Merge pull request #21662 from alalek:dnn_split

pull/21743/head
Alexander Alekhin 3 years ago
commit 685797f403
  1. 5853
      modules/dnn/src/dnn.cpp
  2. 41
      modules/dnn/src/dnn_common.hpp
  3. 67
      modules/dnn/src/dnn_params.cpp
  4. 93
      modules/dnn/src/dnn_read.cpp
  5. 158
      modules/dnn/src/dnn_utils.cpp
  6. 247
      modules/dnn/src/layer.cpp
  7. 111
      modules/dnn/src/layer_factory.cpp
  8. 335
      modules/dnn/src/layer_internals.hpp
  9. 2
      modules/dnn/src/layers/not_implemented_layer.cpp
  10. 122
      modules/dnn/src/legacy_backend.cpp
  11. 339
      modules/dnn/src/legacy_backend.hpp
  12. 414
      modules/dnn/src/net.cpp
  13. 2087
      modules/dnn/src/net_impl.cpp
  14. 261
      modules/dnn/src/net_impl.hpp
  15. 200
      modules/dnn/src/net_impl_backend.cpp
  16. 607
      modules/dnn/src/net_impl_fuse.cpp
  17. 568
      modules/dnn/src/net_openvino.cpp
  18. 296
      modules/dnn/src/net_quantization.cpp
  19. 106
      modules/dnn/src/op_cuda.cpp
  20. 206
      modules/dnn/src/op_halide.cpp
  21. 25
      modules/dnn/src/op_inf_engine.cpp
  22. 7
      modules/dnn/src/op_inf_engine.hpp
  23. 39
      modules/dnn/src/op_vkcom.cpp
  24. 272
      modules/dnn/src/op_webnn.cpp
  25. 9
      modules/dnn/src/precomp.hpp
  26. 144
      modules/dnn/src/registry.cpp

File diff suppressed because it is too large Load Diff

@ -19,7 +19,44 @@ void initializeLayerFactory();
extern bool DNN_DIAGNOSTICS_RUN;
extern bool DNN_SKIP_REAL_IMPORT;
namespace detail {
//
// dnn_params.cpp
//
/// Network dump level
size_t getParam_DNN_NETWORK_DUMP();
/// This parameter is useful to run with valgrind memory errors detection
bool getParam_DNN_DISABLE_MEMORY_OPTIMIZATIONS();
#ifdef HAVE_OPENCL
bool getParam_DNN_OPENCL_ALLOW_ALL_DEVICES();
#endif
int getParam_DNN_BACKEND_DEFAULT();
// Additional checks (slowdowns execution!)
bool getParam_DNN_CHECK_NAN_INF();
bool getParam_DNN_CHECK_NAN_INF_DUMP();
bool getParam_DNN_CHECK_NAN_INF_RAISE_ERROR();
inline namespace detail {
typedef std::vector<MatShape> ShapesVec;
struct LayerShapes
{
ShapesVec in, out, internal;
// No guarantees that layer which support in-place computations
// will be computed in-place (input.data_ptr == output.data_ptr).
// If layer said that it could work in-place and layers after it
// no longer use input blob, we'll set output = input.
bool supportInPlace;
LayerShapes() {supportInPlace = false;}
};
#define CALL_MEMBER_FN(object, ptrToMemFn) ((object).*(ptrToMemFn))
class NotImplemented : public Layer
@ -82,8 +119,6 @@ struct NetImplBase
} // namespace detail
typedef std::vector<MatShape> ShapesVec;
static inline std::string toString(const ShapesVec& shapes, const std::string& name = std::string())
{
std::ostringstream ss;

@ -0,0 +1,67 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "dnn_common.hpp"
#include <opencv2/core/utils/configuration.private.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
size_t getParam_DNN_NETWORK_DUMP()
{
static size_t DNN_NETWORK_DUMP = utils::getConfigurationParameterSizeT("OPENCV_DNN_NETWORK_DUMP", 0);
return DNN_NETWORK_DUMP;
}
// this option is useful to run with valgrind memory errors detection
bool getParam_DNN_DISABLE_MEMORY_OPTIMIZATIONS()
{
static bool DNN_DISABLE_MEMORY_OPTIMIZATIONS = utils::getConfigurationParameterBool("OPENCV_DNN_DISABLE_MEMORY_OPTIMIZATIONS", false);
return DNN_DISABLE_MEMORY_OPTIMIZATIONS;
}
#ifdef HAVE_OPENCL
bool getParam_DNN_OPENCL_ALLOW_ALL_DEVICES()
{
static bool DNN_OPENCL_ALLOW_ALL_DEVICES = utils::getConfigurationParameterBool("OPENCV_DNN_OPENCL_ALLOW_ALL_DEVICES", false);
return DNN_OPENCL_ALLOW_ALL_DEVICES;
}
#endif
int getParam_DNN_BACKEND_DEFAULT()
{
static int PARAM_DNN_BACKEND_DEFAULT = (int)utils::getConfigurationParameterSizeT("OPENCV_DNN_BACKEND_DEFAULT",
#ifdef HAVE_INF_ENGINE
(size_t)DNN_BACKEND_INFERENCE_ENGINE
#else
(size_t)DNN_BACKEND_OPENCV
#endif
);
return PARAM_DNN_BACKEND_DEFAULT;
}
// Additional checks (slowdowns execution!)
bool getParam_DNN_CHECK_NAN_INF()
{
static bool DNN_CHECK_NAN_INF = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF", false);
return DNN_CHECK_NAN_INF;
}
bool getParam_DNN_CHECK_NAN_INF_DUMP()
{
static bool DNN_CHECK_NAN_INF_DUMP = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF_DUMP", false);
return DNN_CHECK_NAN_INF_DUMP;
}
bool getParam_DNN_CHECK_NAN_INF_RAISE_ERROR()
{
static bool DNN_CHECK_NAN_INF_RAISE_ERROR = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF_RAISE_ERROR", false);
return DNN_CHECK_NAN_INF_RAISE_ERROR;
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,93 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Net readNet(const String& _model, const String& _config, const String& _framework)
{
String framework = toLowerCase(_framework);
String model = _model;
String config = _config;
const std::string modelExt = model.substr(model.rfind('.') + 1);
const std::string configExt = config.substr(config.rfind('.') + 1);
if (framework == "caffe" || modelExt == "caffemodel" || configExt == "caffemodel" || modelExt == "prototxt" || configExt == "prototxt")
{
if (modelExt == "prototxt" || configExt == "caffemodel")
std::swap(model, config);
return readNetFromCaffe(config, model);
}
if (framework == "tensorflow" || modelExt == "pb" || configExt == "pb" || modelExt == "pbtxt" || configExt == "pbtxt")
{
if (modelExt == "pbtxt" || configExt == "pb")
std::swap(model, config);
return readNetFromTensorflow(model, config);
}
if (framework == "torch" || modelExt == "t7" || modelExt == "net" || configExt == "t7" || configExt == "net")
{
return readNetFromTorch(model.empty() ? config : model);
}
if (framework == "darknet" || modelExt == "weights" || configExt == "weights" || modelExt == "cfg" || configExt == "cfg")
{
if (modelExt == "cfg" || configExt == "weights")
std::swap(model, config);
return readNetFromDarknet(config, model);
}
if (framework == "dldt" || modelExt == "bin" || configExt == "bin" || modelExt == "xml" || configExt == "xml")
{
if (modelExt == "xml" || configExt == "bin")
std::swap(model, config);
return readNetFromModelOptimizer(config, model);
}
if (framework == "onnx" || modelExt == "onnx")
{
return readNetFromONNX(model);
}
CV_Error(Error::StsError, "Cannot determine an origin framework of files: " + model + (config.empty() ? "" : ", " + config));
}
Net readNet(const String& _framework, const std::vector<uchar>& bufferModel,
const std::vector<uchar>& bufferConfig)
{
String framework = toLowerCase(_framework);
if (framework == "caffe")
return readNetFromCaffe(bufferConfig, bufferModel);
else if (framework == "tensorflow")
return readNetFromTensorflow(bufferModel, bufferConfig);
else if (framework == "darknet")
return readNetFromDarknet(bufferConfig, bufferModel);
else if (framework == "torch")
CV_Error(Error::StsNotImplemented, "Reading Torch models from buffers");
else if (framework == "dldt")
return readNetFromModelOptimizer(bufferConfig, bufferModel);
CV_Error(Error::StsError, "Cannot determine an origin framework with a name " + framework);
}
Net readNetFromModelOptimizer(const String& xml, const String& bin)
{
return Net::readFromModelOptimizer(xml, bin);
}
Net readNetFromModelOptimizer(const std::vector<uchar>& bufferCfg, const std::vector<uchar>& bufferModel)
{
return Net::readFromModelOptimizer(bufferCfg, bufferModel);
}
Net readNetFromModelOptimizer(
const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize)
{
return Net::readFromModelOptimizer(
bufferModelConfigPtr, bufferModelConfigSize,
bufferWeightsPtr, bufferWeightsSize);
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,158 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <opencv2/imgproc.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
const Scalar& mean, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
Mat blob;
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop, ddepth);
return blob;
}
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
const Size& size, const Scalar& mean, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
std::vector<Mat> images(1, image.getMat());
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
}
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
const Scalar& mean, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
Mat blob;
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
return blob;
}
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
Size size, const Scalar& mean_, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
CV_CheckType(ddepth, ddepth == CV_32F || ddepth == CV_8U, "Blob depth should be CV_32F or CV_8U");
if (ddepth == CV_8U)
{
CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
}
std::vector<Mat> images;
images_.getMatVector(images);
CV_Assert(!images.empty());
for (size_t i = 0; i < images.size(); i++)
{
Size imgSize = images[i].size();
if (size == Size())
size = imgSize;
if (size != imgSize)
{
if (crop)
{
float resizeFactor = std::max(size.width / (float)imgSize.width,
size.height / (float)imgSize.height);
resize(images[i], images[i], Size(), resizeFactor, resizeFactor, INTER_LINEAR);
Rect crop(Point(0.5 * (images[i].cols - size.width),
0.5 * (images[i].rows - size.height)),
size);
images[i] = images[i](crop);
}
else
resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
}
if (images[i].depth() == CV_8U && ddepth == CV_32F)
images[i].convertTo(images[i], CV_32F);
Scalar mean = mean_;
if (swapRB)
std::swap(mean[0], mean[2]);
images[i] -= mean;
images[i] *= scalefactor;
}
size_t nimages = images.size();
Mat image0 = images[0];
int nch = image0.channels();
CV_Assert(image0.dims == 2);
if (nch == 3 || nch == 4)
{
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
blob_.create(4, sz, ddepth);
Mat blob = blob_.getMat();
Mat ch[4];
for (size_t i = 0; i < nimages; i++)
{
const Mat& image = images[i];
CV_Assert(image.depth() == blob_.depth());
nch = image.channels();
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
CV_Assert(image.size() == image0.size());
for (int j = 0; j < nch; j++)
ch[j] = Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, j));
if (swapRB)
std::swap(ch[0], ch[2]);
split(image, ch);
}
}
else
{
CV_Assert(nch == 1);
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
blob_.create(4, sz, ddepth);
Mat blob = blob_.getMat();
for (size_t i = 0; i < nimages; i++)
{
const Mat& image = images[i];
CV_Assert(image.depth() == blob_.depth());
nch = image.channels();
CV_Assert(image.dims == 2 && (nch == 1));
CV_Assert(image.size() == image0.size());
image.copyTo(Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, 0)));
}
}
}
void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_)
{
CV_TRACE_FUNCTION();
// A blob is a 4 dimensional matrix in floating point precision
// blob_[0] = batchSize = nbOfImages
// blob_[1] = nbOfChannels
// blob_[2] = height
// blob_[3] = width
CV_Assert(blob_.depth() == CV_32F);
CV_Assert(blob_.dims == 4);
images_.create(cv::Size(1, blob_.size[0]), blob_.depth());
std::vector<Mat> vectorOfChannels(blob_.size[1]);
for (int n = 0; n < blob_.size[0]; ++n)
{
for (int c = 0; c < blob_.size[1]; ++c)
{
vectorOfChannels[c] = getPlane(blob_, n, c);
}
cv::merge(vectorOfChannels, images_.getMatRef(n));
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,247 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; }
Layer::Layer(const LayerParams& params)
: blobs(params.blobs)
, name(params.name)
, type(params.type)
{
preferableTarget = DNN_TARGET_CPU;
}
void Layer::setParamsFrom(const LayerParams& params)
{
blobs = params.blobs;
name = params.name;
type = params.type;
}
int Layer::inputNameToIndex(String)
{
return -1;
}
int Layer::outputNameToIndex(const String&)
{
return 0;
}
bool Layer::supportBackend(int backendId)
{
return backendId == DNN_BACKEND_OPENCV;
}
Ptr<BackendNode> Layer::initCUDA(
void*,
const std::vector<Ptr<BackendWrapper>>&,
const std::vector<Ptr<BackendWrapper>>&)
{
CV_Error(Error::StsNotImplemented, "CUDA pipeline of " + type + " layers is not defined.");
return Ptr<BackendNode>();
}
Ptr<BackendNode> Layer::initVkCom(const std::vector<Ptr<BackendWrapper>>&)
{
CV_Error(Error::StsNotImplemented, "VkCom pipeline of " + type + " layers is not defined.");
return Ptr<BackendNode>();
}
Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper>>&)
{
CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type + " layers is not defined.");
return Ptr<BackendNode>();
}
Ptr<BackendNode> Layer::initNgraph(const std::vector<Ptr<BackendWrapper>>& inputs, const std::vector<Ptr<BackendNode>>& nodes)
{
CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type + " layers is not defined.");
return Ptr<BackendNode>();
}
Ptr<BackendNode> Layer::initWebnn(const std::vector<Ptr<BackendWrapper>>& inputs, const std::vector<Ptr<BackendNode>>& nodes)
{
CV_Error(Error::StsNotImplemented, "WebNN pipeline of " + type + " layers is not defined.");
return Ptr<BackendNode>();
}
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
{
return Ptr<BackendNode>();
}
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
bool Layer::tryFuse(Ptr<Layer>&) { return false; }
void Layer::getScaleShift(Mat& scale, Mat& shift) const
{
scale = Mat();
shift = Mat();
}
void Layer::getScaleZeropoint(float& scale, int& zeropoint) const
{
scale = 1.f;
zeropoint = 0;
}
void Layer::unsetAttached()
{
setActivation(Ptr<ActivationLayer>());
}
template <typename T>
static void vecToPVec(const std::vector<T>& v, std::vector<T*>& pv)
{
pv.resize(v.size());
for (size_t i = 0; i < v.size(); i++)
pv[i] = const_cast<T*>(&v[i]);
}
void Layer::finalize(const std::vector<Mat>& inputs, std::vector<Mat>& outputs)
{
CV_TRACE_FUNCTION();
this->finalize((InputArrayOfArrays)inputs, (OutputArrayOfArrays)outputs);
}
void Layer::finalize(const std::vector<Mat*>& input, std::vector<Mat>& output)
{
CV_UNUSED(input);
CV_UNUSED(output);
}
void Layer::finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr)
{
CV_TRACE_FUNCTION();
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
std::vector<Mat*> inputsp;
vecToPVec(inputs, inputsp);
this->finalize(inputsp, outputs);
}
std::vector<Mat> Layer::finalize(const std::vector<Mat>& inputs)
{
CV_TRACE_FUNCTION();
std::vector<Mat> outputs;
this->finalize(inputs, outputs);
return outputs;
}
void Layer::forward(std::vector<Mat*>& input, std::vector<Mat>& output, std::vector<Mat>& internals)
{
// We kept this method for compatibility. DNN calls it now only to support users' implementations.
}
void Layer::forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
std::vector<UMat> orig_inputs;
std::vector<UMat> orig_outputs;
std::vector<UMat> orig_internals;
inputs_arr.getUMatVector(orig_inputs);
outputs_arr.getUMatVector(orig_outputs);
internals_arr.getUMatVector(orig_internals);
inputs.resize(orig_inputs.size());
for (size_t i = 0; i < orig_inputs.size(); i++)
convertFp16(orig_inputs[i], inputs[i]);
outputs.resize(orig_outputs.size());
for (size_t i = 0; i < orig_outputs.size(); i++)
outputs[i].create(shape(orig_outputs[i]), CV_32F);
internals.resize(orig_internals.size());
for (size_t i = 0; i < orig_internals.size(); i++)
internals[i].create(shape(orig_internals[i]), CV_32F);
forward(inputs, outputs, internals);
for (size_t i = 0; i < outputs.size(); i++)
convertFp16(outputs[i], orig_outputs[i]);
// sync results back
outputs_arr.assign(orig_outputs);
internals_arr.assign(orig_internals);
return;
}
std::vector<Mat> inpvec;
std::vector<Mat> outputs;
std::vector<Mat> internals;
inputs_arr.getMatVector(inpvec);
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
std::vector<Mat*> inputs(inpvec.size());
for (int i = 0; i < inpvec.size(); i++)
inputs[i] = &inpvec[i];
this->forward(inputs, outputs, internals);
// sync results back
outputs_arr.assign(outputs);
internals_arr.assign(internals);
}
void Layer::run(const std::vector<Mat>& inputs, std::vector<Mat>& outputs, std::vector<Mat>& internals)
{
CV_TRACE_FUNCTION();
this->finalize(inputs, outputs);
this->forward(inputs, outputs, internals);
}
bool Layer::tryQuantize(const std::vector<std::vector<float>>& scales,
const std::vector<std::vector<int>>& zeropoints, LayerParams& params)
{
return false;
}
Layer::~Layer() {}
bool Layer::getMemoryShapes(const std::vector<MatShape>& inputs,
const int requiredOutputs,
std::vector<MatShape>& outputs,
std::vector<MatShape>& internals) const
{
CV_Assert(inputs.size());
outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]);
return false;
}
bool Layer::updateMemoryShapes(const std::vector<MatShape>& inputs)
{
return true;
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,111 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn/layer_reg.private.hpp> // getLayerFactoryImpl
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Mutex& getLayerFactoryMutex()
{
static Mutex* volatile instance = NULL;
if (instance == NULL)
{
cv::AutoLock lock(getInitializationMutex());
if (instance == NULL)
instance = new Mutex();
}
return *instance;
}
static LayerFactory_Impl& getLayerFactoryImpl_()
{
static LayerFactory_Impl impl;
return impl;
}
LayerFactory_Impl& getLayerFactoryImpl()
{
static LayerFactory_Impl* volatile instance = NULL;
if (instance == NULL)
{
cv::AutoLock lock(getLayerFactoryMutex());
if (instance == NULL)
{
instance = &getLayerFactoryImpl_();
initializeLayerFactory();
}
}
return *instance;
}
void LayerFactory::registerLayer(const String& type, Constructor constructor)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
cv::AutoLock lock(getLayerFactoryMutex());
LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type);
if (it != getLayerFactoryImpl().end())
{
if (it->second.back() == constructor)
CV_Error(cv::Error::StsBadArg, "Layer \"" + type + "\" already was registered");
it->second.push_back(constructor);
}
getLayerFactoryImpl().insert(std::make_pair(type, std::vector<Constructor>(1, constructor)));
}
void LayerFactory::unregisterLayer(const String& type)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
cv::AutoLock lock(getLayerFactoryMutex());
LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type);
if (it != getLayerFactoryImpl().end())
{
if (it->second.size() > 1)
it->second.pop_back();
else
getLayerFactoryImpl().erase(it);
}
}
bool LayerFactory::isLayerRegistered(const std::string& type)
{
cv::AutoLock lock(getLayerFactoryMutex());
auto& registeredLayers = getLayerFactoryImpl();
return registeredLayers.find(type) != registeredLayers.end();
}
Ptr<Layer> LayerFactory::createLayerInstance(const String& type, LayerParams& params)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
cv::AutoLock lock(getLayerFactoryMutex());
LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type);
if (it != getLayerFactoryImpl().end())
{
CV_Assert(!it->second.empty());
return it->second.back()(params);
}
else
{
return Ptr<Layer>(); // NULL
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,335 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_DNN_SRC_LAYER_INTERNALS_HPP__
#define __OPENCV_DNN_SRC_LAYER_INTERNALS_HPP__
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
inline namespace detail {
struct LayerPin
{
int lid;
int oid;
LayerPin(int layerId = -1, int outputId = -1)
: lid(layerId)
, oid(outputId)
{}
bool valid() const
{
return (lid >= 0 && oid >= 0);
}
bool equal(const LayerPin& r) const
{
return (lid == r.lid && oid == r.oid);
}
bool operator<(const LayerPin& r) const
{
return lid < r.lid || (lid == r.lid && oid < r.oid);
}
bool operator==(const LayerPin& r) const
{
return lid == r.lid && oid == r.oid;
}
};
struct LayerData
{
LayerData()
: id(-1)
, dtype(CV_32F)
, skip(false)
, flag(0)
{}
LayerData(int _id, const String& _name, const String& _type, const int& _dtype, LayerParams& _params)
: id(_id)
, name(_name)
, type(_type)
, dtype(_dtype)
, params(_params)
, skip(false)
, flag(0)
{
CV_TRACE_FUNCTION();
// add logging info
params.name = name;
params.type = type;
}
int id;
String name;
String type;
int dtype; // Datatype of output blobs.
LayerParams params;
std::vector<LayerPin> inputBlobsId;
std::set<int> inputLayersId;
std::set<int> requiredOutputs;
std::vector<LayerPin> consumers;
std::vector<Ptr<BackendWrapper>> outputBlobsWrappers;
std::vector<Ptr<BackendWrapper>> inputBlobsWrappers;
std::vector<Ptr<BackendWrapper>> internalBlobsWrappers;
#ifdef HAVE_CUDA
/* output ids which must be transferred to the host in the background
* after the completion of the forward pass of the layer
*/
std::vector<int> cudaD2HBackgroundTransfers;
#endif
Ptr<Layer> layerInstance;
std::vector<Mat> outputBlobs;
std::vector<Mat*> inputBlobs;
std::vector<Mat> internals;
// Computation nodes of implemented backends (except DEFAULT).
std::map<int, Ptr<BackendNode>> backendNodes;
// Flag for skip layer computation for specific backend.
bool skip;
int flag;
Ptr<Layer> getLayerInstance()
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
if (layerInstance)
return layerInstance;
layerInstance = LayerFactory::createLayerInstance(type, params);
if (!layerInstance)
{
CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\"");
}
return layerInstance;
}
};
// fake layer containing network input blobs
struct DataLayer : public Layer
{
DataLayer()
: Layer()
{
skip = false;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
// FIXIT: add wrapper without exception suppression
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
bool isFP16 = outputs_arr.depth() == CV_16S;
std::vector<Mat> outputs, internals;
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
for (int i = 0; i < inputsData.size(); ++i)
{
double scale = scaleFactors[i];
Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
if (isFP16)
CV_CheckTypeEQ(outputs[i].type(), CV_16SC1, "");
else
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
bool singleMean = true;
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
{
singleMean = mean[j] == mean[j - 1];
}
if (singleMean)
{
if (isFP16)
{
Mat input_f32;
inputsData[i].convertTo(input_f32, CV_32F, scale, -mean[0] * scale);
convertFp16(input_f32, outputs[i]);
}
else
{
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
}
}
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
{
for (int c = 0; c < inputsData[i].size[1]; ++c)
{
Mat inp = getPlane(inputsData[i], n, c);
Mat out = getPlane(outputs[i], n, c);
if (isFP16)
{
Mat input_f32;
inp.convertTo(input_f32, CV_32F, scale, -mean[c] * scale);
convertFp16(input_f32, out);
}
else
{
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
}
}
}
}
}
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
bool isFP16 = outputs_.depth() == CV_16S;
std::vector<UMat> outputs;
outputs_.getUMatVector(outputs);
for (int i = 0; i < inputsData.size(); ++i)
{
Mat inputData = inputsData[i];
double scale = scaleFactors[i];
Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputData.size[1] <= 4);
if (isFP16)
CV_CheckTypeEQ(outputs[i].type(), CV_16SC1, "");
else
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
bool singleMean = true;
for (int j = 1; j < std::min(4, inputData.size[1]) && singleMean; ++j)
{
singleMean = mean[j] == mean[j - 1];
}
if (singleMean)
{
if (isFP16)
{
UMat input_i;
inputData.convertTo(input_i, CV_32F, scale, -mean[0] * scale);
convertFp16(input_i, outputs[i]);
}
else
{
inputData.convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
}
}
else
{
for (int n = 0; n < inputData.size[0]; ++n)
{
for (int c = 0; c < inputData.size[1]; ++c)
{
Mat inp = getPlane(inputData, n, c);
std::vector<cv::Range> plane(4, Range::all());
plane[0] = Range(n, n + 1);
plane[1] = Range(c, c + 1);
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
if (isFP16)
{
UMat input_i;
inp.convertTo(input_i, CV_32F, scale, -mean[c] * scale);
convertFp16(input_i, out);
}
else
{
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
}
}
}
}
}
return true;
}
#endif
int outputNameToIndex(const String& tgtName) CV_OVERRIDE
{
int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin());
return (idx < (int)outNames.size()) ? idx : -1;
}
void setNames(const std::vector<String>& names)
{
outNames.assign(names.begin(), names.end());
shapes.clear();
shapes.resize(outNames.size());
}
void setInputShape(const String& tgtName, const MatShape& shape)
{
std::vector<String>::const_iterator it = std::find(outNames.begin(), outNames.end(), tgtName);
CV_Check(tgtName, it != outNames.end(), "Unknown input");
int idx = (int)(it - outNames.begin());
CV_Assert(idx < (int)shapes.size());
CV_Check(tgtName, shapes[idx].empty(), "Input shape redefinition is not allowed");
shapes[idx] = shape;
}
bool getMemoryShapes(const std::vector<MatShape>& inputs,
const int requiredOutputs,
std::vector<MatShape>& outputs,
std::vector<MatShape>& internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == requiredOutputs);
outputs.assign(inputs.begin(), inputs.end());
return false;
}
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> outputs;
outputs_arr.getMatVector(outputs);
CV_Assert_N(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
inputsData.size() == outputs.size());
skip = true;
for (int i = 0; skip && i < inputsData.size(); ++i)
{
if (inputsData[i].data != outputs[i].data || scaleFactors[i] != 1.0 || means[i] != Scalar())
skip = false;
}
}
std::vector<String> outNames;
std::vector<MatShape> shapes;
// Preprocessing parameters for each network's input.
std::vector<double> scaleFactors;
std::vector<Scalar> means;
std::vector<Mat> inputsData;
bool skip;
}; // DataLayer
} // namespace detail
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
#endif // __OPENCV_DNN_SRC_LAYER_INTERNALS_HPP__

@ -8,7 +8,7 @@
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
namespace detail {
inline namespace detail {
class NotImplementedImpl CV_FINAL : public NotImplemented
{

@ -0,0 +1,122 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "legacy_backend.hpp"
#include "op_halide.hpp"
#include "op_inf_engine.hpp"
#include "ie_ngraph.hpp"
#include "op_vkcom.hpp"
#include "op_cuda.hpp"
#include "op_webnn.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
BackendNode::BackendNode(int backendId)
: backendId(backendId)
{}
BackendNode::~BackendNode() {};
BackendWrapper::BackendWrapper(int backendId, int targetId)
: backendId(backendId)
, targetId(targetId)
{}
BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m)
{
CV_Error(Error::StsNotImplemented,
"Constructor of backend wrapper must be implemented");
}
BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape)
{
CV_Error(Error::StsNotImplemented,
"Constructor of backend wrapper must be implemented");
}
BackendWrapper::~BackendWrapper() {}
inline namespace detail {
Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m)
{
if (backendId == DNN_BACKEND_OPENCV)
{
if (targetId == DNN_TARGET_CPU)
return Ptr<BackendWrapper>();
#ifdef HAVE_OPENCL
else if (IS_DNN_OPENCL_TARGET(targetId))
return OpenCLBackendWrapper::create(m);
#endif
else
CV_Error(Error::StsNotImplemented, "Unknown/unsupported target identifier");
}
else if (backendId == DNN_BACKEND_HALIDE)
{
CV_Assert(haveHalide());
#ifdef HAVE_HALIDE
return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m));
#endif // HAVE_HALIDE
}
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
CV_ERROR_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019;
}
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
#ifdef HAVE_DNN_NGRAPH
return Ptr<BackendWrapper>(new NgraphBackendWrapper(targetId, m));
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of OpenVINO / Inference Engine + nGraph");
#endif
}
else if (backendId == DNN_BACKEND_WEBNN)
{
#ifdef HAVE_WEBNN
return Ptr<BackendWrapper>(new WebnnBackendWrapper(targetId, m));
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of WebNN");
#endif
}
else if (backendId == DNN_BACKEND_VKCOM)
{
CV_Assert(haveVulkan());
#ifdef HAVE_VULKAN
return Ptr<BackendWrapper>(new VkComBackendWrapper(m));
#endif // HAVE_VULKAN
}
else if (backendId == DNN_BACKEND_CUDA)
{
CV_Assert(haveCUDA());
#ifdef HAVE_CUDA
switch (targetId)
{
case DNN_TARGET_CUDA:
return CUDABackendWrapperFP32::create(m);
case DNN_TARGET_CUDA_FP16:
return CUDABackendWrapperFP16::create(m);
default:
CV_Assert(IS_DNN_CUDA_TARGET(targetId));
}
#endif
}
else
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
return Ptr<BackendWrapper>(); // TODO Error?
} // wrapMat()
} // namespace detail
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,339 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_DNN_SRC_LEGACY_BACKEND_HPP__
#define __OPENCV_DNN_SRC_LEGACY_BACKEND_HPP__
#include "layer_internals.hpp" // LayerPin LayerData DataLayer
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
inline namespace detail {
#ifdef HAVE_OPENCL
class OpenCLBackendWrapper : public BackendWrapper
{
public:
OpenCLBackendWrapper(Mat& m)
: BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
{
m.copyTo(umat);
host = &m;
hostDirty = false;
}
OpenCLBackendWrapper(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
: BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
{
Ptr<OpenCLBackendWrapper> base = baseBuffer.dynamicCast<OpenCLBackendWrapper>();
CV_Assert(!base.empty());
host = &m;
int shape[] = { 1, (int)base->umat.total() };
umat = base->umat.reshape(1, 2, &shape[0])
.colRange(0, host->total())
.reshape(1, host->dims, &host->size[0]);
hostDirty = false;
}
static Ptr<BackendWrapper> create(Mat& m)
{
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(m));
}
static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
{
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(baseBuffer, m));
}
static std::vector<UMat> getUMatVector(const std::vector<Ptr<BackendWrapper>>& wrappers)
{
const int numWrappers = wrappers.size();
std::vector<UMat> mats(wrappers.size());
for (int i = 0; i < numWrappers; ++i)
{
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
CV_Assert(!umatWrapper.empty());
umatWrapper->copyToDevice();
mats[i] = umatWrapper->umat;
}
return mats;
}
// Replaces all umats in wrappers to specific ones.
static void update(const std::vector<Ptr<BackendWrapper>>& wrappers,
const std::vector<UMat>& umats)
{
CV_Assert(wrappers.size() == umats.size());
for (int i = 0, n = umats.size(); i < n; ++i)
{
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
CV_Assert(!umatWrapper.empty());
umatWrapper->umat = umats[i];
}
}
~OpenCLBackendWrapper() {}
// Copies data from device to a host memory.
virtual void copyToHost() CV_OVERRIDE
{
umat.copyTo(*host);
}
virtual void setHostDirty() CV_OVERRIDE
{
hostDirty = true;
};
void copyToDevice()
{
if (hostDirty)
{
host->copyTo(umat);
hostDirty = false;
}
}
private:
UMat umat;
Mat* host;
bool hostDirty;
}; // OpenCLBackendWrapper
#endif // HAVE_OPENCL
struct BlobManager
{
public:
// Increase references counter to layer output.
void addReference(const LayerPin& lp)
{
std::map<LayerPin, int>::iterator it = refCounter.find(lp);
if (it == refCounter.end())
refCounter[lp] = 1;
else
it->second += 1;
}
void addReferences(const std::vector<LayerPin>& pins)
{
for (int i = 0; i < pins.size(); i++)
{
addReference(pins[i]);
}
}
// Returns number of references to allocated memory that used in specific
// layer blob.
int numReferences(const LayerPin& lp)
{
std::map<LayerPin, LayerPin>::const_iterator mapIt = reuseMap.find(lp);
CV_Assert(mapIt != reuseMap.end());
LayerPin memHost = mapIt->second;
std::map<LayerPin, int>::const_iterator refIt = refCounter.find(memHost);
CV_Assert(refIt != refCounter.end());
return refIt->second;
}
// Reuse data allocated in <host> inside the <user> blob.
void reuse(const LayerPin& host, const LayerPin& user)
{
CV_Assert(reuseMap.find(user) == reuseMap.end());
CV_Assert(reuseMap.find(host) != reuseMap.end());
LayerPin memHost = reuseMap[host];
reuseMap[user] = memHost;
if (refCounter.find(memHost) != refCounter.end())
{
std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
if (userRefIt != refCounter.end())
{
refCounter[memHost] += userRefIt->second;
refCounter.erase(userRefIt);
}
else
refCounter[memHost] += 1;
}
}
// Decrease references counter to allocated memory inside specific blob.
void releaseReference(const LayerPin& lp)
{
std::map<LayerPin, LayerPin>::const_iterator mapIt = reuseMap.find(lp);
CV_Assert(mapIt != reuseMap.end());
std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
CV_Assert(refIt != refCounter.end());
CV_Assert(refIt->second > 0);
refIt->second -= 1;
}
void releaseReferences(const std::vector<LayerPin>& pins)
{
for (int i = 0; i < pins.size(); i++)
{
releaseReference(pins[i]);
}
}
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, const int& dtype)
{
if (!getParam_DNN_DISABLE_MEMORY_OPTIMIZATIONS())
{
Mat bestBlob;
LayerPin bestBlobPin;
std::map<LayerPin, Mat>::const_iterator hostIt;
std::map<LayerPin, int>::const_iterator refIt;
const int targetTotal = total(shape);
int bestBlobTotal = INT_MAX;
for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
{
refIt = refCounter.find(hostIt->first);
// Use only blobs that had references before because if not,
// it might be used as output.
if (refIt != refCounter.end() && refIt->second == 0)
{
const Mat& unusedBlob = hostIt->second;
if (unusedBlob.total() >= targetTotal && unusedBlob.total() < bestBlobTotal && unusedBlob.type() == dtype)
{
bestBlobPin = hostIt->first;
bestBlob = unusedBlob;
bestBlobTotal = unusedBlob.total();
}
}
}
if (!bestBlob.empty())
{
reuse(bestBlobPin, lp);
dst = bestBlob.reshape(1, 1).colRange(0, targetTotal).reshape(1, shape);
return;
}
}
{
// if dst already has been allocated with total(shape) elements,
// it won't be recreated and pointer of dst.data remains the same.
dst.create(shape, dtype);
addHost(lp, dst);
}
}
void allocateBlobsForLayer(LayerData& ld, const LayerShapes& layerShapes,
std::vector<LayerPin>& pinsForInternalBlobs)
{
CV_TRACE_FUNCTION();
pinsForInternalBlobs.clear();
std::vector<Mat>&outputBlobs = ld.outputBlobs,
&internalBlobs = ld.internals;
const ShapesVec &outShapes = layerShapes.out,
internalShapes = layerShapes.internal;
outputBlobs.resize(std::max((size_t)1, outShapes.size())); // layer produce at least one output blob
internalBlobs.resize(internalShapes.size());
CV_Assert(ld.requiredOutputs.size() <= outShapes.size());
// Check that layer could work in-place.
bool inPlace = false;
if (layerShapes.supportInPlace)
{
if (ld.inputBlobs.size() == 1)
{
// Get number of references to the input memory.
int numRef = numReferences(ld.inputBlobsId[0]);
// If current layer is one and only customer of this blob.
inPlace = numRef == 1;
}
}
ShapesVec shapes(outShapes);
shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
std::vector<Mat*> blobs;
for (int i = 0; i < outputBlobs.size(); i++)
{
blobs.push_back(&outputBlobs[i]);
}
for (int i = 0; i < internalBlobs.size(); i++)
{
blobs.push_back(&internalBlobs[i]);
if (total(internalShapes[i]))
{
pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
}
}
addReferences(pinsForInternalBlobs);
std::map<int, std::vector<int>> idxSizes;
for (int i = 0; i < shapes.size(); i++)
{
idxSizes[total(shapes[i])].push_back(i);
}
std::map<int, std::vector<int>>::reverse_iterator it;
for (it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
{
for (int j = 0; j < it->second.size(); j++)
{
int index = it->second[j];
if (total(shapes[index]))
{
LayerPin blobPin(ld.id, index);
if (index < outShapes.size() && inPlace)
{
CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
reuse(ld.inputBlobsId[0], blobPin);
}
else
reuseOrCreate(shapes[index], blobPin, *blobs[index], ld.dtype);
}
}
}
}
// Clear internal state. Calls before an every reallocation.
void reset()
{
CV_TRACE_FUNCTION();
refCounter.clear();
reuseMap.clear();
memHosts.clear();
}
private:
// Register allocated memory.
void addHost(const LayerPin& lp, const Mat& mat)
{
CV_Assert(memHosts.find(lp) == memHosts.end());
reuseMap[lp] = lp;
memHosts[lp] = mat;
}
std::map<LayerPin, int> refCounter;
// Maps pin to origin blob (for whom memory was allocated firstly).
// For origin blobs key == value.
std::map<LayerPin, LayerPin> reuseMap;
std::map<LayerPin, Mat> memHosts;
}; // BlobManager
Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m);
} // namespace detail
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
#endif // __OPENCV_DNN_SRC_LEGACY_BACKEND_HPP__

@ -0,0 +1,414 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "net_impl.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Net::Net()
: impl(makePtr<Net::Impl>())
{
}
Net::~Net()
{
}
int Net::addLayer(const String& name, const String& type, const int& dtype, LayerParams& params)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->addLayer(name, type, dtype, params);
}
int Net::addLayer(const String& name, const String& type, LayerParams& params)
{
CV_TRACE_FUNCTION();
return addLayer(name, type, CV_32F, params);
}
int Net::addLayerToPrev(const String& name, const String& type, const int& dtype, LayerParams& params)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->addLayerToPrev(name, type, dtype, params);
}
int Net::addLayerToPrev(const String& name, const String& type, LayerParams& params)
{
CV_TRACE_FUNCTION();
return addLayerToPrev(name, type, CV_32F, params);
}
void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
impl->connect(outLayerId, outNum, inpLayerId, inpNum);
}
void Net::connect(String _outPin, String _inPin)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
LayerPin outPin = impl->getPinByAlias(_outPin);
LayerPin inpPin = impl->getPinByAlias(_inPin);
CV_Assert(outPin.valid() && inpPin.valid());
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
}
int Net::registerOutput(const std::string& outputName, int layerId, int outputPort)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->registerOutput(outputName, layerId, outputPort);
}
Mat Net::forward(const String& outputName)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputName);
}
AsyncArray Net::forwardAsync(const String& outputName)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forwardAsync(outputName);
}
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputBlobs, outputName);
}
void Net::forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputBlobs, outBlobNames);
}
void Net::forward(std::vector<std::vector<Mat>>& outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputBlobs, outBlobNames);
}
// FIXIT drop from inference API
Net Net::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->quantize(calibData, inputsDtype, outputsDtype);
}
// FIXIT drop from inference API
void Net::getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->getInputDetails(scales, zeropoints);
}
// FIXIT drop from inference API
void Net::getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->getOutputDetails(scales, zeropoints);
}
void Net::setPreferableBackend(int backendId)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG(backendId);
CV_Assert(impl);
return impl->setPreferableBackend(backendId);
}
void Net::setPreferableTarget(int targetId)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG(targetId);
CV_Assert(impl);
return impl->setPreferableTarget(targetId);
}
void Net::setInputsNames(const std::vector<String>& inputBlobNames)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->setInputsNames(inputBlobNames);
}
void Net::setInputShape(const String& inputName, const MatShape& shape)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->setInputShape(inputName, shape);
}
void Net::setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(impl);
return impl->setInput(blob, name, scalefactor, mean);
}
Mat Net::getParam(int layer, int numParam) const
{
CV_Assert(impl);
return impl->getParam(layer, numParam);
}
void Net::setParam(int layer, int numParam, const Mat& blob)
{
CV_Assert(impl);
return impl->setParam(layer, numParam, blob);
}
int Net::getLayerId(const String& layer) const
{
CV_Assert(impl);
return impl->getLayerId(layer);
}
String Net::dump()
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->dump(true);
}
void Net::dumpToFile(const String& path)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
std::ofstream file(path.c_str());
file << dump();
file.close();
}
Ptr<Layer> Net::getLayer(int layerId) const
{
CV_Assert(impl);
return impl->getLayer(layerId);
}
Ptr<Layer> Net::getLayer(const LayerId& layerId) const
{
CV_Assert(impl);
return impl->getLayer(layerId);
}
std::vector<Ptr<Layer>> Net::getLayerInputs(int layerId) const
{
CV_Assert(impl);
return impl->getLayerInputs(layerId);
}
std::vector<String> Net::getLayerNames() const
{
CV_Assert(impl);
return impl->getLayerNames();
}
bool Net::empty() const
{
CV_Assert(impl);
return impl->empty();
}
// FIXIT drop "unconnected" API
std::vector<int> Net::getUnconnectedOutLayers() const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getUnconnectedOutLayers();
}
// FIXIT drop "unconnected" API
std::vector<String> Net::getUnconnectedOutLayersNames() const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getUnconnectedOutLayersNames();
}
void Net::getLayersShapes(const ShapesVec& netInputShapes,
std::vector<int>& layersIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) const
{
CV_Assert(impl);
return impl->getLayersShapes(netInputShapes, layersIds, inLayersShapes, outLayersShapes);
}
void Net::getLayersShapes(const MatShape& netInputShape,
std::vector<int>& layerIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) const
{
getLayersShapes(ShapesVec(1, netInputShape),
layerIds, inLayersShapes, outLayersShapes);
}
void Net::getLayerShapes(const MatShape& netInputShape,
const int layerId,
ShapesVec& inLayerShapes,
ShapesVec& outLayerShapes) const
{
getLayerShapes(ShapesVec(1, netInputShape),
layerId, inLayerShapes, outLayerShapes);
}
void Net::getLayerShapes(const ShapesVec& netInputShapes,
const int layerId,
ShapesVec& inLayerShapes,
ShapesVec& outLayerShapes) const
{
CV_Assert(impl);
LayerShapes shapes;
impl->getLayerShapes(netInputShapes, layerId, shapes);
inLayerShapes = shapes.in;
outLayerShapes = shapes.out;
}
int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getFLOPS(netInputShapes);
}
int64 Net::getFLOPS(const MatShape& netInputShape) const
{
return getFLOPS(std::vector<MatShape>(1, netInputShape));
}
int64 Net::getFLOPS(const int layerId,
const std::vector<MatShape>& netInputShapes) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getFLOPS(layerId, netInputShapes);
}
int64 Net::getFLOPS(const int layerId,
const MatShape& netInputShape) const
{
return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
}
void Net::getLayerTypes(std::vector<String>& layersTypes) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getLayerTypes(layersTypes);
}
int Net::getLayersCount(const String& layerType) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getLayersCount(layerType);
}
void Net::getMemoryConsumption(const int layerId,
const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getMemoryConsumption(layerId, netInputShapes, weights, blobs);
}
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getMemoryConsumption(netInputShapes, weights, blobs);
}
void Net::getMemoryConsumption(const int layerId,
const MatShape& netInputShape,
size_t& weights, size_t& blobs) const
{
getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
weights, blobs);
}
void Net::getMemoryConsumption(const MatShape& netInputShape,
size_t& weights, size_t& blobs) const
{
getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
weights, blobs);
}
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
std::vector<int>& layerIds, std::vector<size_t>& weights,
std::vector<size_t>& blobs) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getMemoryConsumption(netInputShapes, layerIds, weights, blobs);
}
void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
std::vector<size_t>& weights, std::vector<size_t>& blobs) const
{
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
weights, blobs);
}
// FIXIT return old value or add get method
void Net::enableFusion(bool fusion)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->enableFusion(fusion);
}
void Net::setHalideScheduler(const String& scheduler)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());
CV_Assert(impl);
return impl->setHalideScheduler(scheduler);
}
int64 Net::getPerfProfile(std::vector<double>& timings)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getPerfProfile(timings);
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

File diff suppressed because it is too large Load Diff

@ -0,0 +1,261 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_DNN_SRC_NET_IMPL_HPP__
#define __OPENCV_DNN_SRC_NET_IMPL_HPP__
#include "op_halide.hpp"
#include "op_inf_engine.hpp"
#include "ie_ngraph.hpp"
#include "op_vkcom.hpp"
#include "op_cuda.hpp"
#include "op_webnn.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn/layer_reg.private.hpp>
#include <opencv2/core/utils/fp_control_utils.hpp>
#include <opencv2/core/utils/logger.hpp>
#include "layer_internals.hpp" // LayerPin LayerData DataLayer
#include "legacy_backend.hpp" // wrapMat BlobManager OpenCLBackendWrapper
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
using std::make_pair;
using std::string;
// NB: Implementation is divided between of multiple .cpp files
struct Net::Impl : public detail::NetImplBase
{
typedef std::map<int, LayerShapes> LayersShapesMap;
typedef std::map<int, LayerData> MapIdToLayerData;
Impl();
Ptr<DataLayer> netInputLayer;
std::vector<LayerPin> blobsToKeep;
MapIdToLayerData layers;
std::map<String, int> layerNameToId;
std::map<std::string, int> outputNameToId; // use registerOutput() to populate outputs
BlobManager blobManager;
int preferableBackend;
int preferableTarget;
String halideConfigFile;
bool skipInfEngineInit;
bool hasDynamicShapes;
// Map host data to backend specific wrapper.
std::map<void*, Ptr<BackendWrapper>> backendWrappers;
int lastLayerId;
bool netWasAllocated;
bool netWasQuantized;
bool fusion;
bool isAsync;
std::vector<int64> layersTimings;
bool empty() const;
void setPreferableBackend(int backendId);
void setPreferableTarget(int targetId);
// FIXIT use inheritance
Ptr<BackendWrapper> wrap(Mat& host);
void clear();
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>());
Ptr<Layer> getLayer(int layerId) const;
Ptr<Layer> getLayer(const LayerId& layerId) const;
int getLayerId(const String& layerName) const;
int getLayerId(int id) const;
int getLayerId(DictValue& layerDesc) const;
String getLayerName(int id) const;
LayerData& getLayerData(int id) const;
LayerData& getLayerData(const String& layerName) const;
LayerData& getLayerData(const DictValue& layerDesc) const;
static void addLayerInput(LayerData& ld, int inNum, LayerPin from);
int resolvePinOutputName(LayerData& ld, const String& outName) const;
LayerPin getPinByAlias(const String& layerName) const;
std::vector<LayerPin> getLayerOutPins(const String& layerName) const;
// FIXIT remove dtype
int addLayer(const String& name, const String& type, const int& dtype, LayerParams& params);
int addLayerToPrev(const String& name, const String& type, const int& dtype, LayerParams& params);
void connect(int outLayerId, int outNum, int inLayerId, int inNum);
int registerOutput(const std::string& outputName, int layerId, int outputPort);
// FIXIT drop "unconnected" API
std::vector<int> getUnconnectedOutLayers() const;
std::vector<String> getUnconnectedOutLayersNames() /*const*/;
void setInputsNames(const std::vector<String>& inputBlobNames);
void setInputShape(const String& inputName, const MatShape& shape);
void setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean);
Mat getParam(int layer, int numParam) const;
void setParam(int layer, int numParam, const Mat& blob);
std::vector<Ptr<Layer>> getLayerInputs(int layerId) const;
std::vector<String> getLayerNames() const;
// TODO drop?
void getLayerTypes(std::vector<String>& layersTypes) const;
int getLayersCount(const String& layerType) const;
// FIXIT use inheritance
void initBackend(const std::vector<LayerPin>& blobsToKeep_);
void setHalideScheduler(const String& scheduler);
#ifdef HAVE_HALIDE
void compileHalide();
void initHalideBackend();
#endif
#ifdef HAVE_DNN_NGRAPH
void addNgraphOutputs(LayerData& ld);
void initNgraphBackend(const std::vector<LayerPin>& blobsToKeep_);
#endif
#ifdef HAVE_WEBNN
void addWebnnOutputs(LayerData& ld);
void initWebnnBackend(const std::vector<LayerPin>& blobsToKeep_);
#endif
#ifdef HAVE_VULKAN
void initVkComBackend();
#endif
#ifdef HAVE_CUDA
struct CudaInfo_t
{
CudaInfo_t(cuda4dnn::csl::CSLContext ctxt, cuda4dnn::csl::Stream d2h_stream_)
: context(std::move(ctxt))
, d2h_stream(std::move(d2h_stream_))
{}
cuda4dnn::csl::CSLContext context;
cuda4dnn::csl::Stream d2h_stream;
cuda4dnn::csl::Workspace workspace;
};
std::unique_ptr<CudaInfo_t> cudaInfo;
void initCUDABackend(const std::vector<LayerPin>& blobsToKeep_);
#endif
void allocateLayer(int lid, const LayersShapesMap& layersShapes);
// TODO add getter
void enableFusion(bool fusion_);
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_);
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_);
void forwardLayer(LayerData& ld);
void forwardToLayer(LayerData& ld, bool clearFlags = true);
Mat forward(const String& outputName);
AsyncArray forwardAsync(const String& outputName);
void forward(OutputArrayOfArrays outputBlobs, const String& outputName);
void forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames);
void forward(std::vector<std::vector<Mat>>& outputBlobs,
const std::vector<String>& outBlobNames);
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes);
void getLayersShapes(
const ShapesVec& netInputShapes,
std::vector<int>& layersIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) /*const*/;
void getLayersShapes(const ShapesVec& netInputShapes,
LayersShapesMap& inOutShapes);
void getLayerShapes(const ShapesVec& netInputShapes,
const int layerId,
LayerShapes& shapes);
void updateLayersShapes();
int64 getFLOPS(const std::vector<MatShape>& netInputShapes) /*const*/;
int64 getFLOPS(
const int layerId,
const std::vector<MatShape>& netInputShapes) /*const*/;
void getMemoryConsumption(
const int layerId,
const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) /*const*/;
void getMemoryConsumption(
const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) /*const*/;
void getMemoryConsumption(
const std::vector<MatShape>& netInputShapes,
std::vector<int>& layerIds, std::vector<size_t>& weights,
std::vector<size_t>& blobs) /*const*/;
int64 getPerfProfile(std::vector<double>& timings) const;
// TODO drop
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins) const;
Mat getBlob(const LayerPin& pin) const;
Mat getBlob(String outputName) const;
#ifdef CV_CXX11
AsyncArray getBlobAsync(const LayerPin& pin);
AsyncArray getBlobAsync(String outputName);
#endif // CV_CXX11
#ifdef HAVE_INF_ENGINE
static
Net createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNet);
#endif
string dump(bool forceAllocation = false) const;
void dumpNetworkToFile() const;
// FIXIT drop from inference API
Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype) /*const*/;
void getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/;
void getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/;
}; // Net::Impl
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
#endif // __OPENCV_DNN_SRC_NET_IMPL_HPP__

@ -0,0 +1,200 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "net_impl.hpp"
#include "legacy_backend.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Ptr<BackendWrapper> Net::Impl::wrap(Mat& host)
{
if (preferableBackend == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU)
return Ptr<BackendWrapper>();
MatShape shape(host.dims);
for (int i = 0; i < host.dims; ++i)
shape[i] = host.size[i];
void* data = host.data;
if (backendWrappers.find(data) != backendWrappers.end())
{
Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
if (preferableBackend == DNN_BACKEND_OPENCV)
{
#ifdef HAVE_OPENCL
CV_Assert(IS_DNN_OPENCL_TARGET(preferableTarget));
return OpenCLBackendWrapper::create(baseBuffer, host);
#else
CV_Error(Error::StsInternal, "");
#endif
}
else if (preferableBackend == DNN_BACKEND_HALIDE)
{
CV_Assert(haveHalide());
#ifdef HAVE_HALIDE
return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
#endif
}
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
CV_ERROR_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019;
}
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
return wrapMat(preferableBackend, preferableTarget, host);
}
else if (preferableBackend == DNN_BACKEND_WEBNN)
{
#ifdef HAVE_WEBNN
return wrapMat(preferableBackend, preferableTarget, host);
#endif
}
else if (preferableBackend == DNN_BACKEND_VKCOM)
{
#ifdef HAVE_VULKAN
return Ptr<BackendWrapper>(new VkComBackendWrapper(baseBuffer, host));
#endif
}
else if (preferableBackend == DNN_BACKEND_CUDA)
{
CV_Assert(haveCUDA());
#ifdef HAVE_CUDA
switch (preferableTarget)
{
case DNN_TARGET_CUDA:
return CUDABackendWrapperFP32::create(baseBuffer, shape);
case DNN_TARGET_CUDA_FP16:
return CUDABackendWrapperFP16::create(baseBuffer, shape);
default:
CV_Assert(IS_DNN_CUDA_TARGET(preferableTarget));
}
#endif
}
else
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
}
Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
backendWrappers[data] = wrapper;
return wrapper;
}
void Net::Impl::initBackend(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
if (preferableBackend == DNN_BACKEND_OPENCV)
{
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
}
else if (preferableBackend == DNN_BACKEND_HALIDE)
{
#ifdef HAVE_HALIDE
initHalideBackend();
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Halide");
#endif
}
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
#ifdef HAVE_DNN_NGRAPH
initNgraphBackend(blobsToKeep_);
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of OpenVINO");
#endif
}
else if (preferableBackend == DNN_BACKEND_WEBNN)
{
#ifdef HAVE_WEBNN
initWebnnBackend(blobsToKeep_);
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of WebNN");
#endif
}
else if (preferableBackend == DNN_BACKEND_VKCOM)
{
#ifdef HAVE_VULKAN
initVkComBackend();
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Vulkan");
#endif
}
else if (preferableBackend == DNN_BACKEND_CUDA)
{
#ifdef HAVE_CUDA
initCUDABackend(blobsToKeep_);
#else
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of CUDA/CUDNN");
#endif
}
else
{
CV_Error(Error::StsNotImplemented, cv::format("Unknown backend identifier: %d", preferableBackend));
}
}
void Net::Impl::setPreferableBackend(int backendId)
{
if (backendId == DNN_BACKEND_DEFAULT)
backendId = (Backend)getParam_DNN_BACKEND_DEFAULT();
if (netWasQuantized && backendId != DNN_BACKEND_OPENCV)
{
CV_LOG_WARNING(NULL, "DNN: Only default backend supports quantized networks");
backendId = DNN_BACKEND_OPENCV;
}
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
backendId = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
#endif
if (preferableBackend != backendId)
{
preferableBackend = backendId;
clear();
}
}
void Net::Impl::setPreferableTarget(int targetId)
{
if (netWasQuantized && targetId != DNN_TARGET_CPU &&
targetId != DNN_TARGET_OPENCL && targetId != DNN_TARGET_OPENCL_FP16)
{
CV_LOG_WARNING(NULL, "DNN: Only CPU and OpenCL/OpenCL FP16 target is supported by quantized networks");
targetId = DNN_TARGET_CPU;
}
if (preferableTarget != targetId)
{
preferableTarget = targetId;
if (IS_DNN_OPENCL_TARGET(targetId))
{
#ifndef HAVE_OPENCL
#ifdef HAVE_INF_ENGINE
if (preferableBackend == DNN_BACKEND_OPENCV)
#else
if (preferableBackend == DNN_BACKEND_DEFAULT ||
preferableBackend == DNN_BACKEND_OPENCV)
#endif // HAVE_INF_ENGINE
preferableTarget = DNN_TARGET_CPU;
#else
bool fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
if (!fp16 && targetId == DNN_TARGET_OPENCL_FP16)
preferableTarget = DNN_TARGET_OPENCL;
#endif
}
clear();
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,607 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "net_impl.hpp"
#ifdef HAVE_CUDA
#include "cuda4dnn/primitives/eltwise.hpp" // required by fuseLayers
#endif
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
void Net::Impl::enableFusion(bool fusion_)
{
if (fusion != fusion_)
{
fusion = fusion_;
clear();
}
}
#if 0
#define printf_(args) printf args
#else
#define printf_(args)
#endif
void Net::Impl::fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
if(!fusion || (preferableBackend != DNN_BACKEND_OPENCV &&
preferableBackend != DNN_BACKEND_CUDA &&
preferableBackend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH))
return;
#if 0 // FIXIT mode without fusion is broken due to unsupported layers and handling of "custom" nodes
if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return;
#endif
// scan through all the layers. If there is convolution layer followed by the activation layer,
// we try to embed this activation into the convolution and disable separate execution of the activation
// FIXIT replace by layersToKeep to avoid hacks like "LayerPin(lid, 0)"
std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
blobsToKeep_.end());
for (MapIdToLayerData::const_iterator it = layers.begin(); it != layers.end(); it++)
{
int lid = it->first;
LayerData& ld = layers[lid];
if (ld.skip)
{
printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
continue;
}
printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
// the optimization #1. try to fuse batch norm, scaling and/or activation layers
// with the current layer if they follow it. Normally, the are fused with the convolution layer,
// but some of them (like activation) may be fused with fully-connected, elemwise (+) and
// some other layers.
Ptr<Layer>& currLayer = ld.layerInstance;
if (ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0)
{
LayerData* nextData = &layers[ld.consumers[0].lid];
LayerPin lpNext(ld.consumers[0].lid, 0);
while (nextData)
{
#ifdef HAVE_INF_ENGINE
if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && pinsToKeep.count(lpNext) != 0)
{
CV_LOG_DEBUG(NULL, "DNN/IE: skip fusing with 'output' node: " << nextData->name << "@" << nextData->type);
break;
}
#endif
/* we use `tryFuse` member of convolution layer to fuse eltwise later
* it's not intended to be fused here; hence, we stop when we encounter eltwise
*/
if (preferableBackend == DNN_BACKEND_CUDA && ld.type == "Convolution" && nextData->type == "Eltwise")
break;
Ptr<Layer> nextLayer = nextData->layerInstance;
if (currLayer->tryFuse(nextLayer))
{
printf_(("\tfused with %s\n", nextLayer->name.c_str()));
nextData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if (nextData->consumers.size() == 1)
{
int nextLayerId = nextData->consumers[0].lid;
nextData = &layers[nextLayerId];
lpNext = LayerPin(nextLayerId, 0);
}
else
{
nextData = 0;
break;
}
}
else
break;
}
if (preferableBackend != DNN_BACKEND_OPENCV && preferableBackend != DNN_BACKEND_CUDA)
continue; // Go to the next layer.
// TODO: OpenCL target support more fusion styles.
if ( preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget) &&
(!cv::ocl::useOpenCL() || (ld.layerInstance->type != "Convolution" &&
ld.layerInstance->type != "MVN" && ld.layerInstance->type != "Pooling" &&
ld.layerInstance->type != "Concat")) )
continue;
if (preferableBackend == DNN_BACKEND_CUDA && IS_DNN_CUDA_TARGET(preferableTarget)
&& ld.layerInstance->type != "Convolution"
&& ld.layerInstance->type != "Concat")
continue;
while (nextData)
{
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
if (IS_DNN_OPENCL_TARGET(preferableTarget) &&
nextData->type != "ReLU" &&
nextData->type != "ChannelsPReLU" &&
nextData->type != "ReLU6" &&
nextData->type != "TanH" &&
nextData->type != "Power")
break;
Ptr<ActivationLayer> nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
if (nextActivLayer.empty())
break;
if (currLayer->setActivation(nextActivLayer))
{
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
nextData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if (nextData->consumers.size() == 1)
{
int nextLayerId = nextData->consumers[0].lid;
nextData = &layers[nextLayerId];
lpNext = LayerPin(nextLayerId, 0);
}
else
{
nextData = 0;
break;
}
}
else
break;
}
// OpenCL: fuse convolution layer followed by eltwise + relu
// CUDA: fuse convolution layer followed by eltwise (and optional activation)
while (nextData &&
(IS_DNN_OPENCL_TARGET(preferableTarget) || IS_DNN_CUDA_TARGET(preferableTarget)) &&
ld.layerInstance->type == "Convolution"
) // semantic of 'if'
{
Ptr<EltwiseLayer> nextEltwiseLayer = nextData->layerInstance.dynamicCast<EltwiseLayer>();
if (nextEltwiseLayer.empty())
break;
#ifdef HAVE_CUDA
// CUDA backend supports fusion with eltwise sum (without variable channels)
if (IS_DNN_CUDA_TARGET(preferableTarget) && !nextEltwiseLayer.empty())
{
// we create a temporary backend node for eltwise layer to obtain the eltwise configuration
cuda4dnn::csl::CSLContext context; // assume that initCUDA and EltwiseOp do not use the context during init
const auto node = nextData->layerInstance->initCUDA(&context, nextData->inputBlobsWrappers, nextData->outputBlobsWrappers);
auto eltwiseNode = node.dynamicCast<cuda4dnn::EltwiseOpBase>();
// broadcasting not supported in fused ops
auto required_shape = shape(nextData->outputBlobs[0]);
for (int i = 0; i < nextData->inputBlobs.size(); i++)
{
if (shape(*nextData->inputBlobs[i]) != required_shape)
{
eltwiseNode.reset();
break;
}
}
// CUDA backend uses EltwiseOp when all operands have the same number of channels; otherwise, ShortcutOp is used.
// Hence, a successful cast to EltwiseOp implies that the number of channels is same in all operand tensors.
if (eltwiseNode.empty() || eltwiseNode->op != cuda4dnn::EltwiseOpType::SUM || !eltwiseNode->coeffs.empty())
break;
}
#endif
if (IS_DNN_OPENCL_TARGET(preferableTarget) && pinsToKeep.count(lpNext) != 0)
break;
if (nextData->inputBlobsId.size() != 2)
break;
if (IS_DNN_OPENCL_TARGET(preferableTarget))
{
if (!nextData->params.has("operation") || toLowerCase(nextData->params.get<String>("operation")) == "sum")
{
if (nextData->params.has("coeff"))
{
DictValue paramCoeff = nextData->params.get("coeff");
int n = paramCoeff.size();
bool isCoeffOneOne = (n == 2);
for (int i = 0; isCoeffOneOne && i < n; i++)
{
float c = paramCoeff.get<float>(i);
isCoeffOneOne &= (c == 1.0f);
}
if (!isCoeffOneOne)
{
CV_LOG_DEBUG(NULL, "DNN/OpenCL: fusion of 'Sum' without coeffs (or {1.0, 1.0}) is supported only");
break;
}
}
}
else
{
CV_LOG_DEBUG(NULL, "DNN/OpenCL: fusion with eltwise operation is not supported: " << nextData->params.get<String>("operation"));
break;
}
}
{
LayerData *eltwiseData = nextData;
// Eltwise layer has two inputs. We need to determine which
// is a base convolution layer and which could be used as it's bias.
LayerData* biasLayerData = 0;
for (int i = 0; i < 2; ++i)
{
LayerData *downLayerData = &layers[eltwiseData->inputBlobsId[i].lid];
CV_Assert(downLayerData);
while (downLayerData->skip)
{
if (downLayerData->inputBlobsId.size() == 1)
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
else
{
downLayerData = 0;
break;
}
}
if (downLayerData && ld.id == downLayerData->id)
{
biasLayerData = &layers[eltwiseData->inputBlobsId[1 - i].lid];
break;
}
}
CV_Assert(biasLayerData);
{
// fuse eltwise + activation layer
// bias must already be computed to fuse => bias layer must appear before convolution
if (biasLayerData->id < ld.id)
{
/* we can fuse activation if:
* => activation layer that follows is the only consumer of eltwise output
* => activation layer does not process multiple inputs
* => we do not require to keep the output of eltwise
*/
Ptr<ActivationLayer> nextFusabeleActivLayer;
if (eltwiseData->consumers.size() == 1 && pinsToKeep.count(lpNext) == 0)
{
nextData = &layers[eltwiseData->consumers[0].lid];
lpNext = LayerPin(eltwiseData->consumers[0].lid, 0);
CV_Assert(nextData);
if (nextData->outputBlobs.size() == 1)
nextFusabeleActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
}
else
{
// OCL backend cannot fuse in this case but the CUDA backend can continue with just eltwise
nextData = 0;
}
// the requirements of OCV OpenCL backend and CUDA backend are different
// we need to check them separately; hence, the fuse variables
bool fuse_eltwise = false, fuse_activation = false;
Ptr<PowerLayer> activ_power;
if (IS_DNN_OPENCL_TARGET(preferableTarget) && !nextFusabeleActivLayer.empty() &&
nextData &&
(!nextData->type.compare("ReLU") ||
!nextData->type.compare("ChannelsPReLU") ||
(!nextData->type.compare("Power") && (activ_power = nextFusabeleActivLayer.dynamicCast<PowerLayer>()) && activ_power->scale == 1.0f)
) &&
currLayer->setActivation(nextFusabeleActivLayer))
{
fuse_eltwise = true;
fuse_activation = true;
}
if (IS_DNN_CUDA_TARGET(preferableTarget))
{
/* supported fusion options:
* => convolution + eltwise
* => activation(convolution) + eltwise
* > convolution + activation would have been fused already; we have to fuse eltwise
* => activation(convolution + eltwise)
* > fuse eltwise and then activation
*/
auto layer = nextEltwiseLayer.staticCast<Layer>();
if (currLayer->tryFuse(layer))
{
fuse_eltwise = true; /* eltwise was successfully fused */
if (!nextFusabeleActivLayer.empty() && nextData)
{
if ((!nextData->type.compare("ReLU") ||
!nextData->type.compare("ReLU6") ||
!nextData->type.compare("Power") ||
!nextData->type.compare("TanH") ||
!nextData->type.compare("Sigmoid") ||
!nextData->type.compare("Swish") ||
!nextData->type.compare("Mish")) &&
currLayer->setActivation(nextFusabeleActivLayer))
{
// activation was fused
fuse_activation = true;
}
}
}
}
CV_Assert(!fuse_activation || fuse_eltwise); /* cannot fuse activation without eltwise */
if(fuse_eltwise && fuse_activation)
{
CV_Assert(nextData);
CV_Assert_N(biasLayerData->outputBlobsWrappers.size() == 1, ld.inputBlobsWrappers.size() == 1);
ld.inputBlobsWrappers.push_back(biasLayerData->outputBlobsWrappers[0]);
printf_(("\tfused with %s\n", nextEltwiseLayer->name.c_str()));
printf_(("\tfused with %s\n", nextFusabeleActivLayer->name.c_str()));
eltwiseData->skip = true;
nextData->skip = true;
// This optimization for cases like
// some_layer conv
// | |
// +-- eltwise --+
// |
// activ
// This way all the element-wise computations
// (i.e. some_layer+conv or some_layer*conv)
// would be done at [conv] layer. So we need to
// replace [conv]'s output blob to [eltwise]'s one
// considering that [activ] is an in-place layer.
// Also we need to move all the consumers' references.
// To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise] is the same blob)
// we allocate a new blob.
CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
ld.outputBlobs[0] = ld.outputBlobs[0].clone();
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
eltwiseData->outputBlobs = ld.outputBlobs;
nextData->outputBlobs = ld.outputBlobs;
eltwiseData->outputBlobsWrappers = ld.outputBlobsWrappers;
nextData->outputBlobsWrappers = ld.outputBlobsWrappers;
// Move references of [activ] layer consumers to the newly allocated blob.
for (int i = 0; i < nextData->consumers.size(); ++i)
{
LayerData& consumer = layers[nextData->consumers[i].lid];
for (int j = 0; j < consumer.inputBlobsId.size(); ++j)
{
if (consumer.inputBlobsId[j].lid == lpNext.lid)
{
consumer.inputBlobs[j] = &ld.outputBlobs[0];
consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
break;
}
}
}
}
else if (fuse_eltwise) // conv + eltwise (note: conv could have fused activations before eltwise)
{
CV_Assert(IS_DNN_CUDA_TARGET(preferableTarget));
CV_Assert_N(biasLayerData->outputBlobsWrappers.size() == 1, ld.inputBlobsWrappers.size() == 1);
ld.inputBlobsWrappers.push_back(biasLayerData->outputBlobsWrappers[0]);
printf_(("\tfused with %s\n", nextEltwiseLayer->name.c_str()));
eltwiseData->skip = true;
// This optimization is for cases like
// some_layer conv (maybe fused with activ)
// | |
// +-- eltwise --+
//
// This way all the element-wise computations
// (i.e. some_layer+conv or some_layer*conv)
// would be done at [conv] layer. So we need to
// replace [conv]'s output blob to [eltwise]'s one.
// Also we need to move all the consumers' references.
// To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise] is the same blob)
// we allocate a new blob.
CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
ld.outputBlobs[0] = ld.outputBlobs[0].clone();
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
eltwiseData->outputBlobs = ld.outputBlobs;
eltwiseData->outputBlobsWrappers = ld.outputBlobsWrappers;
// Move references of [eltwise] layer consumers to the newly allocated blob.
for (int i = 0; i < eltwiseData->consumers.size(); ++i)
{
LayerData& consumer = layers[eltwiseData->consumers[i].lid];
for (int j = 0; j < consumer.inputBlobsId.size(); ++j)
{
if (consumer.inputBlobsId[j].lid == eltwiseData->id)
{
consumer.inputBlobs[j] = &ld.outputBlobs[0];
consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
break;
}
}
}
}
}
}
}
break;
}
}
if (preferableBackend != DNN_BACKEND_OPENCV && preferableBackend != DNN_BACKEND_CUDA)
continue; // Go to the next layer.
// the optimization #2. if there is concat layer that concatenates channels
// from the inputs together (i.e. axis == 1) then we make the inputs of
// the concat layer to write to the concatenation output buffer
// (and so we eliminate the concatenation layer, because the channels
// are concatenated implicitly).
Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
if( !concatLayer.empty() && !concatLayer->padding && ld.outputBlobs.size() == 1 )
{
Mat& output = ld.outputBlobs[0];
UMat umat_output;
#ifdef HAVE_OPENCL
if (!ld.outputBlobsWrappers.empty() &&
(preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget)))
{
size_t i, ninputs = ld.inputBlobsId.size();
bool conv_layer = true;
for( i = 0; i < ninputs; i++ )
{
LayerPin pin = ld.inputBlobsId[i];
LayerData* inp_i_data = &layers[pin.lid];
while(inp_i_data->skip &&
inp_i_data->inputBlobsId.size() == 1 &&
inp_i_data->consumers.size() == 1)
{
pin = inp_i_data->inputBlobsId[0];
inp_i_data = &layers[pin.lid];
}
conv_layer = conv_layer && (inp_i_data->getLayerInstance()->type == "Convolution");
}
if (!conv_layer)
continue;
std::vector<UMat> umat_outputBlobs;
umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
umat_output = umat_outputBlobs[0];
}
#endif
// TODO: in general, this optimization can always be done, but
// many layers currently check that the input/output blobs are
// continuous arrays. Unfortunately, this is not true when
// the concatenation optimization is applied with batch_size > 1.
// so, for now, we only apply this optimization in the most popular
// case batch_size == 1.
int axis = normalize_axis(concatLayer->axis, output.dims);
if( output.total(0, axis) == 1 )
{
size_t i, ninputs = ld.inputBlobsId.size();
std::vector<LayerPin> realinputs(ninputs);
for( i = 0; i < ninputs; i++ )
{
LayerPin pin = ld.inputBlobsId[i];
LayerData* inp_i_data = &layers[pin.lid];
while(inp_i_data->skip &&
inp_i_data->inputBlobsId.size() == 1 &&
inp_i_data->consumers.size() == 1)
{
pin = inp_i_data->inputBlobsId[0];
inp_i_data = &layers[pin.lid];
}
printf_(("\treal input for %s is %s\n",
layers[ld.inputBlobsId[i].lid].getLayerInstance()->name.c_str(),
inp_i_data->getLayerInstance()->name.c_str()));
if(inp_i_data->skip || inp_i_data->consumers.size() != 1)
break;
#ifdef HAVE_CUDA
if (preferableBackend == DNN_BACKEND_CUDA &&
(inp_i_data->layerInstance->supportBackend(DNN_BACKEND_CUDA) == false ||
(inp_i_data->layerInstance->type != "Convolution" &&
inp_i_data->layerInstance->type != "Pooling" &&
inp_i_data->layerInstance->type != "Resize" &&
inp_i_data->layerInstance->type != "Flatten" &&
inp_i_data->layerInstance->type != "Permute" &&
inp_i_data->layerInstance->type != "Reorg" &&
inp_i_data->layerInstance->type != "Eltwise" &&
inp_i_data->layerInstance.dynamicCast<ActivationLayer>().empty())))
{
break;
}
#endif
realinputs[i] = pin;
}
if( i >= ninputs )
{
// Allocate new memory to prevent collisions during memory
// reusing (see https://github.com/opencv/opencv/pull/10456).
output = output.clone();
#ifdef HAVE_OPENCL
if (preferableBackend == DNN_BACKEND_OPENCV &&
IS_DNN_OPENCL_TARGET(preferableTarget))
{
std::vector<UMat> umats(1);
umat_output = umat_output.clone();
umats[0] = umat_output;
OpenCLBackendWrapper::update(ld.outputBlobsWrappers, umats);
}
#endif
#ifdef HAVE_CUDA
if (preferableBackend == DNN_BACKEND_CUDA)
ld.outputBlobsWrappers[0] = wrap(output);
#endif
std::vector<Range> chrange(output.dims, Range::all());
int ofs = 0;
for( i = 0; i < ninputs; i++ )
{
LayerPin pin = realinputs[i];
LayerData* inp_i_data = &layers[pin.lid];
int channels_i = ld.inputBlobs[i]->size[axis];
chrange[axis] = Range(ofs, ofs + channels_i);
printf_(("\toutput %s(%d) to channels (%d, %d)\n", inp_i_data->layerInstance->name.c_str(),
pin.oid, ofs, ofs + channels_i));
ofs += channels_i;
Mat output_slice = output(chrange);
Mat& curr_output = inp_i_data->outputBlobs[pin.oid];
CV_Assert(output_slice.isContinuous() && output_slice.size == curr_output.size);
Mat* oldPtr = &curr_output;
curr_output = output_slice;
#ifdef HAVE_OPENCL
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
{
std::vector<UMat> umats(inp_i_data->outputBlobsWrappers.size());
umats[pin.oid] = umat_output(chrange);
OpenCLBackendWrapper::update(inp_i_data->outputBlobsWrappers, umats);
}
#endif
#ifdef HAVE_CUDA
if (preferableBackend == DNN_BACKEND_CUDA)
{
auto cuda_wrapper = wrap(output).dynamicCast<CUDABackendWrapper>();
auto offset = chrange[axis].start * output_slice.total(axis + 1, output.dims);
auto new_shape = shape(output_slice);
cuda_wrapper->update(new_shape, offset);
inp_i_data->outputBlobsWrappers[pin.oid] = cuda_wrapper.staticCast<BackendWrapper>();
}
#endif
// Layers that refer old input Mat will refer to the
// new data but the same Mat object.
CV_Assert_N(curr_output.data == output_slice.data, oldPtr == &curr_output);
}
#ifdef HAVE_CUDA
if (preferableBackend == DNN_BACKEND_CUDA)
{
for (int i = 0; i < ld.consumers.size(); i++)
{
LayerData& consumer = layers[ld.consumers[i].lid];
for (int j = 0; j < consumer.inputBlobsId.size(); j++)
{
if (consumer.inputBlobsId[j].lid == ld.id)
{
CV_Assert(consumer.inputBlobs[j]->data == ld.outputBlobs[0].data);
consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
break;
}
}
}
}
#endif
ld.skip = true;
printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
}
}
}
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,568 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <opencv2/core/utils/fp_control_utils.hpp>
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
#include "net_impl.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
#ifdef HAVE_INF_ENGINE
/** mark input pins as outputs from other subnetworks
* FIXIT must be done by DNN engine not ngraph.
*/
void Net::Impl::addNgraphOutputs(LayerData& ld)
{
CV_TRACE_FUNCTION();
CV_LOG_DEBUG(NULL, "DNN/IE: layer of new subnet: " << ld.name << "@" << ld.type);
Ptr<InfEngineNgraphNet> layerNet;
auto it = ld.backendNodes.find(preferableBackend);
if (it != ld.backendNodes.end())
{
Ptr<BackendNode> node = it->second;
if (!node.empty())
{
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
CV_Assert(!ieNode->net.empty());
layerNet = ieNode->net;
}
}
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData& inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineNgraphNode> ieInpNode = inpNode.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieInpNode.empty());
CV_Assert(!ieInpNode->net.empty());
if (layerNet != ieInpNode->net)
{
CV_LOG_DEBUG(NULL, "DNN/IE: pin output between subnets: " << ieInpNode->node->get_friendly_name());
ieInpNode->net->addOutput(ieInpNode);
}
}
}
}
void Net::Impl::initNgraphBackend(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
CV_CheckEQ(preferableBackend, DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, "");
Ptr<InfEngineNgraphNet> net;
for (MapIdToLayerData::const_iterator it = layers.begin(); it != layers.end(); ++it)
{
const LayerData& ld = it->second;
if (ld.id == 0)
{
CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
(netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
std::string outputName = netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i];
outputName = ld.outputBlobsWrappers.size() > 1 ? (outputName + "." + std::to_string(i)) : outputName;
dataPtr->setName(outputName);
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
std::string outputName = ld.outputBlobsWrappers.size() > 1 ? (ld.name + "." + std::to_string(i)) : ld.name;
dataPtr->setName(outputName);
}
}
}
if (skipInfEngineInit)
{
Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
CV_Assert(!node.empty());
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
CV_Assert(ieNode->net);
InfEngineNgraphNet& ienet = *ieNode->net;
ienet.reset();
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
if (ld.id == 0)
{
for (int i = 0; i < ld.inputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.inputBlobsWrappers[i]);
dataPtr->setName(netInputLayer->outNames[i]);
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
auto it = ienet.outputsDesc.find(ld.name);
if (it != ienet.outputsDesc.end())
{
const InferenceEngine::TensorDesc& descriptor = it->second;
InferenceEngine::DataPtr dataPtr = ngraphDataOutputNode(ld.outputBlobsWrappers[i], descriptor, ld.name);
dataPtr->setName(ld.name);
}
else
{
InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
dataPtr->setName(ld.name);
}
}
}
ienet.addBlobs(ld.inputBlobsWrappers);
ienet.addBlobs(ld.outputBlobsWrappers);
ld.skip = true;
}
layers[lastLayerId].skip = false;
ienet.init((Target)preferableTarget);
return;
}
bool supportsCPUFallback = !isArmComputePlugin() && (preferableTarget == DNN_TARGET_CPU ||
openvino::checkTarget(DNN_TARGET_CPU));
// Build Inference Engine networks from sets of layers that support this
// backend. Split a whole model on several Inference Engine networks if
// some of layers are not implemented.
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
CV_LOG_DEBUG(NULL, "DNN/IE: processing layer " << ld.name << "@" << ld.type << " (" << ld.id << ") ...");
if (ld.id == 0 && ld.skip)
{
CV_LOG_DEBUG(NULL, "DNN/IE: SKIP!");
continue;
}
bool fused = ld.skip;
Ptr<Layer> layer = ld.layerInstance;
if (!fused && !layer->supportBackend(preferableBackend))
{
CV_LOG_DEBUG(NULL, "DNN/IE: NOT supported!");
bool customizable = ld.id != 0 && supportsCPUFallback;
// TODO: there is a bug in Myriad plugin with custom layers shape infer.
if (preferableTarget == DNN_TARGET_MYRIAD || preferableTarget == DNN_TARGET_HDDL)
{
for (int i = 0; customizable && i < ld.inputBlobs.size(); ++i)
{
customizable = ld.inputBlobs[i]->size[0] == 1;
}
}
// TODO: fix these workarounds
if (preferableTarget == DNN_TARGET_MYRIAD ||
preferableTarget == DNN_TARGET_HDDL ||
preferableTarget == DNN_TARGET_OPENCL ||
preferableTarget == DNN_TARGET_OPENCL_FP16)
customizable &= ld.type != "Concat";
if (preferableTarget == DNN_TARGET_OPENCL ||
preferableTarget == DNN_TARGET_OPENCL_FP16)
customizable &= ld.type != "Power";
if (preferableTarget == DNN_TARGET_OPENCL)
customizable &= ld.type != "Eltwise";
if (!customizable)
{
CV_LOG_DEBUG(NULL, "DNN/IE: NOT customizable!");
addNgraphOutputs(ld);
net = Ptr<InfEngineNgraphNet>();
layer->preferableTarget = DNN_TARGET_CPU;
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData& inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineNgraphNode> ieNode = inpNode.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
ieNode->net->addOutput(ieNode);
}
}
continue;
}
}
ld.skip = true; // Initially skip all Inference Engine supported layers.
// Create a new network if one of inputs from different Inference Engine graph.
std::vector<Ptr<BackendNode>> inputNodes;
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
// Layer_Test_ROIPooling.Accuracy has 2 inputs inpLD = 0, 0 -> has 4 inputNodes (input, rois, input, rois)
if (inputNodes.size() == ld.inputBlobsId.size())
{
break;
}
LayerData& inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineNgraphNode> ieInpNode = inpNode.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieInpNode.empty());
CV_Assert(!ieInpNode->net.empty());
if (ieInpNode->net == net && !fused)
{
inputNodes.push_back(inpNode);
continue;
}
}
if (net.empty())
{
net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(*this));
}
if (!fused)
{
std::vector<std::string> inputNames;
std::vector<cv::Mat> inputs;
auto curr_pos = inpLd.consumers.begin();
auto compare = [&ld](const LayerPin& lp) { return lp.lid == ld.id; };
auto cons = curr_pos;
while ((cons = std::find_if(curr_pos, inpLd.consumers.end(), compare)) !=
inpLd.consumers.end()) {
int cons_inp = cons->oid;
Ptr<NgraphBackendWrapper> inpWrapper = inpLd.outputBlobsWrappers[cons_inp].
dynamicCast<NgraphBackendWrapper>();
CV_Assert(!inpWrapper.empty());
auto iter = std::find(inputNames.begin(), inputNames.end(),
inpWrapper->dataPtr->getName());
if (iter == inputNames.end())
{
inputNames.push_back(inpWrapper->dataPtr->getName());
inputs.push_back(inpLd.outputBlobs[cons_inp]);
}
curr_pos = cons + 1;
}
auto inps = net->setInputs(inputs, inputNames);
for (auto& inp : inps)
{
inputNodes.emplace_back(Ptr<BackendNode>(new InfEngineNgraphNode(inp)));
}
}
}
Ptr<BackendNode> node;
if (!net.empty())
{
if (fused)
{
bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
CV_Assert(inPlace);
node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
}
}
else
{
net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(*this));
}
if (!fused)
{
CV_Assert(ld.inputBlobsId.size() == inputNodes.size());
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
int lid = ld.inputBlobsId[i].lid;
int oid = ld.inputBlobsId[i].oid;
if (oid == 0 || lid == 0)
continue;
auto ieInpNode = inputNodes[i].dynamicCast<InfEngineNgraphNode>();
const auto& ngraph_input_node = ieInpNode->node;
CV_LOG_DEBUG(NULL, "DNN/IE: bind output port " << lid << ":" << oid << " (" << ngraph_input_node->get_friendly_name() << ":" << ngraph_input_node->get_type_info().name << ")");
// Handle parameters from other subnets. Output port is not used in this case
if ((ngraph::op::is_parameter(ngraph_input_node) || ngraph::op::is_constant(ngraph_input_node)) &&
ngraph_input_node->get_output_size() == 1)
{
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ngraph_input_node));
continue;
}
CV_CheckLT((size_t)oid, ngraph_input_node->get_output_size(), "");
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
// FIXIT refactor ".initNgraph()" API to use Output<Node>
// WA: use Concat to emulate Identity operation with requested output port
auto oid_node = std::make_shared<ngraph::op::Concat>(ngraph::OutputVector { ngraph_input_node->output(oid) }, 0);
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(oid_node));
#elif INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_3)
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid)));
#else
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid, false)));
#endif
}
if (layer->supportBackend(preferableBackend))
{
CV_LOG_DEBUG(NULL, "DNN/IE: wrap layer " << ld.name << "@" << ld.type << " - outputs: " << ld.outputBlobsWrappers.size());
node = layer->initNgraph(ld.inputBlobsWrappers, inputNodes);
#if 0 // FIXIT doesn't work with multiple outputs (set name is applied to the same node)
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
node.dynamicCast<InfEngineNgraphNode>()->setName(dataPtr->getName());
}
#else
node.dynamicCast<InfEngineNgraphNode>()->setName(layer->name);
#endif
}
else
{
CV_LOG_DEBUG(NULL, "DNN/IE: layer is not supported: " << ld.name << "@" << ld.type);
node = Ptr<BackendNode>(new InfEngineNgraphNode(inputNodes,
ld.layerInstance, ld.inputBlobs, ld.outputBlobs, ld.internals));
}
}
else if (node.empty())
{
CV_LOG_DEBUG(NULL, "DNN/IE: node.empty() bypass...");
continue;
}
ld.backendNodes[preferableBackend] = node;
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
ieNode->net = net;
for (const auto& pin : blobsToKeep_)
{
if (pin.lid == ld.id)
{
ieNode->net->addOutput(ieNode);
break;
}
}
ieNode->net->setNodePtr(&ieNode->node);
net->addBlobs(ld.inputBlobsWrappers);
net->addBlobs(ld.outputBlobsWrappers);
addNgraphOutputs(ld);
}
// Initialize all networks.
for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
{
LayerData& ld = it->second;
auto iter = ld.backendNodes.find(preferableBackend);
if (iter == ld.backendNodes.end())
continue;
Ptr<BackendNode>& node = iter->second;
if (node.empty())
continue;
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
if (ieNode.empty())
continue;
CV_Assert(!ieNode->net.empty());
if (!ieNode->net->isInitialized())
{
ieNode->net->addOutput(ieNode);
ieNode->net->createNet((Target)preferableTarget);
ld.skip = false;
}
}
}
//} // Net::Impl
/*static*/
Net Net::Impl::createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNet)
{
CV_TRACE_FUNCTION();
CV_TRACE_REGION("register_inputs");
std::vector<String> inputsNames;
std::vector<MatShape> inp_shapes;
for (auto& it : ieNet.getInputsInfo())
{
inputsNames.push_back(it.first);
std::vector<size_t> dims = it.second->getTensorDesc().getDims();
inp_shapes.push_back(std::vector<int>(dims.begin(), dims.end()));
}
Net cvNet;
cvNet.setInputsNames(inputsNames);
// set empty input to determine input shapes
for (int inp_id = 0; inp_id < inputsNames.size(); ++inp_id)
{
cvNet.setInputShape(inputsNames[inp_id], inp_shapes[inp_id]);
}
CV_TRACE_REGION_NEXT("backendNode");
Ptr<BackendNode> backendNode;
{
auto fake_node = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, ngraph::Shape {});
Ptr<InfEngineNgraphNode> backendNodeNGraph(new InfEngineNgraphNode(fake_node));
backendNodeNGraph->net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(*(cvNet.impl), ieNet));
backendNode = backendNodeNGraph;
}
CV_TRACE_REGION_NEXT("register_outputs");
auto ngraphFunction = ieNet.getFunction();
CV_Assert(ngraphFunction);
std::vector<std::shared_ptr<ngraph::Node>> ngraphOperations = ngraphFunction->get_ops();
for (auto& it : ieNet.getOutputsInfo())
{
CV_TRACE_REGION("output");
const auto& outputName = it.first;
LayerParams lp;
int lid = cvNet.addLayer(it.first, "", lp);
LayerData& ld = cvNet.impl->layers[lid];
{
Ptr<Layer> cvLayer(new NgraphBackendLayer(ieNet));
cvLayer->name = outputName;
cvLayer->type = "_unknown_";
auto process_layer = [&](const std::string& name) -> bool
{
CV_TRACE_REGION("ngraph_function");
for (const auto& op : ngraphOperations)
{
CV_Assert(op);
if (op->get_friendly_name() == name)
{
const std::string typeName = op->get_type_info().name;
cvLayer->type = typeName;
return true;
}
}
return false;
};
bool found = process_layer(outputName);
if (!found)
{
auto pos = outputName.rfind('.'); // cut port number: ".0"
if (pos != std::string::npos)
{
std::string layerName = outputName.substr(0, pos);
found = process_layer(layerName);
}
}
if (!found)
CV_LOG_WARNING(NULL, "DNN/IE: Can't determine output layer type: '" << outputName << "'");
ld.layerInstance = cvLayer;
ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE_NGRAPH] = backendNode;
}
for (int i = 0; i < inputsNames.size(); ++i)
cvNet.connect(0, i, lid, i);
}
CV_TRACE_REGION_NEXT("finalize");
cvNet.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
cvNet.impl->skipInfEngineInit = true;
return cvNet;
}
#endif // HAVE_INF_ENGINE
Net Net::readFromModelOptimizer(const String& xml, const String& bin)
{
CV_TRACE_FUNCTION();
#ifndef HAVE_INF_ENGINE
CV_UNUSED(xml); CV_UNUSED(bin);
CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
#else
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope;
InferenceEngine::Core& ie = getCore("");
InferenceEngine::CNNNetwork ieNet = ie.ReadNetwork(xml, bin);
return Impl::createNetworkFromModelOptimizer(ieNet);
#endif // HAVE_INF_ENGINE
}
Net Net::readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights)
{
CV_TRACE_FUNCTION();
CV_Assert(!bufferModelConfig.empty());
CV_Assert(!bufferWeights.empty());
return readFromModelOptimizer(bufferModelConfig.data(), bufferModelConfig.size(),
bufferWeights.data(), bufferWeights.size());
}
Net Net::readFromModelOptimizer(
const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize
)
{
CV_TRACE_FUNCTION();
#ifndef HAVE_INF_ENGINE
CV_UNUSED(bufferModelConfigPtr); CV_UNUSED(bufferWeightsPtr);
CV_UNUSED(bufferModelConfigSize); CV_UNUSED(bufferModelConfigSize);
CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
#else
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope;
InferenceEngine::Core& ie = getCore("");
std::string model; model.assign((char*)bufferModelConfigPtr, bufferModelConfigSize);
InferenceEngine::CNNNetwork ieNet;
try
{
InferenceEngine::TensorDesc tensorDesc(InferenceEngine::Precision::U8, { bufferWeightsSize }, InferenceEngine::Layout::C);
InferenceEngine::Blob::CPtr weights_blob = InferenceEngine::make_shared_blob<uint8_t>(tensorDesc, (uint8_t*)bufferWeightsPtr, bufferWeightsSize);
ieNet = ie.ReadNetwork(model, weights_blob);
}
catch (const std::exception& e)
{
CV_Error(Error::StsError, std::string("DNN: IE failed to load model: ") + e.what());
}
return Impl::createNetworkFromModelOptimizer(ieNet);
#endif // HAVE_INF_ENGINE
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,296 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "net_impl.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
// FIXIT drop from inference API
static
void getQuantizationParams(const Mat& src, std::vector<float>& scales, std::vector<int>& zeropoints)
{
const int qmin = -128; // INT8_MIN
const int qmax = 127; // INT8_MAX
double rmin, rmax, sc, zp;
cv::minMaxIdx(src, &rmin, &rmax);
// 0 must be present in the range [rmin, rmax]
rmin = std::min(rmin, 0.0);
rmax = std::max(rmax, 0.0);
sc = (rmax == rmin) ? 1.0 : (rmax - rmin)/(qmax - qmin);
zp = qmin - (rmin/sc);
scales.push_back((float)sc);
zeropoints.push_back((int)std::round(zp));
}
// FIXIT drop from inference API
Net Net::Impl::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype)
{
// Net can be quantized only once.
if (netWasQuantized)
CV_Error(Error::StsBadArg, "Cannot quantize a quantized net");
CV_CheckType(inputsDtype, inputsDtype == CV_32F || inputsDtype == CV_8S, "Input depth should be CV_32F or CV_8S");
CV_CheckType(outputsDtype, outputsDtype == CV_32F || outputsDtype == CV_8S, "Output depth should be CV_32F or CV_8S");
bool originalFusion = fusion;
int prefBackend = preferableBackend;
int prefTarget = preferableTarget;
// Disable fusions and use CPU backend to quantize net
setPreferableBackend(DNN_BACKEND_OPENCV);
setPreferableTarget(DNN_TARGET_CPU);
enableFusion(false);
if (calibData.isMat())
{
setInput(calibData.getMat(), /*name=*/"", /*scalefactor=*/1.0, /*mean=*/Scalar());
}
else if (calibData.isMatVector())
{
std::vector<Mat> calibDataVec;
calibData.getMatVector(calibDataVec);
std::vector<String> inpNames = netInputLayer->outNames;
CV_CheckEQ(calibDataVec.size(), inpNames.size(), "Calibration data size should be equal to number of inputs");
for (int i = 0; i < calibDataVec.size(); i++)
setInput(calibDataVec[i], inpNames[i], /*scalefactor=*/1.0, /*mean=*/Scalar());
}
std::vector<String> outNames = getUnconnectedOutLayersNames();
std::vector<LayerPin> pins;
for (int i = 0; i < outNames.size(); i++)
pins.push_back(getPinByAlias(outNames[i]));
setUpNet(pins);
// Compute scales and zeropoints for all the layers
std::vector<std::vector<float> > scales;
std::vector<std::vector<int> > zeropoints;
for (Impl::MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData& ld = it->second;
if (!ld.skip)
{
Ptr<Layer> layer = ld.layerInstance;
std::vector<Mat> inps(ld.inputBlobs.size());
for (int i = 0; i < ld.inputBlobs.size(); ++i)
inps[i] = *ld.inputBlobs[i];
layer->forward(inps, ld.outputBlobs, ld.internals);
}
std::vector<float> sc;
std::vector<int> zp;
if (ld.type == "TanH")
{
sc.push_back(1.f/128);
zp.push_back(0);
}
else if (ld.type == "Sigmoid" || ld.type == "Softmax" || ld.type == "SoftMax")
{
if (ld.params.get<bool>("log_softmax", false))
{
sc.push_back(16.f/256);
zp.push_back(127);
}
else
{
sc.push_back(1.f/256);
zp.push_back(-128);
}
}
else if (ld.type == "Split" || ld.type == "Slice" || ld.type == "Crop")
{
std::vector<float> inp_sc; std::vector<int> inp_zp;
getQuantizationParams(*ld.inputBlobs[0], inp_sc, inp_zp);
sc.assign(ld.outputBlobs.size(), inp_sc[0]);
zp.assign(ld.outputBlobs.size(), inp_zp[0]);
}
else
{
for (int i = 0; i < ld.outputBlobs.size(); i++)
getQuantizationParams(ld.outputBlobs[i], sc, zp);
}
scales.push_back(sc);
zeropoints.push_back(zp);
}
// For some layers, the input and output scales/zeropoints must be equal so that rescaling of inputs
// is not needed during quantized inference. We start from the last layer and modify the layer's input scales/zeropoints
// TODO : Need a different approach. Current solution fails when 2 such layers have the same input layer
for (Impl::MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
{
LayerData& ld = it->second;
// Layers with multiple outputs. Number of outputs is equal to number of inputs
if (ld.type == "Blank" || ld.type == "Dropout" || ld.type == "Identity" || ld.type == "Silence" ||
ld.type == "Flatten" || ld.type == "Padding" || ld.type == "Permute" || ld.type == "Reshape" ||
ld.type == "ReLU6" || ld.type == "Reorg" || ld.type == "ShuffleChannel" || ld.type == "Resize" ||
(ld.type == "ReLU" && !ld.params.get<float>("negative_slope", 0.f)) /* ReLU with negative slope 0 */)
{
for (int i = 0; i < ld.outputBlobs.size(); i++)
{
LayerPin &pin = ld.inputBlobsId[i];
scales[pin.lid][pin.oid] = scales[ld.id][i];
zeropoints[pin.lid][pin.oid] = zeropoints[ld.id][i];
}
}
// Layers with multiple inputs and single output.
else if ((ld.type == "Pooling" && toLowerCase(ld.params.get<String>("pool", "max")) == "max") /* Max Pooling */ ||
(ld.type == "Eltwise" && toLowerCase(ld.params.get<String>("operation", "sum")) == "max") /* Elementwise max */ ||
ld.type == "Concat")
{
for (int i = 0; i < ld.inputBlobsId.size(); i++)
{
LayerPin &pin = ld.inputBlobsId[i];
scales[pin.lid][pin.oid] = scales[ld.id][0];
zeropoints[pin.lid][pin.oid] = zeropoints[ld.id][0];
}
}
}
// Create a new Net and add quantized layers to it.
Net dstNet_;
Net::Impl& dstNet = *(dstNet_.impl);
dstNet.netWasQuantized = true;
dstNet.setInputsNames(netInputLayer->outNames);
dstNet.setPreferableBackend(prefBackend);
dstNet.setPreferableTarget(prefTarget);
dstNet.enableFusion(originalFusion);
for (Impl::MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData ld = it->second;
if (ld.id == 0)
{
LayerData &quantInpLd = dstNet.layers[0];
quantInpLd.dtype = inputsDtype;
quantInpLd.params.set("scales", DictValue::arrayReal(scales[0].data(), scales[0].size()));
quantInpLd.params.set("zeropoints", DictValue::arrayInt(zeropoints[0].data(), zeropoints[0].size()));
continue;
}
std::vector<LayerPin> inpPins = ld.inputBlobsId;
// Fill input and output scales/zeropoints for the layer
std::vector<std::vector<float> > inp_out_sc(2);
std::vector<std::vector<int> > inp_out_zp(2);
for (int i = 0; i < inpPins.size(); i++)
{
LayerPin &pin = inpPins[i];
inp_out_sc[0].push_back(scales[pin.lid][pin.oid]);
inp_out_zp[0].push_back(zeropoints[pin.lid][pin.oid]);
}
inp_out_sc[1] = scales[ld.id];
inp_out_zp[1] = zeropoints[ld.id];
// Quantize layer
Ptr<Layer> layer = ld.layerInstance;
if (layer->tryQuantize(inp_out_sc, inp_out_zp, ld.params))
{
ld.type += "Int8";
ld.dtype = CV_8S;
}
ld.params.set("scales", DictValue::arrayReal(inp_out_sc[1].data(), inp_out_sc[1].size()));
ld.params.set("zeropoints", DictValue::arrayInt(inp_out_zp[1].data(), inp_out_zp[1].size()));
// Check and add quantize/dequantize node before layer
for (int i = 0; i < inpPins.size(); i++)
{
LayerPin &pin = inpPins[i];
LayerData &inpLd = dstNet.getLayerData(getLayerName(pin.lid));
pin.lid = inpLd.id;
if (inpLd.dtype != ld.dtype)
{
String layerName = (inpLd.dtype == CV_32F && ld.dtype == CV_8S) ? cv::format("quantize/%s/%d", inpLd.name.c_str(), pin.oid)
: cv::format("dequantize/%s/%d", inpLd.name.c_str(), pin.oid);
// Check if quantize/dequantize node for the input layer already exists
if (dstNet.getLayerId(layerName) >= 0)
{
pin.lid = dstNet.getLayerId(layerName);
pin.oid = 0;
}
else
{
LayerParams lp;
lp.set("scales", inp_out_sc[0][i]);
lp.set("zeropoints", inp_out_zp[0][i]);
lp.name = layerName;
lp.type = (inpLd.dtype == CV_32F && ld.dtype == CV_8S) ? "Quantize" : "Dequantize";
int newLid = dstNet.addLayer(lp.name, lp.type, ld.dtype, lp);
dstNet.connect(pin.lid, pin.oid, newLid, 0);
pin.lid = newLid; pin.oid = 0;
}
}
}
// Add quantized layer to Net and connect to its inputs.
int newLid = dstNet.addLayer(ld.name, ld.type, ld.dtype, ld.params);
for( int i = 0; i < inpPins.size(); i++ )
dstNet.connect(inpPins[i].lid, inpPins[i].oid, newLid, i);
// If the layer is a output layer, add quantize/dequantize node after it based on output's data type.
if (ld.requiredOutputs.size() == 0 && ld.dtype != outputsDtype)
{
LayerParams lp;
lp.set("scales", inp_out_sc[1][0]);
lp.set("zeropoints", inp_out_zp[1][0]);
lp.name = ((ld.dtype == CV_32F && outputsDtype == CV_8S) ? "quantize/" : "dequantize/") + ld.name;
lp.type = (ld.dtype == CV_32F && outputsDtype == CV_8S) ? "Quantize" : "Dequantize";
dstNet.addLayerToPrev(lp.name, lp.type, outputsDtype, lp);
}
}
// Restore FP32 Net's backend, target and fusion
setPreferableBackend(prefBackend);
setPreferableTarget(prefTarget);
enableFusion(originalFusion);
return dstNet_;
}
// FIXIT drop from inference API
void Net::Impl::getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/
{
if (!netWasQuantized)
CV_Error(Error::StsBadFunc, "Net isn't quantized");
LayerParams &lp = layers[0].params;
DictValue sc = lp.get("scales");
DictValue zp = lp.get("zeropoints");
for (int i = 0; i < sc.size(); i++)
{
scales.push_back(sc.get<float>(i));
zeropoints.push_back(zp.get<int>(i));
}
}
// FIXIT drop from inference API
void Net::Impl::getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/
{
if (!netWasQuantized)
CV_Error(Error::StsBadFunc, "Net isn't quantized");
std::vector<int> outLayerIds = getUnconnectedOutLayers();
for (auto &lid : outLayerIds)
{
LayerParams &lp = layers[lid].params;
DictValue sc = lp.get("scales");
DictValue zp = lp.get("zeropoints");
for (int i = 0; i < sc.size(); i++)
{
scales.push_back(sc.get<float>(i));
zeropoints.push_back(zp.get<int>(i));
}
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,106 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#ifdef HAVE_CUDA
#include "op_cuda.hpp"
#include "cuda4dnn/init.hpp"
#include "net_impl.hpp"
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
void Net::Impl::initCUDABackend(const std::vector<LayerPin>& blobsToKeep_)
{
CV_Assert(preferableBackend == DNN_BACKEND_CUDA);
if (!cudaInfo) /* we need to check only once */
cuda4dnn::checkVersions();
if (cuda4dnn::getDeviceCount() <= 0)
CV_Error(Error::StsError, "No CUDA capable device found.");
if (cuda4dnn::getDevice() < 0)
CV_Error(Error::StsError, "No CUDA capable device selected.");
if (!cuda4dnn::isDeviceCompatible())
CV_Error(Error::GpuNotSupported, "OpenCV was not built to work with the selected device. Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration.");
if (preferableTarget == DNN_TARGET_CUDA_FP16 && !cuda4dnn::doesDeviceSupportFP16())
{
CV_LOG_WARNING(NULL, "The selected CUDA device does not support FP16 target; switching to FP32 target.");
preferableTarget = DNN_TARGET_CUDA;
}
if (!cudaInfo)
{
cuda4dnn::csl::CSLContext context;
context.stream = cuda4dnn::csl::Stream(true);
context.cublas_handle = cuda4dnn::csl::cublas::Handle(context.stream);
context.cudnn_handle = cuda4dnn::csl::cudnn::Handle(context.stream);
auto d2h_stream = cuda4dnn::csl::Stream(true); // stream for background D2H data transfers
cudaInfo = std::unique_ptr<CudaInfo_t>(new CudaInfo_t(std::move(context), std::move(d2h_stream)));
}
cudaInfo->workspace = cuda4dnn::csl::Workspace(); // release workspace memory if any
for (auto& layer : layers)
{
auto& ld = layer.second;
if (ld.id == 0)
{
for (auto& wrapper : ld.inputBlobsWrappers)
{
auto cudaWrapper = wrapper.dynamicCast<CUDABackendWrapper>();
cudaWrapper->setStream(cudaInfo->context.stream, cudaInfo->d2h_stream);
}
}
for (auto& wrapper : ld.outputBlobsWrappers)
{
auto cudaWrapper = wrapper.dynamicCast<CUDABackendWrapper>();
cudaWrapper->setStream(cudaInfo->context.stream, cudaInfo->d2h_stream);
}
}
for (auto& layer : layers)
{
auto& ld = layer.second;
auto& layerInstance = ld.layerInstance;
if (!layerInstance->supportBackend(DNN_BACKEND_CUDA))
{
std::ostringstream os;
os << "CUDA backend will fallback to the CPU implementation for the layer \"" << ld.name
<< "\" of type " << ld.type << '\n';
CV_LOG_INFO(NULL, os.str().c_str());
continue;
}
/* we make a copy so that `initCUDA` doesn't modify `cudaInfo->context` */
auto context = cudaInfo->context;
auto node = layerInstance->initCUDA(&context, ld.inputBlobsWrappers, ld.outputBlobsWrappers);
ld.backendNodes[DNN_BACKEND_CUDA] = node;
auto cudaNode = node.dynamicCast<CUDABackendNode>();
cudaInfo->workspace.require(cudaNode->get_workspace_memory_in_bytes());
}
if (blobsToKeep_.size() > 1)
{
for (const auto& pin : blobsToKeep_)
{
LayerData& ld = layers[pin.lid];
ld.cudaD2HBackgroundTransfers.push_back(pin.oid);
}
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
#endif // HAVE_CUDA

@ -8,15 +8,135 @@
#include "precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "op_halide.hpp"
#include "net_impl.hpp"
#ifdef HAVE_HALIDE
#include "halide_scheduler.hpp"
#include <HalideRuntimeOpenCL.h>
#endif // HAVE_HALIDE
namespace cv
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
void Net::Impl::setHalideScheduler(const String& scheduler)
{
halideConfigFile = scheduler;
}
#ifdef HAVE_HALIDE
void Net::Impl::compileHalide()
{
namespace dnn
CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);
HalideScheduler scheduler(halideConfigFile);
std::vector< std::reference_wrapper<LayerData> > compileList; compileList.reserve(64);
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
Ptr<Layer> layer = ld.layerInstance;
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skip)
{
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
if (!scheduled)
{
// Use automatic scheduling provided by layer.
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
ld.inputBlobs, ld.outputBlobs,
preferableTarget);
}
compileList.emplace_back(ld);
}
}
std::atomic<int> progress(0);
auto fn = ([&] () -> void
{
for (;;)
{
int id = progress.fetch_add(1);
if ((size_t)id >= compileList.size())
return;
const LayerData& ld = compileList[id].get();
Ptr<BackendNode> node = ld.backendNodes.find(DNN_BACKEND_HALIDE)->second;
dnn::compileHalide(ld.outputBlobs, node, preferableTarget);
}
});
size_t num_threads = std::min(compileList.size(), (size_t)std::thread::hardware_concurrency());
num_threads = std::max((size_t)1u, std::min((size_t)8u, num_threads));
std::vector<std::thread> threads(num_threads - 1);
for (auto& t: threads) t = std::thread(fn);
fn(); // process own tasks
for (auto& t: threads) t.join();
}
void Net::Impl::initHalideBackend()
{
CV_TRACE_FUNCTION();
CV_Assert_N(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
// Iterator to current layer.
MapIdToLayerData::iterator it = layers.begin();
// Iterator to base layer for fusion. In example, in case of conv+bn+relu
// it'll be a conv layer.
MapIdToLayerData::iterator baseIt = layers.begin();
for (; it != layers.end(); it++)
{
LayerData &ldTop = it->second;
Ptr<Layer> layerTop = ldTop.layerInstance;
if (!layerTop->supportBackend(preferableBackend))
{
// Move base iterator to layer that don't support preferable
// backend to prevent fusion over layer of different backend.
baseIt = it;
continue;
}
// Try to do layers fusion.
LayerData &ldBot = baseIt->second;
Ptr<Layer> layerBot = ldBot.layerInstance;
// 1. Check that bottom and top from the same backends.
if (it != layers.begin() && layerBot->supportBackend(preferableBackend))
{
// 2. Check that current layer works in-place.
bool inPlace = ldTop.inputBlobs.size() == 1 &&
ldBot.outputBlobs.size() == 1 &&
ldTop.inputBlobs[0]->data ==
ldBot.outputBlobs[0].data;
if (inPlace)
{
// 3. Try to attach node.
CV_Assert(!ldBot.backendNodes[preferableBackend].empty());
Ptr<BackendNode> fusedNode =
layerTop->tryAttach(ldBot.backendNodes[preferableBackend]);
if (!fusedNode.empty())
{
ldTop.skip = true;
ldBot.backendNodes[preferableBackend] = fusedNode;
ldBot.outputBlobsWrappers = ldTop.outputBlobsWrappers;
continue;
}
}
}
// No layers fusion.
ldTop.skip = false;
ldTop.backendNodes[DNN_BACKEND_HALIDE] =
layerTop->initHalide(ldTop.inputBlobsWrappers);
baseIt = it;
}
}
#endif // HAVE_HALIDE
CV__DNN_INLINE_NS_END
#ifdef HAVE_HALIDE
static MatShape getBufferShape(const MatShape& shape)
@ -226,5 +346,83 @@ bool haveHalide()
#endif // HAVE_HALIDE
}
} // namespace dnn
} // namespace cv
CV__DNN_INLINE_NS_BEGIN
void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs, int targetId) const
{
#ifndef HAVE_HALIDE
CV_Error(Error::StsNotImplemented, "");
#else
CV_TRACE_FUNCTION();
Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"),
xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile");
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
int outW, outH, outC, outN;
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
if (targetId == DNN_TARGET_CPU)
{
if (outW == 1 && outH == 1)
{
if (outC + outN == 1)
return;
if (outC > 8)
top.split(c, co, ci, 8)
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(ci, 8);
else
top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
.parallel(tile);
}
else
{
if (outH > 2)
{
top.reorder(x, c, y)
.split(y, yo, yi, 2)
.fuse(yo, n, tile)
.parallel(tile)
.unroll(yi)
.vectorize(x, outW >= 16 ? 16 : outW);
}
}
}
else if (targetId == DNN_TARGET_OPENCL)
{
if (outW == 1 && outH == 1)
{
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC;
top.split(c, co, ci, c_split)
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.gpu_blocks(tile)
.gpu_threads(ci);
}
else
{
int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW;
int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH;
// Supported vectorization widths: 2, 3, 4, 8, 16
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : std::min(4, outC);
top.split(x, xo, xi, x_split).split(y, yo, yi, y_split)
.split(c, co, ci, c_split)
.gpu_blocks(xo, yo, co)
.gpu_threads(xi, yi)
.reorder(xi, yi, ci, xo, yo, co)
.vectorize(ci);
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
#endif // HAVE_HALIDE
}
CV__DNN_INLINE_NS_END
}} // namespace

@ -254,6 +254,31 @@ cv::String getInferenceEngineCPUType()
return cpu_type;
}
namespace openvino {
bool checkTarget(Target target)
{
// Lightweight detection
const std::vector<std::string> devices = getCore("").GetAvailableDevices();
for (std::vector<std::string>::const_iterator i = devices.begin(); i != devices.end(); ++i)
{
if (std::string::npos != i->find("MYRIAD") && target == DNN_TARGET_MYRIAD)
return true;
if (std::string::npos != i->find("HDDL") && target == DNN_TARGET_HDDL)
return true;
else if (std::string::npos != i->find("FPGA") && target == DNN_TARGET_FPGA)
return true;
else if (std::string::npos != i->find("CPU") && target == DNN_TARGET_CPU)
return true;
else if (std::string::npos != i->find("GPU") && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
return true;
}
return false;
}
} // namespace openvino
#else // HAVE_INF_ENGINE
cv::String getInferenceEngineBackendType()

@ -73,6 +73,13 @@ void infEngineBlobsToMats(const std::vector<InferenceEngine::Blob::Ptr>& blobs,
CV__DNN_INLINE_NS_BEGIN
namespace openvino {
// TODO: use std::string as parameter
bool checkTarget(Target target);
} // namespace openvino
bool isMyriadX();
bool isArmComputePlugin();

@ -8,12 +8,51 @@
#include "precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "op_vkcom.hpp"
#include "net_impl.hpp"
namespace cv
{
namespace dnn
{
#ifdef HAVE_VULKAN
CV__DNN_INLINE_NS_BEGIN
void Net::Impl::initVkComBackend()
{
CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_VKCOM);
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData &ld = it->second;
Ptr<Layer> layer = ld.layerInstance;
if (!layer->supportBackend(preferableBackend))
{
continue;
}
ld.skip = false;
try
{
ld.backendNodes[DNN_BACKEND_VKCOM] =
layer->initVkCom(ld.inputBlobsWrappers);
}
catch (const cv::Exception& e)
{
CV_LOG_ERROR(NULL, "initVkCom failed, fallback to CPU implementation. " << e.what());
ld.backendNodes[DNN_BACKEND_VKCOM] = Ptr<BackendNode>();
}
}
}
CV__DNN_INLINE_NS_END
///////////////////////////////////////////////////////////////////////////////
void copyToTensor(vkcom::Tensor &dst, const Mat &src)
{
CV_Assert(src.isContinuous() && src.type() == CV_32F);

@ -2,6 +2,7 @@
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <fstream>
#include "op_webnn.hpp"
@ -13,10 +14,281 @@
#include <opencv2/dnn/shape_utils.hpp>
#include "net_impl.hpp"
namespace cv { namespace dnn {
#ifdef HAVE_WEBNN
CV__DNN_INLINE_NS_BEGIN
void Net::Impl::addWebnnOutputs(LayerData &ld)
{
CV_TRACE_FUNCTION();
Ptr<WebnnNet> layerNet;
auto it = ld.backendNodes.find(preferableBackend);
if (it != ld.backendNodes.end())
{
Ptr<BackendNode> node = it->second;
if (!node.empty())
{
Ptr<WebnnBackendNode> webnnNode = node.dynamicCast<WebnnBackendNode>();
CV_Assert(!webnnNode.empty()); CV_Assert(!webnnNode->net.empty());
layerNet = webnnNode->net;
}
}
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<WebnnBackendNode> webnnInpNode = inpNode.dynamicCast<WebnnBackendNode>();
CV_Assert(!webnnInpNode.empty()); CV_Assert(!webnnInpNode->net.empty());
if (layerNet != webnnInpNode->net)
{
webnnInpNode->net->addOutput(webnnInpNode->name);
webnnInpNode->net->setUnconnectedNodes(webnnInpNode);
}
}
}
}
void Net::Impl::initWebnnBackend(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
CV_Assert_N(preferableBackend == DNN_BACKEND_WEBNN, haveWebnn());
Ptr<WebnnNet> net;
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
if (ld.id == 0)
{
CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
(netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
Ptr<WebnnBackendWrapper> wrapper = ld.outputBlobsWrappers[i].dynamicCast<WebnnBackendWrapper>();
std::string outputName = netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i];
outputName = ld.outputBlobsWrappers.size() > 1 ? (outputName + "." + std::to_string(i)) : outputName;
wrapper->name = outputName;
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
Ptr<WebnnBackendWrapper> wrapper = ld.outputBlobsWrappers[i].dynamicCast<WebnnBackendWrapper>();
std::string outputName = ld.outputBlobsWrappers.size() > 1 ? (ld.name + "." + std::to_string(i)) : ld.name;
wrapper->name = outputName;
}
}
}
// Build WebNN networks from sets of layers that support this
// backend. Split a whole model on several WebNN networks if
// some of layers are not implemented.
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
if (ld.id == 0 && ld.skip)
continue;
bool fused = ld.skip;
Ptr<Layer> layer = ld.layerInstance;
if (!fused && !layer->supportBackend(preferableBackend))
{
// For test use. when not using WebNN, the test case will fail
// with the following code.
CV_LOG_WARNING(NULL, "Layer " + ld.type + " name " + ld.name + " is unsupported by WebNN backend.");
addWebnnOutputs(ld);
net = Ptr<WebnnNet>();
layer->preferableTarget = DNN_TARGET_CPU;
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty()) {
Ptr<WebnnBackendNode> webnnNode = inpNode.dynamicCast<WebnnBackendNode>();
CV_Assert(!webnnNode.empty());
webnnNode->net->setUnconnectedNodes(webnnNode);
}
}
continue;
}
ld.skip = true; // Initially skip all WebNN supported layers.
// Create a new network if one of inputs from different WebNN graph.
std::vector<Ptr<BackendNode>> inputNodes;
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
// Layer_Test_ROIPooling.Accuracy has 2 inputs inpLD = 0, 0 -> has 4 inputNodes (input, rois, input, rois)
if (inputNodes.size() == ld.inputBlobsId.size()) {
break;
}
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<WebnnBackendNode> webnnInpNode = inpNode.dynamicCast<WebnnBackendNode>();
CV_Assert(!webnnInpNode.empty()); CV_Assert(!webnnInpNode->net.empty());
if (webnnInpNode->net == net && !fused) {
inputNodes.push_back(inpNode);
continue;
}
}
if (net.empty()) {
net = Ptr<WebnnNet>(new WebnnNet());
}
if (!fused) {
std::vector<std::string> inputNames;
std::vector<cv::Mat> inputs;
auto curr_pos = inpLd.consumers.begin();
auto compare = [&ld] (const LayerPin& lp) { return lp.lid == ld.id; };
auto cons = curr_pos;
while ((cons = std::find_if(curr_pos, inpLd.consumers.end(), compare)) !=
inpLd.consumers.end()) {
int cons_inp = cons->oid;
Ptr<WebnnBackendWrapper> inpWrapper = inpLd.outputBlobsWrappers[cons_inp].
dynamicCast<WebnnBackendWrapper>();
CV_Assert(!inpWrapper.empty());
auto iter = std::find(inputNames.begin(), inputNames.end(),
inpWrapper->name);
if (iter == inputNames.end()) {
inputNames.push_back(inpWrapper->name);
inputs.push_back(inpLd.outputBlobs[cons_inp]);
}
curr_pos = cons + 1;
}
auto inps = net->setInputs(inputs, inputNames);
for (auto& inp : inps) {
WebnnBackendNode* node = new WebnnBackendNode(inp);
node->net = net;
inputNodes.emplace_back(Ptr<BackendNode>(node));
}
}
}
Ptr<BackendNode> node;
if (!net.empty())
{
if (fused)
{
bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
CV_Assert(inPlace);
node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
}
}
else {
net = Ptr<WebnnNet>(new WebnnNet());
}
if (!fused)
{
CV_Assert(ld.inputBlobsId.size() == inputNodes.size());
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
int lid = ld.inputBlobsId[i].lid;
int oid = ld.inputBlobsId[i].oid;
if (oid == 0 || lid == 0)
continue;
auto webnnInpNode = inputNodes[i].dynamicCast<WebnnBackendNode>();
inputNodes[i] = Ptr<BackendNode>(new WebnnBackendNode(webnnInpNode->operand));
}
if (layer->supportBackend(preferableBackend))
{
if (ld.type == "Const") {
ml::Operand fake_operand;
Ptr<WebnnBackendNode> fake_input_node = Ptr<WebnnBackendNode>(new WebnnBackendNode(fake_operand));
fake_input_node->net = net;
inputNodes.push_back(fake_input_node);
}
node = layer->initWebnn(ld.inputBlobsWrappers, inputNodes);
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
Ptr<WebnnBackendWrapper> wrapper = ld.outputBlobsWrappers[i].dynamicCast<WebnnBackendWrapper>();
node.dynamicCast<WebnnBackendNode>()->name = wrapper->name;
}
}
else
{
continue;
}
}
else if (node.empty())
continue;
ld.backendNodes[preferableBackend] = node;
Ptr<WebnnBackendNode> webnnNode = node.dynamicCast<WebnnBackendNode>();
CV_Assert(!webnnNode.empty());
webnnNode->net = net;
if (ld.consumers.empty()) {
// TF EAST_text_detection
webnnNode->net->setUnconnectedNodes(webnnNode);
}
for (const auto& pin : blobsToKeep_)
{
if (pin.lid == ld.id)
{
webnnNode->net->addOutput(webnnNode->name);
break;
}
}
net->addBlobs(ld.inputBlobsWrappers);
net->addBlobs(ld.outputBlobsWrappers);
addWebnnOutputs(ld);
}
// Initialize all networks.
for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
{
LayerData &ld = it->second;
auto iter = ld.backendNodes.find(preferableBackend);
if (iter == ld.backendNodes.end())
continue;
Ptr<BackendNode>& node = iter->second;
if (node.empty())
continue;
Ptr<WebnnBackendNode> webnnNode = node.dynamicCast<WebnnBackendNode>();
if (webnnNode.empty())
continue;
CV_Assert(!webnnNode->net.empty());
if (!webnnNode->net->isInitialized())
{
webnnNode->net->setUnconnectedNodes(webnnNode);
webnnNode->net->createNet((Target)preferableTarget);
ld.skip = false;
}
}
}
CV__DNN_INLINE_NS_END
namespace webnn {
ml::Operand BuildConstant(const ml::GraphBuilder& builder,
const std::vector<int32_t>& dimensions,

@ -66,6 +66,15 @@
#undef HAVE_CUDA
#endif
#include <numeric>
#include <memory>
#include <algorithm>
#include <fstream>
#include <sstream>
#include <vector>
#include <set>
#include <iterator>
#include <opencv2/core/ocl.hpp>
#include <opencv2/core/opencl/ocl_defs.hpp>

@ -0,0 +1,144 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "op_halide.hpp"
#include "op_inf_engine.hpp"
#include "ie_ngraph.hpp"
#include "op_vkcom.hpp"
#include "op_cuda.hpp"
#include "op_webnn.hpp"
#include "halide_scheduler.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
class BackendRegistry
{
public:
typedef std::vector< std::pair<Backend, Target> > BackendsList;
const BackendsList & getBackends() const { return backends; }
static BackendRegistry & getRegistry()
{
static BackendRegistry impl;
return impl;
}
private:
BackendRegistry()
{
#ifdef HAVE_HALIDE
backends.push_back(std::make_pair(DNN_BACKEND_HALIDE, DNN_TARGET_CPU));
#ifdef HAVE_OPENCL
if (cv::ocl::useOpenCL())
backends.push_back(std::make_pair(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL));
#endif
#endif // HAVE_HALIDE
#ifdef HAVE_INF_ENGINE
if (openvino::checkTarget(DNN_TARGET_CPU))
{
#ifdef HAVE_DNN_NGRAPH
backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_CPU));
#endif
}
if (openvino::checkTarget(DNN_TARGET_MYRIAD))
{
#ifdef HAVE_DNN_NGRAPH
backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_MYRIAD));
#endif
}
if (openvino::checkTarget(DNN_TARGET_HDDL))
{
#ifdef HAVE_DNN_NGRAPH
backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_HDDL));
#endif
}
#ifdef HAVE_OPENCL
if (cv::ocl::useOpenCL() && ocl::Device::getDefault().isIntel())
{
if (openvino::checkTarget(DNN_TARGET_OPENCL))
{
#ifdef HAVE_DNN_NGRAPH
backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_OPENCL));
#endif
}
if (openvino::checkTarget(DNN_TARGET_OPENCL_FP16))
{
#ifdef HAVE_DNN_NGRAPH
backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_OPENCL_FP16));
#endif
}
}
#endif
#endif // HAVE_INF_ENGINE
#ifdef HAVE_WEBNN
if (haveWebnn())
{
backends.push_back(std::make_pair(DNN_BACKEND_WEBNN, DNN_TARGET_CPU));
}
#endif // HAVE_WEBNN
#ifdef HAVE_OPENCL
if (cv::ocl::useOpenCL())
{
backends.push_back(std::make_pair(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL));
backends.push_back(std::make_pair(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16));
}
#endif
backends.push_back(std::make_pair(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
#ifdef HAVE_VULKAN
if (haveVulkan())
backends.push_back(std::make_pair(DNN_BACKEND_VKCOM, DNN_TARGET_VULKAN));
#endif
#ifdef HAVE_CUDA
if (haveCUDA())
{
backends.push_back(std::make_pair(DNN_BACKEND_CUDA, DNN_TARGET_CUDA));
backends.push_back(std::make_pair(DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16));
}
#endif
}
BackendsList backends;
};
std::vector<std::pair<Backend, Target>> getAvailableBackends()
{
return BackendRegistry::getRegistry().getBackends();
}
std::vector<Target> getAvailableTargets(Backend be)
{
if (be == DNN_BACKEND_DEFAULT)
be = (Backend)getParam_DNN_BACKEND_DEFAULT();
#ifdef HAVE_INF_ENGINE
if (be == DNN_BACKEND_INFERENCE_ENGINE)
be = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
#endif
std::vector<Target> result;
const BackendRegistry::BackendsList all_backends = getAvailableBackends();
for (BackendRegistry::BackendsList::const_iterator i = all_backends.begin(); i != all_backends.end(); ++i)
{
if (i->first == be)
result.push_back(i->second);
}
return result;
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
Loading…
Cancel
Save