_offset
short4 dst_data = *((__global short4 *)((__global char *)dst + dst_index));
short4 tmp_data;
tmp_data.x = ((scalar == 0) || (src_data.x == 0)) ? 0 : round2_short(scalar / (double)src_data.x);
tmp_data.y = ((scalar == 0) || (src_data.y == 0)) ? 0 : round2_short(scalar / (double)src_data.y);
tmp_data.z = ((scalar == 0) || (src_data.z == 0)) ? 0 : round2_short(scalar / (double)src_data.z);
tmp_data.w = ((scalar == 0) || (src_data.w == 0)) ? 0 : round2_short(scalar / (double)src_data.w);
tmp_data.x = ((scalar == 0) || (src_data.x == 0)) ? 0 : round2_short(scalar / (F)src_data.x);
tmp_data.y = ((scalar == 0) || (src_data.y == 0)) ? 0 : round2_short(scalar / (F)src_data.y);
tmp_data.z = ((scalar == 0) || (src_data.z == 0)) ? 0 : round2_short(scalar / (F)src_data.z);
tmp_data.w = ((scalar == 0) || (src_data.w == 0)) ? 0 : round2_short(scalar / (F)src_data.w);
dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x;
@ -385,7 +396,7 @@ __kernel void arithm_s_div_D3 (__global short *src, int src_step, int src_offset
__kernel void arithm_s_div_D4 (__global int *src, int src_step, int src_offset,
__global int *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -397,7 +408,7 @@ __kernel void arithm_s_div_D4 (__global int *src, int src_step, int src_offset,
int data = *((__global int *)((__global char *)src + src_index));
int tmp_data = (scalar == 0 || data == 0) ? 0 : round2_int(scalar / (convert_double)(data));
int tmp_data = (scalar == 0 || data == 0) ? 0 : round2_int(scalar / (convert_F)(data));
*((__global int *)((__global char *)dst + dst_index)) =tmp_data;
}
@ -405,7 +416,7 @@ __kernel void arithm_s_div_D4 (__global int *src, int src_step, int src_offset,
__kernel void arithm_s_div_D5 (__global float *src, int src_step, int src_offset,
__global float *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
int rows, int cols, int dst_step1, F scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
@ -417,12 +428,13 @@ __kernel void arithm_s_div_D5 (__global float *src, int src_step, int src_offset
float data = *((__global float *)((__global char *)src + src_index));
float tmp_data = (scalar == 0 || data == 0) ? 0 : convert_float(scalar / (convert_double)(data));
float tmp_data = (scalar == 0 || data == 0) ? 0 : convert_float(scalar / (convert_F)(data));
*((__global float *)((__global char *)dst + dst_index)) = tmp_data;
}
}
#if defined (DOUBLE_SUPPORT)
__kernel void arithm_s_div_D6 (__global double *src, int src_step, int src_offset,
__global double *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, double scalar)
@ -442,5 +454,6 @@ __kernel void arithm_s_div_D6 (__global double *src, int src_step, int src_offse
*((__global double *)((__global char *)dst + dst_index)) = tmp_data;
}
}
#endif

@ -70,6 +70,8 @@ __kernel void arithm_exp_D5(int rows, int cols, int srcStep, int dstStep, int sr
}
}
#if defined (DOUBLE_SUPPORT)
__kernel void arithm_exp_D6(int rows, int cols, int srcStep, int dstStep, int srcOffset, int dstOffset, __global double *src, __global double *dst)
{
int x = get_global_id(0);
@ -87,3 +89,5 @@ __kernel void arithm_exp_D6(int rows, int cols, int srcStep, int dstStep, int sr
// dst[dstIdx] = exp(src[srcIdx]);
}
}
#endif

@ -73,7 +73,7 @@ __kernel void arithm_log_D5(int rows, int cols, int srcStep, int dstStep, int sr
}
}
#if defined (DOUBLE_SUPPORT)
__kernel void arithm_log_D6(int rows, int cols, int srcStep, int dstStep, int srcOffset, int dstOffset, __global double *src, __global double *dst)
{
int x = get_global_id(0);
@ -91,4 +91,4 @@ __kernel void arithm_log_D6(int rows, int cols, int srcStep, int dstStep, int sr
}
}
#endif

@ -6,7 +6,7 @@
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zero Lin, zero.lin@amd.com
// Niko Li, newlife20080214@gmail.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
@ -32,106 +32,107 @@
// the use of this software, even if advised of the possibility of such damage.
//
//
__kernel void convertC3C4_D0(__global const char4 * restrict src, __global char4 *dst, int cols, int rows,
int srcStep, int dstStep)
//#pragma OPENCL EXTENSION cl_amd_printf : enable
__kernel void convertC3C4(__global const GENTYPE4 * restrict src, __global GENTYPE4 *dst, int cols, int rows,
int dstStep_in_piexl,int pixel_end)
{
int id = get_global_id(0);
int y = id / cols;
int x = id % cols;
//int pixel_end = mul24(cols -1 , rows -1);
int3 pixelid = (int3)(mul24(id,3),mad24(id,3,1),mad24(id,3,2));
pixelid = clamp(pixelid,0,pixel_end);
GENTYPE4 pixel0, pixel1, pixel2, outpix0,outpix1,outpix2,outpix3;
pixel0 = src[pixelid.x];
pixel1 = src[pixelid.y];
pixel2 = src[pixelid.z];
int d = y * srcStep + x * 3;
char8 data = (char8)(src[d>>2], src[(d>>2) + 1]);
char temp[8] = {data.s0, data.s1, data.s2, data.s3, data.s4, data.s5, data.s6, data.s7};
int start = d & 3;
char4 ndata = (char4)(temp[start], temp[start + 1], temp[start + 2], 0);
if(y < rows)
dst[y * dstStep + x] = ndata;
}
__kernel void convertC3C4_D1(__global const short* restrict src, __global short4 *dst, int cols, int rows,
int srcStep, int dstStep)
{
int id = get_global_id(0);
int y = id / cols;
int x = id % cols;
outpix0 = (GENTYPE4)(pixel0.x,pixel0.y,pixel0.z,0);
outpix1 = (GENTYPE4)(pixel0.w,pixel1.x,pixel1.y,0);
outpix2 = (GENTYPE4)(pixel1.z,pixel1.w,pixel2.x,0);
outpix3 = (GENTYPE4)(pixel2.y,pixel2.z,pixel2.w,0);
int d = (y * srcStep + x * 6)>>1;
short4 data = *(__global short4 *)(src + ((d>>1)<<1));
short temp[4] = {data.s0, data.s1, data.s2, data.s3};
int start = d & 1;
short4 ndata = (short4)(temp[start], temp[start + 1], temp[start + 2], 0);
if(y < rows)
dst[y * dstStep + x] = ndata;
int4 outy = (id<<2)/cols;
int4 outx = (id<<2)%cols;
outx.y++;
outx.z+=2;
outx.w+=3;
outy = select(outy,outy+1,outx>=cols);
outx = select(outx,outx-cols,outx>=cols);
//outpix3 = select(outpix3, outpix0, (uchar4)(outy.w>=rows));
//outpix2 = select(outpix2, outpix0, (uchar4)(outy.z>=rows));
//outpix1 = select(outpix1, outpix0, (uchar4)(outy.y>=rows));
//outx = select(outx,(int4)outx.x,outy>=rows);
//outy = select(outy,(int4)outy.x,outy>=rows);
int4 addr = mad24(outy,dstStep_in_piexl,outx);
if(outx.w<cols && outy.w<rows)
{
dst[addr.x] = outpix0;
dst[addr.y] = outpix1;
dst[addr.z] = outpix2;
dst[addr.w] = outpix3;
}
else if(outx.z<cols && outy.z<rows)
{
dst[addr.x] = outpix0;
dst[addr.y] = outpix1;
dst[addr.z] = outpix2;
}
else if(outx.y<cols && outy.y<rows)
{
dst[addr.x] = outpix0;
dst[addr.y] = outpix1;
}
else if(outx.x<cols && outy.x<rows)
{
dst[addr.x] = outpix0;
}
}
__kernel void convertC3C4_D2(__global const int * restrict src, __global int4 *dst, int cols, int rows,
int srcStep, int dstStep)
{
int id = get_global_id(0);
int y = id / cols;
int x = id % cols;
int d = (y * srcStep + x * 12)>>2;
int4 data = *(__global int4 *)(src + d);
data.z = 0;
if(y < rows)
dst[y * dstStep + x] = data;
}
__kernel void convertC4C3_D2(__global const int4 * restrict src, __global int *dst, int cols, int rows,
int srcStep, int dstStep)
{
int id = get_global_id(0);
int y = id / cols;
int x = id % cols;
int4 data = src[y * srcStep + x];
if(y < rows)
{
int d = y * dstStep + x * 3;
dst[d] = data.x;
dst[d + 1] = data.y;
dst[d + 2] = data.z;
}
}
__kernel void convertC4C3_D1(__global const short4 * restrict src, __global short *dst, int cols, int rows,
int srcStep, int dstStep)
__kernel void convertC4C3(__global const GENTYPE4 * restrict src, __global GENTYPE4 *dst, int cols, int rows,
int srcStep_in_pixel,int pixel_end)
{
int id = get_global_id(0);
int id = get_global_id(0)<<2;
int y = id / cols;
int x = id % cols;
int4 x4 = (int4)(x,x+1,x+2,x+3);
int4 y4 = select((int4)y,(int4)(y+1),x4>=(int4)cols);
x4 = select(x4,x4-(int4)cols,x4>=(int4)cols);
int4 addr = mad24(y4,(int4)srcStep_in_pixel,x4);
GENTYPE4 pixel0,pixel1,pixel2,pixel3, outpixel1, outpixel2;
pixel0 = src[addr.x];
pixel1 = src[addr.y];
pixel2 = src[addr.z];
pixel3 = src[addr.w];
short4 data = src[y * srcStep + x];
if(y < rows)
pixel0.w = pixel1.x;
outpixel1.x = pixel1.y;
outpixel1.y = pixel1.z;
outpixel1.z = pixel2.x;
outpixel1.w = pixel2.y;
outpixel2.x = pixel2.z;
outpixel2.y = pixel3.x;
outpixel2.z = pixel3.y;
outpixel2.w = pixel3.z;
int4 outaddr = mul24(id>>2 , 3);
outaddr.y++;
outaddr.z+=2;
//printf("%d ",outaddr.z);
if(outaddr.z <= pixel_end)
{
int d = y * dstStep + x * 3;
dst[d] = data.x;
dst[d + 1] = data.y;
dst[d + 2] = data.z;
dst[outaddr.x] = pixel0;
dst[outaddr.y] = outpixel1;
dst[outaddr.z] = outpixel2;
}
}
__kernel void convertC4C3_D0(__global const char4 * restrict src, __global char *dst, int cols, int rows,
int srcStep, int dstStep)
{
int id = get_global_id(0);
int y = id / cols;
int x = id % cols;
char4 data = src[y * srcStep + x];
if(y < rows)
else if(outaddr.y <= pixel_end)
{
int d = y * dstStep + x * 3;
dst[d] = data.x;
dst[d + 1] = data.y;
dst[d + 2] = data.z;
dst[outaddr.x] = pixel0;
dst[outaddr.y] = outpixel1;
}
else if(outaddr.x <= pixel_end)
{
dst[outaddr.x] = pixel0;
}
}

@ -16,7 +16,7 @@
//
// @Authors
// Zhang Ying, zhangying913@gmail.com
//
// Niko Li, newlife20080214@gmail.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
@ -50,21 +50,11 @@
#if defined DOUBLE_SUPPORT
#pragma OPENCL EXTENSION cl_khr_fp64:enable
typedef double F ;
#define F double
#else
typedef float F;
#define F float
#endif
inline uint4 getPoint_8uc4(__global uchar4 * data, int offset, int x, int y, int step)
{
return convert_uint4(data[(offset>>2)+ y * (step>>2) + x]);
}
inline float getPoint_32fc1(__global float * data, int offset, int x, int y, int step)
{
return data[(offset>>2)+ y * (step>>2) + x];
}
#define INTER_RESIZE_COEF_BITS 11
#define INTER_RESIZE_COEF_SCALE (1 << INTER_RESIZE_COEF_BITS)
@ -72,8 +62,8 @@ inline float getPoint_32fc1(__global float * data, int offset, int x, int y, int
#define CAST_SCALE (1.0f/(1<<CAST_BITS))
#define INC(x,l) ((x+1) >= (l) ? (x):((x)+1))
__kernel void resizeLN_C1_D0(__global unsigned char * dst, __global unsigned char const * restrict src,
int dst_offset, int src_offset,int dst_step, int src_step,
__kernel void resizeLN_C1_D0(__global uchar * dst, __global uchar const * restrict src,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, float ifx, float ify )
{
int gx = get_global_id(0);
@ -81,7 +71,7 @@ __kernel void resizeLN_C1_D0(__global unsigned char * dst, __global unsigned cha
float4 sx, u, xf;
int4 x, DX;
gx = (gx<<2) - (dst_offset&3);
gx = (gx<<2) - (dstoffset_in_pixel&3);
DX = (int4)(gx, gx+1, gx+2, gx+3);
sx = (convert_float4(DX) + 0.5f) * ifx - 0.5f;
xf = floor(sx);
@ -119,10 +109,10 @@ __kernel void resizeLN_C1_D0(__global unsigned char * dst, __global unsigned cha
int4 val1, val2, val;
int4 sdata1, sdata2, sdata3, sdata4;
int4 pos1 = src_offset + y * src_step + x;
int4 pos2 = src_offset + y * src_step + x_;
int4 pos3 = src_offset + y_ * src_step + x;
int4 pos4 = src_offset + y_ * src_step + x_;
int4 pos1 = mad24(y, srcstep_in_pixel, x+srcoffset_in_pixel);
int4 pos2 = mad24(y, srcstep_in_pixel, x_+srcoffset_in_pixel);
int4 pos3 = mad24(y_, srcstep_in_pixel, x+srcoffset_in_pixel);
int4 pos4 = mad24(y_, srcstep_in_pixel, x_+srcoffset_in_pixel);
sdata1.s0 = src[pos1.s0];
sdata1.s1 = src[pos1.s1];
@ -144,20 +134,44 @@ __kernel void resizeLN_C1_D0(__global unsigned char * dst, __global unsigned cha
sdata4.s2 = src[pos4.s2];
sdata4.s3 = src[pos4.s3];
val1 = U1 * sdata1 + U * sdata2;
val2 = U1 * sdata3 + U * sdata4;
val = V1 * val1 + V * val2;
val1 = mul24(U1 , sdata1) + mul24(U , sdata2);
val2 = mul24(U1 , sdata3) + mul24(U , sdata4);
val = mul24(V1 , val1) + mul24(V , val2);
__global uchar4* d = (__global uchar4*)(dst + dst_offset + dy * dst_step + gx);
uchar4 dVal = *d;
int4 con = ( DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows);
//__global uchar4* d = (__global uchar4*)(dst + dstoffset_in_pixel + dy * dststep_in_pixel + gx);
//uchar4 dVal = *d;
//int4 con = ( DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows);
val = ((val + (1<<(CAST_BITS-1))) >> CAST_BITS);
*d = convert_uchar4(con != 0) ? convert_uchar4_sat(val) : dVal;
//*d = convert_uchar4(con != 0) ? convert_uchar4_sat(val) : dVal;
pos4 = mad24(dy, dststep_in_pixel, gx+dstoffset_in_pixel);
pos4.y++;
pos4.z+=2;
uchar4 uval = convert_uchar4_sat(val);
int con = (gx >= 0 && gx+3 < dst_cols && dy >= 0 && dy < dst_rows);
if(con)
{
*(__global uchar4*)(dst + pos4.x)=uval;
}
else
{
if(gx >= 0 && gx < dst_cols && dy >= 0 && dy < dst_rows)
{
dst[pos4.x]=uval.x;
}
if(gx+1 >= 0 && gx+1 < dst_cols && dy >= 0 && dy < dst_rows)
{
dst[pos4.y]=uval.y;
}
if(gx+2 >= 0 && gx+2 < dst_cols && dy >= 0 && dy < dst_rows)
{
dst[pos4.z]=uval.z;
}
}
}
__kernel void resizeLN_C4_D0(__global uchar4 * dst, __global uchar4 * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, float ifx, float ify )
{
int dx = get_global_id(0);
@ -182,18 +196,25 @@ __kernel void resizeLN_C4_D0(__global uchar4 * dst, __global uchar4 * src,
int y_ = INC(y,src_rows);
int x_ = INC(x,src_cols);
uint4 val = U1* V1 * getPoint_8uc4(src,src_offset,x,y,src_step) +
U1* V * getPoint_8uc4(src,src_offset,x,y_,src_step) +
U * V1 * getPoint_8uc4(src,src_offset,x_,y,src_step) +
U * V * getPoint_8uc4(src,src_offset,x_,y_,src_step);
int4 srcpos;
srcpos.x = mad24(y, srcstep_in_pixel, x+srcoffset_in_pixel);
srcpos.y = mad24(y, srcstep_in_pixel, x_+srcoffset_in_pixel);
srcpos.z = mad24(y_, srcstep_in_pixel, x+srcoffset_in_pixel);
srcpos.w = mad24(y_, srcstep_in_pixel, x_+srcoffset_in_pixel);
int4 data0 = convert_int4(src[srcpos.x]);
int4 data1 = convert_int4(src[srcpos.y]);
int4 data2 = convert_int4(src[srcpos.z]);
int4 data3 = convert_int4(src[srcpos.w]);
int4 val = mul24(mul24(U1, V1) , data0) + mul24(mul24(U, V1) , data1)
+mul24(mul24(U1, V) , data2)+mul24(mul24(U, V) , data3);
int dstpos = mad24(dy, dststep_in_pixel, dx+dstoffset_in_pixel);
uchar4 uval = convert_uchar4((val + (1<<(CAST_BITS-1)))>>CAST_BITS);
if(dx>=0 && dx<dst_cols && dy>=0 && dy<dst_rows)
dst[(dst_offset>>2) + dy * (dst_step>>2) + dx] = convert_uchar4((val + (1<<(CAST_BITS-1)))>>CAST_BITS);
dst[dstpos] = uval;
}
__kernel void resizeLN_C1_D5(__global float * dst, __global float * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, float ifx, float ify )
{
int dx = get_global_id(0);
@ -210,19 +231,29 @@ __kernel void resizeLN_C1_D5(__global float * dst, __global float * src,
int y_ = INC(y,src_rows);
int x_ = INC(x,src_cols);
float val1 = (1.0f-u) * getPoint_32fc1(src,src_offset,x,y,src_step) +
u * getPoint_32fc1(src,src_offset,x_,y,src_step) ;
float val2 = (1.0f-u) * getPoint_32fc1(src,src_offset,x,y_,src_step) +
u * getPoint_32fc1(src,src_offset,x_,y_,src_step);
float val = (1.0f-v) * val1 + v * val2;
float u1 = 1.f-u;
float v1 = 1.f-v;
int4 srcpos;
srcpos.x = mad24(y, srcstep_in_pixel, x+srcoffset_in_pixel);
srcpos.y = mad24(y, srcstep_in_pixel, x_+srcoffset_in_pixel);
srcpos.z = mad24(y_, srcstep_in_pixel, x+srcoffset_in_pixel);
srcpos.w = mad24(y_, srcstep_in_pixel, x_+srcoffset_in_pixel);
float data0 = src[srcpos.x];
float data1 = src[srcpos.y];
float data2 = src[srcpos.z];
float data3 = src[srcpos.w];
float val1 = u1 * data0 +
u * data1 ;
float val2 = u1 * data2 +
u * data3;
float val = v1 * val1 + v * val2;
int dstpos = mad24(dy, dststep_in_pixel, dx+dstoffset_in_pixel);
if(dx>=0 && dx<dst_cols && dy>=0 && dy<dst_rows)
dst[(dst_offset>>2) + dy * (dst_step>>2) + dx] = val;
dst[dstpos] = val;
}
__kernel void resizeLN_C4_D5(__global float4 * dst, __global float4 * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, float ifx, float ify )
{
int dx = get_global_id(0);
@ -239,31 +270,35 @@ __kernel void resizeLN_C4_D5(__global float4 * dst, __global float4 * src,
int y_ = INC(y,src_rows);
int x_ = INC(x,src_cols);
float u1 = 1.f-u;
float v1 = 1.f-v;
int4 srcpos;
srcpos.x = mad24(y, srcstep_in_pixel, x+srcoffset_in_pixel);
srcpos.y = mad24(y, srcstep_in_pixel, x_+srcoffset_in_pixel);
srcpos.z = mad24(y_, srcstep_in_pixel, x+srcoffset_in_pixel);
srcpos.w = mad24(y_, srcstep_in_pixel, x_+srcoffset_in_pixel);
float4 s_data1, s_data2, s_data3, s_data4;
src_offset = (src_offset >> 4);
src_step = (src_step >> 4);
s_data1 = src[src_offset + y*src_step + x];
s_data2 = src[src_offset + y*src_step + x_];
s_data3 = src[src_offset + y_*src_step + x];
s_data4 = src[src_offset + y_*src_step + x_];
s_data1 = (1.0f-u) * s_data1 + u * s_data2;
s_data2 = (1.0f-u) * s_data3 + u * s_data4;
s_data3 = (1.0f-v) * s_data1 + v * s_data2;
s_data1 = src[srcpos.x];
s_data2 = src[srcpos.y];
s_data3 = src[srcpos.z];
s_data4 = src[srcpos.w];
float4 val = u1 * v1 * s_data1 + u * v1 * s_data2
+u1 * v *s_data3 + u * v *s_data4;
int dstpos = mad24(dy, dststep_in_pixel, dx+dstoffset_in_pixel);
if(dx>=0 && dx<dst_cols && dy>=0 && dy<dst_rows)
dst[(dst_offset>>4) + dy * (dst_step>>4) + dx] = s_data3;
dst[dstpos] = val;
}
__kernel void resizeNN_C1_D0(__global uchar * dst, __global uchar * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, F ifx, F ify )
{
int gx = get_global_id(0);
int dy = get_global_id(1);
gx = (gx<<2) - (dst_offset&3);
int4 GX = (int4)(gx, gx+1, gx+2, gx+3);
gx = (gx<<2) - (dstoffset_in_pixel&3);
//int4 GX = (int4)(gx, gx+1, gx+2, gx+3);
int4 sx;
int sy;
@ -279,22 +314,42 @@ __kernel void resizeNN_C1_D0(__global uchar * dst, __global uchar * src,
sy = min((int)floor(s5), src_rows-1);
uchar4 val;
int4 pos = src_offset + sy * src_step + sx;
int4 pos = mad24(sy, srcstep_in_pixel, sx+srcoffset_in_pixel);
val.s0 = src[pos.s0];
val.s1 = src[pos.s1];
val.s2 = src[pos.s2];
val.s3 = src[pos.s3];
__global uchar4* d = (__global uchar4*)(dst + dst_offset + dy * dst_step + gx);
uchar4 dVal = *d;
int4 con = (GX >= 0 && GX < dst_cols && dy >= 0 && dy < dst_rows);
val = convert_uchar4(con != 0) ? val : dVal;
*d = val;
//__global uchar4* d = (__global uchar4*)(dst + dstoffset_in_pixel + dy * dststep_in_pixel + gx);
//uchar4 dVal = *d;
pos = mad24(dy, dststep_in_pixel, gx+dstoffset_in_pixel);
pos.y++;
pos.z+=2;
int con = (gx >= 0 && gx+3 < dst_cols && dy >= 0 && dy < dst_rows);
if(con)
{
*(__global uchar4*)(dst + pos.x)=val;
}
else
{
if(gx >= 0 && gx < dst_cols && dy >= 0 && dy < dst_rows)
{
dst[pos.x]=val.x;
}
if(gx+1 >= 0 && gx+1 < dst_cols && dy >= 0 && dy < dst_rows)
{
dst[pos.y]=val.y;
}
if(gx+2 >= 0 && gx+2 < dst_cols && dy >= 0 && dy < dst_rows)
{
dst[pos.z]=val.z;
}
}
}
__kernel void resizeNN_C4_D0(__global uchar4 * dst, __global uchar4 * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, F ifx, F ify )
{
int dx = get_global_id(0);
@ -304,8 +359,8 @@ __kernel void resizeNN_C4_D0(__global uchar4 * dst, __global uchar4 * src,
F s2 = dy*ify;
int sx = fmin((float)floor(s1), (float)src_cols-1);
int sy = fmin((float)floor(s2), (float)src_rows-1);
int dpos = (dst_offset>>2) + dy * (dst_step>>2) + dx;
int spos = (src_offset>>2) + sy * (src_step>>2) + sx;
int dpos = mad24(dy, dststep_in_pixel, dx + dstoffset_in_pixel);
int spos = mad24(sy, srcstep_in_pixel, sx + srcoffset_in_pixel);
if(dx>=0 && dx<dst_cols && dy>=0 && dy<dst_rows)
dst[dpos] = src[spos];
@ -313,7 +368,7 @@ __kernel void resizeNN_C4_D0(__global uchar4 * dst, __global uchar4 * src,
}
__kernel void resizeNN_C1_D5(__global float * dst, __global float * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, F ifx, F ify )
{
int dx = get_global_id(0);
@ -323,16 +378,16 @@ __kernel void resizeNN_C1_D5(__global float * dst, __global float * src,
F s2 = dy*ify;
int sx = fmin((float)floor(s1), (float)src_cols-1);
int sy = fmin((float)floor(s2), (float)src_rows-1);
int dpos = (dst_offset>>2) + dy * (dst_step>>2) + dx;
int spos = (src_offset>>2) + sy * (src_step>>2) + sx;
int dpos = mad24(dy, dststep_in_pixel, dx + dstoffset_in_pixel);
int spos = mad24(sy, srcstep_in_pixel, sx + srcoffset_in_pixel);
if(dx>=0 && dx<dst_cols && dy>=0 && dy<dst_rows)
dst[dpos] = src[spos];
}
__kernel void resizeNN_C4_D5(__global float4 * dst, __global float4 * src,
int dst_offset, int src_offset,int dst_step, int src_step,
int dstoffset_in_pixel, int srcoffset_in_pixel,int dststep_in_pixel, int srcstep_in_pixel,
int src_cols, int src_rows, int dst_cols, int dst_rows, F ifx, F ify )
{
int dx = get_global_id(0);
@ -343,8 +398,8 @@ __kernel void resizeNN_C4_D5(__global float4 * dst, __global float4 * src,
int s_row = floor(s2);
int sx = min(s_col, src_cols-1);
int sy = min(s_row, src_rows-1);
int dpos = (dst_offset>>4) + dy * (dst_step>>4) + dx;
int spos = (src_offset>>4) + sy * (src_step>>4) + sx;
int dpos = mad24(dy, dststep_in_pixel, dx + dstoffset_in_pixel);
int spos = mad24(sy, srcstep_in_pixel, sx + srcoffset_in_pixel);
if(dx>=0 && dx<dst_cols && dy>=0 && dy<dst_rows)
dst[dpos] = src[spos];

@ -34,13 +34,8 @@
//
//
/*
#if defined (DOUBLE_SUPPORT)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
*/
__kernel void set_to_without_mask_C1_D0(float4 scalar,__global uchar * dstMat,
__kernel void set_to_without_mask_C1_D0(uchar scalar,__global uchar * dstMat,
int cols,int rows,int dstStep_in_pixel,int offset_in_pixel)
{
int x=get_global_id(0)<<2;
@ -49,7 +44,8 @@ __kernel void set_to_without_mask_C1_D0(float4 scalar,__global uchar * dstMat,
int addr_end = mad24(y,dstStep_in_pixel,cols+offset_in_pixel);
int idx = mad24(y,dstStep_in_pixel,(int)(x+ offset_in_pixel & (int)0xfffffffc));
uchar4 out;
out.x = out.y = out.z = out.w = convert_uchar_sat(scalar.x);
out.x = out.y = out.z = out.w = scalar;
if ( (idx>=addr_start)&(idx+3 < addr_end) & (y < rows))
{
*(__global uchar4*)(dstMat+idx) = out;
@ -65,7 +61,7 @@ __kernel void set_to_without_mask_C1_D0(float4 scalar,__global uchar * dstMat,
}
}
__kernel void set_to_without_mask_C4_D0(float4 scalar,__global uchar4 * dstMat,
__kernel void set_to_without_mask(GENTYPE scalar,__global GENTYPE * dstMat,
int cols,int rows,int dstStep_in_pixel,int offset_in_pixel)
{
int x=get_global_id(0);
@ -73,52 +69,6 @@ __kernel void set_to_without_mask_C4_D0(float4 scalar,__global uchar4 * dstMat,
if ( (x < cols) & (y < rows))
{
int idx = mad24(y,dstStep_in_pixel,x+ offset_in_pixel);
dstMat[idx] = convert_uchar4_sat(scalar);
dstMat[idx] = scalar;
}
}
__kernel void set_to_without_mask_C1_D4(float4 scalar,__global int * dstMat,
int cols,int rows,int dstStep_in_pixel,int offset_in_pixel)
{
int x=get_global_id(0);
int y=get_global_id(1);
if ( (x < cols) & (y < rows))
{
int idx = mad24(y, dstStep_in_pixel, x+offset_in_pixel);
dstMat[idx] = convert_int_sat(scalar.x);
}
}
__kernel void set_to_without_mask_C4_D4(float4 scalar,__global int4 * dstMat,
int cols,int rows,int dstStep_in_pixel,int offset_in_pixel)
{
int x=get_global_id(0);
int y=get_global_id(1);
if ( (x < cols) & (y < rows))
{
int idx = mad24(y,dstStep_in_pixel,x+ offset_in_pixel);
dstMat[idx] = convert_int4_sat(scalar);
}
}
__kernel void set_to_without_mask_C1_D5(float4 scalar,__global float * dstMat,
int cols,int rows,int dstStep_in_pixel,int offset_in_pixel)
{
int x=get_global_id(0);
int y=get_global_id(1);
if ( (x < cols) & (y < rows))
{
int idx = mad24(y,dstStep_in_pixel,x+ offset_in_pixel);
dstMat[idx] = scalar.x;
}
}
__kernel void set_to_without_mask_C4_D5(float4 scalar,__global float4 * dstMat,
int cols,int rows,int dstStep_in_pixel,int offset_in_pixel)
{
int x=get_global_id(0);
int y=get_global_id(1);
if ( (x < cols) & (y < rows))
{
int idx = mad24(y,dstStep_in_pixel,x+ offset_in_pixel);
dstMat[idx] = scalar;
}
}

@ -35,12 +35,6 @@
//
/*#if defined (__ATI__)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (__NVIDIA__)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
*/
/*
__kernel void set_to_with_mask_C1_D0(
float4 scalar,
@ -67,7 +61,7 @@ __kernel void set_to_with_mask_C1_D0(
*/
//#pragma OPENCL EXTENSION cl_amd_printf : enable
__kernel void set_to_with_mask_C1_D0(
float4 scalar,
uchar scalar,
__global uchar* dstMat,
int cols,
int rows,
@ -85,7 +79,7 @@ __kernel void set_to_with_mask_C1_D0(
int mask_addr_start = mad24(y,maskStep,maskoffset);
int mask_addr_end = mad24(y,maskStep,cols+maskoffset);
int maskidx = mad24(y,maskStep,x+ maskoffset & (int)0xfffffffc);
uchar out = convert_uchar_sat(scalar.x);
int off_mask = (maskoffset & 3) - (dstoffset_in_pixel & 3) +3;
if ( (x < cols) & (y < rows) )
@ -107,104 +101,16 @@ __kernel void set_to_with_mask_C1_D0(
temp_mask2.z = (maskidx+6 >=mask_addr_start)&(maskidx+6 < mask_addr_end) ? temp_mask2.z : 0;
temp_mask2.w = (maskidx+7 >=mask_addr_start)&(maskidx+7 < mask_addr_end) ? temp_mask2.w : 0;
uchar trans_mask[10] = {temp_mask1.y,temp_mask1.z,temp_mask1.w,temp_mask.x,temp_mask.y,temp_mask.z,temp_mask.w,temp_mask2.x,temp_mask2.y,temp_mask2.z};
temp_dst.x = (dstidx>=dst_addr_start)&(dstidx<dst_addr_end)& trans_mask[off_mask] ? out : temp_dst.x;
temp_dst.y = (dstidx+1>=dst_addr_start)&(dstidx+1<dst_addr_end)& trans_mask[off_mask+1] ? out : temp_dst.y;
temp_dst.z = (dstidx+2>=dst_addr_start)&(dstidx+2<dst_addr_end)& trans_mask[off_mask+2] ? out : temp_dst.z;
temp_dst.w = (dstidx+3>=dst_addr_start)&(dstidx+3<dst_addr_end)& trans_mask[off_mask+3] ? out : temp_dst.w;
temp_dst.x = (dstidx>=dst_addr_start)&(dstidx<dst_addr_end)& trans_mask[off_mask] ? scalar : temp_dst.x;
temp_dst.y = (dstidx+1>=dst_addr_start)&(dstidx+1<dst_addr_end)& trans_mask[off_mask+1] ? scalar : temp_dst.y;
temp_dst.z = (dstidx+2>=dst_addr_start)&(dstidx+2<dst_addr_end)& trans_mask[off_mask+2] ? scalar : temp_dst.z;
temp_dst.w = (dstidx+3>=dst_addr_start)&(dstidx+3<dst_addr_end)& trans_mask[off_mask+3] ? scalar : temp_dst.w;
*(__global uchar4*)(dstMat+dstidx) = temp_dst;
}
}
__kernel void set_to_with_mask_C4_D0(
float4 scalar,
__global uchar4 * dstMat,
int cols,
int rows,
int dstStep_in_pixel,
int dstoffset_in_pixel,
__global const uchar * restrict maskMat,
int maskStep,
int maskoffset)
{
int x=get_global_id(0);
int y=get_global_id(1);
int dstidx = mad24(y,dstStep_in_pixel,x+ dstoffset_in_pixel);
int maskidx = mad24(y,maskStep,x+ maskoffset);
uchar mask = maskMat[maskidx];
if ( (x < cols) & (y < rows) & mask)
{
dstMat[dstidx] = convert_uchar4_sat(scalar);
}
}
__kernel void set_to_with_mask_C1_D4(
float4 scalar,
__global int * dstMat,
int cols,
int rows,
int dstStep_in_pixel,
int dstoffset_in_pixel,
__global const uchar * restrict maskMat,
int maskStep,
int maskoffset)
{
int x=get_global_id(0);
int y=get_global_id(1);
int dstidx = mad24(y,dstStep_in_pixel,x+ dstoffset_in_pixel);
int maskidx = mad24(y,maskStep,x+ maskoffset);
uchar mask = maskMat[maskidx];
if ( (x < cols) & (y < rows) & mask)
{
dstMat[dstidx] = convert_int_sat(scalar.x);
}
}
__kernel void set_to_with_mask_C4_D4(
float4 scalar,
__global int4 * dstMat,
int cols,
int rows,
int dstStep_in_pixel,
int dstoffset_in_pixel,
__global const uchar * restrict maskMat,
int maskStep,
int maskoffset)
{
int x=get_global_id(0);
int y=get_global_id(1);
int dstidx = mad24(y,dstStep_in_pixel,x+ dstoffset_in_pixel);
int maskidx = mad24(y,maskStep,x+ maskoffset);
uchar mask = maskMat[maskidx];
if ( (x < cols) & (y < rows) & mask)
{
dstMat[dstidx] = convert_int4_sat(scalar);
}
}
__kernel void set_to_with_mask_C1_D5(
float4 scalar,
__global float * dstMat,
int cols,
int rows,
int dstStep_in_pixel,
int dstoffset_in_pixel,
__global const uchar * restrict maskMat,
int maskStep,
int maskoffset)
{
int x=get_global_id(0);
int y=get_global_id(1);
int dstidx = mad24(y,dstStep_in_pixel,x+ dstoffset_in_pixel);
int maskidx = mad24(y,maskStep,x+ maskoffset);
uchar mask = maskMat[maskidx];
if ( (x < cols) & (y < rows) & mask)
{
dstMat[dstidx] = scalar.x;
}
}
__kernel void set_to_with_mask_C4_D5(
float4 scalar,
__global float4 * dstMat,
__kernel void set_to_with_mask(
GENTYPE scalar,
__global GENTYPE * dstMat,
int cols,
int rows,
int dstStep_in_pixel,
@ -220,7 +126,7 @@ __kernel void set_to_with_mask_C4_D5(
uchar mask = maskMat[maskidx];
if ( (x < cols) & (y < rows) & mask)
{
dstMat[dstidx] = scalar;
dstMat[dstidx] = scalar;
}
}

@ -120,6 +120,7 @@ namespace cv
extern const char *operator_convertTo;
extern const char *operator_setTo;
extern const char *operator_setToM;
extern const char *convertC3C4;
}
}
@ -127,43 +128,98 @@ namespace cv
// convert_C3C4
void convert_C3C4(const cl_mem &src, oclMat &dst, int srcStep)
{
int dstStep = dst.step1() / dst.channels();
int dstStep_in_pixel = dst.step1() / dst.channels();
int pixel_end = dst.wholecols * dst.wholerows -1;
Context *clCxt = dst.clCxt;
string kernelName = "convertC3C4";
char compile_option[32];
switch(dst.depth())
{
case 0:
sprintf(compile_option, "-D GENTYPE4=uchar4");
break;
case 1:
sprintf(compile_option, "-D GENTYPE4=char4");
break;
case 2:
sprintf(compile_option, "-D GENTYPE4=ushort4");
break;
case 3:
sprintf(compile_option, "-D GENTYPE4=short4");
break;
case 4:
sprintf(compile_option, "-D GENTYPE4=int4");
break;
case 5:
sprintf(compile_option, "-D GENTYPE4=float4");
break;
case 6:
sprintf(compile_option, "-D GENTYPE4=double4");
break;
default:
CV_Error(-217,"unknown depth");
}
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.wholecols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.wholerows));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep_in_pixel));
args.push_back( make_pair( sizeof(cl_int), (void *)&pixel_end));
size_t globalThreads[3] = {(dst.wholecols *dst.wholerows + 255) / 256 * 256, 1, 1};
size_t globalThreads[3] = {((dst.wholecols *dst.wholerows+3)/4 + 255) / 256 * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(clCxt, &convertC3C4, kernelName, globalThreads, localThreads, args, -1, dst.elemSize1() >> 1);
openCLExecuteKernel(clCxt, &convertC3C4, kernelName, globalThreads, localThreads, args, -1, -1,compile_option);
}
////////////////////////////////////////////////////////////////////////
// convert_C4C3
void convert_C4C3(const oclMat &src, cl_mem &dst, int dstStep)
{
int srcStep = src.step1() / src.channels();
int srcStep_in_pixel = src.step1() / src.channels();
int pixel_end = src.wholecols*src.wholerows -1;
Context *clCxt = src.clCxt;
string kernelName = "convertC4C3";
char compile_option[32];
switch(src.depth())
{
case 0:
sprintf(compile_option, "-D GENTYPE4=uchar4");
break;
case 1:
sprintf(compile_option, "-D GENTYPE4=char4");
break;
case 2:
sprintf(compile_option, "-D GENTYPE4=ushort4");
break;
case 3:
sprintf(compile_option, "-D GENTYPE4=short4");
break;
case 4:
sprintf(compile_option, "-D GENTYPE4=int4");
break;
case 5:
sprintf(compile_option, "-D GENTYPE4=float4");
break;
case 6:
sprintf(compile_option, "-D GENTYPE4=double4");
break;
default:
CV_Error(-217,"unknown depth");
}
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.wholecols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.wholerows));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep_in_pixel));
args.push_back( make_pair( sizeof(cl_int), (void *)&pixel_end));
size_t globalThreads[3] = {(src.wholecols *src.wholerows + 255) / 256 * 256, 1, 1};
size_t globalThreads[3] = {((src.wholecols *src.wholerows+3)/4 + 255) / 256 * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(clCxt, &convertC3C4, kernelName, globalThreads, localThreads, args, -1, src.elemSize1() >> 1);
openCLExecuteKernel(clCxt, &convertC3C4, kernelName, globalThreads, localThreads, args, -1, -1,compile_option);
}
void cv::ocl::oclMat::upload(const Mat &m)
@ -173,23 +229,47 @@ void cv::ocl::oclMat::upload(const Mat &m)
Point ofs;
m.locateROI(wholeSize, ofs);
int type = m.type();
//if(m.channels() == 3)
//type = CV_MAKETYPE(m.depth(), 4);
if(m.channels() == 3)
{
type = CV_MAKETYPE(m.depth(), 4);
}
create(wholeSize, type);
//if(m.channels() == 3)
//{
//int pitch = GPU_MATRIX_MALLOC_STEP(wholeSize.width * 3 * m.elemSize1());
//int err;
//cl_mem temp = clCreateBuffer(clCxt->clContext,CL_MEM_READ_WRITE,
//pitch*wholeSize.height,0,&err);
//CV_DbgAssert(err==0);
//openCLMemcpy2D(clCxt,temp,pitch,m.datastart,m.step,wholeSize.width*m.elemSize(),wholeSize.height,clMemcpyHostToDevice);
//convert_C3C4(temp, *this, pitch);
//}
//else
openCLMemcpy2D(clCxt, data, step, m.datastart, m.step, wholeSize.width * elemSize(), wholeSize.height, clMemcpyHostToDevice);
if(m.channels() == 3)
{
int pitch = wholeSize.width * 3 * m.elemSize1();
int tail_padding = m.elemSize1()*3072;
int err;
cl_mem temp = clCreateBuffer(clCxt->impl->clContext,CL_MEM_READ_WRITE,
(pitch*wholeSize.height+tail_padding-1)/tail_padding*tail_padding,0,&err);
openCLVerifyCall(err);
openCLMemcpy2D(clCxt,temp,pitch,m.datastart,m.step,wholeSize.width*m.elemSize(),wholeSize.height,clMemcpyHostToDevice,3);
convert_C3C4(temp, *this, pitch);
//int* cputemp=new int[wholeSize.height*wholeSize.width * 3];
//int* cpudata=new int[this->step*this->wholerows/sizeof(int)];
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, temp, CL_TRUE,
// 0, wholeSize.height*wholeSize.width * 3* sizeof(int), cputemp, 0, NULL, NULL));
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)data, CL_TRUE,
// 0, this->step*this->wholerows, cpudata, 0, NULL, NULL));
//for(int i=0;i<wholeSize.height;i++)
//{
// int *a = cputemp+i*wholeSize.width * 3,*b = cpudata + i*this->step/sizeof(int);
// for(int j=0;j<wholeSize.width;j++)
// {
// if((a[3*j] != b[4*j])||(a[3*j+1] != b[4*j+1])||(a[3*j+2] != b[4*j+2]))
// printf("rows=%d,cols=%d,cputtemp=%d,%d,%d;cpudata=%d,%d,%d\n",
// i,j,a[3*j],a[3*j+1],a[3*j+2],b[4*j],b[4*j+1],b[4*j+2]);
// }
//}
//delete []cputemp;
//delete []cpudata;
openCLSafeCall(clReleaseMemObject(temp));
}
else
{
openCLMemcpy2D(clCxt, data, step, m.datastart, m.step, wholeSize.width * elemSize(), wholeSize.height, clMemcpyHostToDevice);
}
rows = m.rows;
cols = m.cols;
@ -201,23 +281,47 @@ void cv::ocl::oclMat::download(cv::Mat &m) const
{
CV_DbgAssert(!this->empty());
int t = type();
//if(download_channels == 3)
//t = CV_MAKETYPE(depth(), 3);
if(download_channels == 3)
{
t = CV_MAKETYPE(depth(), 3);
}
m.create(wholerows, wholecols, t);
//if(download_channels == 3)
//{
//int pitch = GPU_MATRIX_MALLOC_STEP(wholecols * 3 * m.elemSize1());
//int err;
//cl_mem temp = clCreateBuffer(clCxt->clContext,CL_MEM_READ_WRITE,
//pitch*wholerows,0,&err);
//CV_DbgAssert(err==0);
//convert_C4C3(*this, temp, pitch/m.elemSize1());
//openCLMemcpy2D(clCxt,m.data,m.step,temp,pitch,wholecols*m.elemSize(),wholerows,clMemcpyDeviceToHost);
//}
//else
openCLMemcpy2D(clCxt, m.data, m.step, data, step, wholecols * elemSize(), wholerows, clMemcpyDeviceToHost);
if(download_channels == 3)
{
int pitch = wholecols * 3 * m.elemSize1();
int tail_padding = m.elemSize1()*3072;
int err;
cl_mem temp = clCreateBuffer(clCxt->impl->clContext,CL_MEM_READ_WRITE,
(pitch*wholerows+tail_padding-1)/tail_padding*tail_padding,0,&err);
openCLVerifyCall(err);
convert_C4C3(*this, temp, pitch/m.elemSize1());
openCLMemcpy2D(clCxt,m.data,m.step,temp,pitch,wholecols*m.elemSize(),wholerows,clMemcpyDeviceToHost,3);
//int* cputemp=new int[wholecols*wholerows * 3];
//int* cpudata=new int[this->step*this->wholerows/sizeof(int)];
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, temp, CL_TRUE,
// 0, wholecols*wholerows * 3* sizeof(int), cputemp, 0, NULL, NULL));
//openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)data, CL_TRUE,
// 0, this->step*this->wholerows, cpudata, 0, NULL, NULL));
//for(int i=0;i<wholerows;i++)
//{
// int *a = cputemp+i*wholecols * 3,*b = cpudata + i*this->step/sizeof(int);
// for(int j=0;j<wholecols;j++)
// {
// if((a[3*j] != b[4*j])||(a[3*j+1] != b[4*j+1])||(a[3*j+2] != b[4*j+2]))
// printf("rows=%d,cols=%d,cputtemp=%d,%d,%d;cpudata=%d,%d,%d\n",
// i,j,a[3*j],a[3*j+1],a[3*j+2],b[4*j],b[4*j+1],b[4*j+2]);
// }
//}
//delete []cputemp;
//delete []cpudata;
openCLSafeCall(clReleaseMemObject(temp));
}
else
{
openCLMemcpy2D(clCxt, m.data, m.step, data, step, wholecols * elemSize(), wholerows, clMemcpyDeviceToHost);
}
Size wholesize;
Point ofs;
locateROI(wholesize, ofs);
@ -373,11 +477,7 @@ oclMat &cv::ocl::oclMat::operator = (const Scalar &s)
void set_to_withoutmask_run(const oclMat &dst, const Scalar &scalar, string kernelName)
{
vector<pair<size_t , const void *> > args;
cl_float4 val;
val.s[0] = scalar.val[0];
val.s[1] = scalar.val[1];
val.s[2] = scalar.val[2];
val.s[3] = scalar.val[3];
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
@ -388,25 +488,168 @@ void set_to_withoutmask_run(const oclMat &dst, const Scalar &scalar, string kern
{
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val ));
char compile_option[32];
union sc
{
cl_uchar4 uval;
cl_char4 cval;
cl_ushort4 usval;
cl_short4 shval;
cl_int4 ival;
cl_float4 fval;
cl_double4 dval;
}val;
switch(dst.depth())
{
case 0:
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=uchar");
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=uchar4");
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 1:
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=char");
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=char4");
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 2:
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=ushort");
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=ushort4");
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 3:
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=short");
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=short4");
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 4:
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=int");
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=int4");
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 5:
val.fval.s[0] = scalar.val[0];
val.fval.s[1] = scalar.val[1];
val.fval.s[2] = scalar.val[2];
val.fval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=float");
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=float4");
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 6:
val.dval.s[0] = scalar.val[0];
val.dval.s[1] = scalar.val[1];
val.dval.s[2] = scalar.val[2];
val.dval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=double");
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=double4");
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
default:
CV_Error(-217,"unknown depth");
}
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel));
openCLExecuteKernel(dst.clCxt , &operator_setTo, kernelName, globalThreads,
localThreads, args, dst.channels(), dst.depth());
localThreads, args, -1, -1,compile_option);
}
void set_to_withmask_run(const oclMat &dst, const Scalar &scalar, const oclMat &mask, string kernelName)
{
CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols);
vector<pair<size_t , const void *> > args;
cl_float4 val;
val.s[0] = scalar.val[0];
val.s[1] = scalar.val[1];
val.s[2] = scalar.val[2];
val.s[3] = scalar.val[3];
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
@ -417,7 +660,155 @@ void set_to_withmask_run(const oclMat &dst, const Scalar &scalar, const oclMat &
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val ));
char compile_option[32];
union sc
{
cl_uchar4 uval;
cl_char4 cval;
cl_ushort4 usval;
cl_short4 shval;
cl_int4 ival;
cl_float4 fval;
cl_double4 dval;
}val;
switch(dst.depth())
{
case 0:
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=uchar");
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=uchar4");
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 1:
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=char");
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=char4");
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 2:
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=ushort");
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=ushort4");
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 3:
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=short");
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=short4");
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 4:
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=int");
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=int4");
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 5:
val.fval.s[0] = scalar.val[0];
val.fval.s[1] = scalar.val[1];
val.fval.s[2] = scalar.val[2];
val.fval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=float");
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=float4");
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
case 6:
val.dval.s[0] = scalar.val[0];
val.dval.s[1] = scalar.val[1];
val.dval.s[2] = scalar.val[2];
val.dval.s[3] = scalar.val[3];
switch(dst.channels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=double");
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=double4");
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval ));
break;
default:
CV_Error(-217,"unsupported channels");
}
break;
default:
CV_Error(-217,"unknown depth");
}
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
@ -427,7 +818,7 @@ void set_to_withmask_run(const oclMat &dst, const Scalar &scalar, const oclMat &
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset ));
openCLExecuteKernel(dst.clCxt , &operator_setToM, kernelName, globalThreads,
localThreads, args, dst.channels(), dst.depth());
localThreads, args, -1, -1,compile_option);
}
oclMat &cv::ocl::oclMat::setTo(const Scalar &scalar, const oclMat &mask)
@ -446,11 +837,25 @@ oclMat &cv::ocl::oclMat::setTo(const Scalar &scalar, const oclMat &mask)
// (cl_mem)mem,1,0,sizeof(double)*4,s,0,0,0));
if (mask.empty())
{
set_to_withoutmask_run(*this, scalar, "set_to_without_mask");
if(type()==CV_8UC1)
{
set_to_withoutmask_run(*this, scalar, "set_to_without_mask_C1_D0");
}
else
{
set_to_withoutmask_run(*this, scalar, "set_to_without_mask");
}
}
else
{
set_to_withmask_run(*this, scalar, mask, "set_to_with_mask");
if(type()==CV_8UC1)
{
set_to_withmask_run(*this, scalar, mask,"set_to_with_mask_C1_D0");
}
else
{
set_to_withmask_run(*this, scalar, mask, "set_to_with_mask");
}
}
return *this;

@ -97,7 +97,7 @@ namespace cv
size_t widthInBytes, size_t height);
void openCLMemcpy2D(Context *clCxt, void *dst, size_t dpitch,
const void *src, size_t spitch,
size_t width, size_t height, enum openCLMemcpyKind kind);
size_t width, size_t height, enum openCLMemcpyKind kind, int channels=-1);
void openCLCopyBuffer2D(Context *clCxt, void *dst, size_t dpitch, int dst_offset,
const void *src, size_t spitch,
size_t width, size_t height, int src_offset, enum openCLMemcpyKind kind);
@ -126,8 +126,8 @@ namespace cv
cl_mem openCLMalloc(cl_context clCxt, size_t size, cl_mem_flags flags, void *host_ptr);
void openCLMemcpy2DWithNoPadding(cl_command_queue command_queue, cl_mem buffer, size_t size, size_t offset, void *ptr,
enum openCLMemcpyKind kind, cl_bool blocking_write);
//void openCLMemcpy2DWithNoPadding(cl_command_queue command_queue, cl_mem buffer, size_t size, size_t offset, void *ptr,
// enum openCLMemcpyKind kind, cl_bool blocking_write);
int savetofile(const Context *clcxt, cl_program &program, const char *fileName);
struct Context::Impl
{

@ -958,7 +958,7 @@ TEST_P(Remap, Mat)
if((interpolation == 1 && map1Type == CV_16SC2) ||(interpolation == 1 && map1Type == CV_16SC1 && map2Type == CV_16SC1))
{
cout << "LINEAR don't support the map1Type and map2Type" << endl;
return;
return;
}
int bordertype[] = {cv::BORDER_CONSTANT,cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/};
const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/};

@ -396,6 +396,101 @@ TEST_P(SetTo, With_mask)
}
}
//convertC3C4
PARAM_TEST_CASE(convertC3C4, MatType, cv::Size)
{
int type;
cv::Size ksize;
//src mat
cv::Mat mat1;
cv::Mat dst;
// set up roi
int roicols;
int roirows;
int src1x;
int src1y;
int dstx;
int dsty;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat dst_roi;
std::vector<cv::ocl::Info> oclinfo;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gdst;
virtual void SetUp()
{
type = GET_PARAM(0);
ksize = GET_PARAM(1);
//dst = randomMat(rng, size, type, 5, 16, false);
int devnums = getDevice(oclinfo);
CV_Assert(devnums > 0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[1]);
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(2, mat1.cols);
roirows = rng.uniform(2, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
src1y = rng.uniform(0, mat1.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
#else
roicols = mat1.cols;
roirows = mat1.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
#endif
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
gmat1 = mat1_roi;
}
};
TEST_P(convertC3C4, Accuracy)
{
cv::RNG &rng = TS::ptr()->get_rng();
for(int j = 0; j < LOOP_TIMES; j++)
{
//random_roi();
int width = rng.uniform(2, MWIDTH);
int height = rng.uniform(2, MHEIGHT);
cv::Size size(width, height);
mat1 = randomMat(rng, size, type, 0, 40, false);
gmat1 = mat1;
cv::Mat cpu_dst;
gmat1.download(cpu_dst);
char sss[1024];
sprintf(sss, "cols=%d,rows=%d", mat1.cols, mat1.rows);
EXPECT_MAT_NEAR(mat1, cpu_dst, 0.0, sss);
}
}
INSTANTIATE_TEST_CASE_P(MatrixOperation, ConvertTo, Combine(
Values(CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4),
@ -408,5 +503,8 @@ INSTANTIATE_TEST_CASE_P(MatrixOperation, CopyTo, Combine(
INSTANTIATE_TEST_CASE_P(MatrixOperation, SetTo, Combine(
Values(CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(MatrixOperation, convertC3C4, Combine(
Values(CV_8UC3, CV_32SC3, CV_32FC3),
Values(cv::Size())));
#endif

Loading…
Cancel
Save