mirror of https://github.com/opencv/opencv.git
parent
5c459aa815
commit
681ac9beda
2 changed files with 1013 additions and 0 deletions
@ -0,0 +1,614 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include <stdio.h> |
||||
#include "internal_shared.hpp" |
||||
#include "opencv2/gpu/device/common.hpp" |
||||
#include "opencv2/gpu/device/border_interpolate.hpp" |
||||
|
||||
#define tx threadIdx.x |
||||
#define ty threadIdx.y |
||||
#define bx blockIdx.x |
||||
#define by blockIdx.y |
||||
#define bdx blockDim.x |
||||
#define bdy blockDim.y |
||||
|
||||
#define BORDER_SIZE 5 |
||||
#define MAX_KSIZE_HALF 100 |
||||
|
||||
using namespace std; |
||||
|
||||
namespace cv { namespace gpu { namespace device { namespace optflow_farneback |
||||
{ |
||||
__constant__ float c_g[8]; |
||||
__constant__ float c_xg[8]; |
||||
__constant__ float c_xxg[8]; |
||||
__constant__ float c_ig11, c_ig03, c_ig33, c_ig55; |
||||
|
||||
|
||||
template <int polyN> |
||||
__global__ void polynomialExpansion( |
||||
const int height, const int width, const PtrStepf src, PtrStepf dst) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * (bdx - 2*polyN) + tx - polyN; |
||||
|
||||
if (y < height) |
||||
{ |
||||
extern __shared__ float smem[]; |
||||
volatile float *row = smem + tx; |
||||
int xWarped = ::min(::max(x, 0), width - 1); |
||||
|
||||
row[0] = src(y, xWarped) * c_g[0]; |
||||
row[bdx] = 0.f; |
||||
row[2*bdx] = 0.f; |
||||
|
||||
for (int k = 1; k <= polyN; ++k) |
||||
{ |
||||
float t0 = src(::max(y - k, 0), xWarped); |
||||
float t1 = src(::min(y + k, height - 1), xWarped); |
||||
|
||||
row[0] += c_g[k] * (t0 + t1); |
||||
row[bdx] += c_xg[k] * (t1 - t0); |
||||
row[2*bdx] += c_xxg[k] * (t0 + t1); |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
if (tx >= polyN && tx + polyN < bdx && x < width) |
||||
{ |
||||
float b1 = c_g[0] * row[0]; |
||||
float b3 = c_g[0] * row[bdx]; |
||||
float b5 = c_g[0] * row[2*bdx]; |
||||
float b2 = 0, b4 = 0, b6 = 0; |
||||
|
||||
for (int k = 1; k <= polyN; ++k) |
||||
{ |
||||
b1 += (row[k] + row[-k]) * c_g[k]; |
||||
b4 += (row[k] + row[-k]) * c_xxg[k]; |
||||
b2 += (row[k] - row[-k]) * c_xg[k]; |
||||
b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k]; |
||||
b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k]; |
||||
b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k]; |
||||
} |
||||
|
||||
dst(y, xWarped) = b3*c_ig11; |
||||
dst(height + y, xWarped) = b2*c_ig11; |
||||
dst(2*height + y, xWarped) = b1*c_ig03 + b5*c_ig33; |
||||
dst(3*height + y, xWarped) = b1*c_ig03 + b4*c_ig33; |
||||
dst(4*height + y, xWarped) = b6*c_ig55; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void setPolinomialExpansionConsts( |
||||
int polyN, const float *g, const float *xg, const float *xxg, |
||||
float ig11, float ig03, float ig33, float ig55) |
||||
{ |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_g, g, (polyN + 1) * sizeof(*g))); |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_xg, xg, (polyN + 1) * sizeof(*xg))); |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_xxg, xxg, (polyN + 1) * sizeof(*xxg))); |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_ig11, &ig11, sizeof(ig11))); |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_ig03, &ig03, sizeof(ig03))); |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_ig33, &ig33, sizeof(ig33))); |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_ig55, &ig55, sizeof(ig55))); |
||||
} |
||||
|
||||
|
||||
void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream) |
||||
{ |
||||
dim3 block(256); |
||||
dim3 grid(divUp(src.cols, block.x - 2*polyN), src.rows); |
||||
int smem = 3 * block.x * sizeof(float); |
||||
|
||||
if (polyN == 5) |
||||
polynomialExpansion<5><<<grid, block, smem, stream>>>(src.rows, src.cols, src, dst); |
||||
else if (polyN == 7) |
||||
polynomialExpansion<7><<<grid, block, smem, stream>>>(src.rows, src.cols, src, dst); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
|
||||
|
||||
__constant__ float c_border[BORDER_SIZE + 1]; |
||||
|
||||
__global__ void updateMatrices( |
||||
const int height, const int width, const PtrStepf flowx, const PtrStepf flowy, |
||||
const PtrStepf R0, const PtrStepf R1, PtrStepf M) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * bdx + tx; |
||||
|
||||
if (y < height && x < width) |
||||
{ |
||||
float dx = flowx(y, x); |
||||
float dy = flowy(y, x); |
||||
float fx = x + dx; |
||||
float fy = y + dy; |
||||
|
||||
int x1 = floorf(fx); |
||||
int y1 = floorf(fy); |
||||
fx -= x1; fy -= y1; |
||||
|
||||
float r2, r3, r4, r5, r6; |
||||
|
||||
if (x1 >= 0 && y1 >= 0 && x1 < width - 1 && y1 < height - 1) |
||||
{ |
||||
float a00 = (1.f - fx) * (1.f - fy); |
||||
float a01 = fx * (1.f - fy); |
||||
float a10 = (1.f - fx) * fy; |
||||
float a11 = fx * fy; |
||||
|
||||
r2 = a00 * R1(y1, x1) + |
||||
a01 * R1(y1, x1 + 1) + |
||||
a10 * R1(y1 + 1, x1) + |
||||
a11 * R1(y1 + 1, x1 + 1); |
||||
|
||||
r3 = a00 * R1(height + y1, x1) + |
||||
a01 * R1(height + y1, x1 + 1) + |
||||
a10 * R1(height + y1 + 1, x1) + |
||||
a11 * R1(height + y1 + 1, x1 + 1); |
||||
|
||||
r4 = a00 * R1(2*height + y1, x1) + |
||||
a01 * R1(2*height + y1, x1 + 1) + |
||||
a10 * R1(2*height + y1 + 1, x1) + |
||||
a11 * R1(2*height + y1 + 1, x1 + 1); |
||||
|
||||
r5 = a00 * R1(3*height + y1, x1) + |
||||
a01 * R1(3*height + y1, x1 + 1) + |
||||
a10 * R1(3*height + y1 + 1, x1) + |
||||
a11 * R1(3*height + y1 + 1, x1 + 1); |
||||
|
||||
r6 = a00 * R1(4*height + y1, x1) + |
||||
a01 * R1(4*height + y1, x1 + 1) + |
||||
a10 * R1(4*height + y1 + 1, x1) + |
||||
a11 * R1(4*height + y1 + 1, x1 + 1); |
||||
|
||||
r4 = (R0(2*height + y, x) + r4) * 0.5f; |
||||
r5 = (R0(3*height + y, x) + r5) * 0.5f; |
||||
r6 = (R0(4*height + y, x) + r6) * 0.25f; |
||||
} |
||||
else |
||||
{ |
||||
r2 = r3 = 0.f; |
||||
r4 = R0(2*height + y, x); |
||||
r5 = R0(3*height + y, x); |
||||
r6 = R0(4*height + y, x) * 0.5f; |
||||
} |
||||
|
||||
r2 = (R0(y, x) - r2) * 0.5f; |
||||
r3 = (R0(height + y, x) - r3) * 0.5f; |
||||
|
||||
r2 += r4*dy + r6*dx; |
||||
r3 += r6*dy + r5*dx; |
||||
|
||||
float scale = |
||||
c_border[::min(x, BORDER_SIZE)] * |
||||
c_border[::min(y, BORDER_SIZE)] * |
||||
c_border[::min(width - x - 1, BORDER_SIZE)] * |
||||
c_border[::min(height - y - 1, BORDER_SIZE)]; |
||||
|
||||
r2 *= scale; r3 *= scale; r4 *= scale; |
||||
r5 *= scale; r6 *= scale; |
||||
|
||||
M(y, x) = r4*r4 + r6*r6; |
||||
M(height + y, x) = (r4 + r5)*r6; |
||||
M(2*height + y, x) = r5*r5 + r6*r6; |
||||
M(3*height + y, x) = r4*r2 + r6*r3; |
||||
M(4*height + y, x) = r6*r2 + r5*r3; |
||||
} |
||||
} |
||||
|
||||
|
||||
void setUpdateMatricesConsts() |
||||
{ |
||||
static const float border[BORDER_SIZE + 1] = {0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f}; |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_border, border, (BORDER_SIZE + 1) * sizeof(*border))); |
||||
} |
||||
|
||||
|
||||
void updateMatricesGpu( |
||||
const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1, |
||||
DevMem2Df M, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y)); |
||||
|
||||
updateMatrices<<<grid, block, 0, stream>>>(flowx.rows, flowx.cols, flowx, flowy, R0, R1, M); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
|
||||
|
||||
__global__ void updateFlow( |
||||
const int height, const int width, const PtrStepf M, PtrStepf flowx, PtrStepf flowy) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * bdx + tx; |
||||
|
||||
if (y < height && x < width) |
||||
{ |
||||
float g11 = M(y, x); |
||||
float g12 = M(height + y, x); |
||||
float g22 = M(2*height + y, x); |
||||
float h1 = M(3*height + y, x); |
||||
float h2 = M(4*height + y, x); |
||||
|
||||
float detInv = 1.f / (g11*g22 - g12*g12 + 1e-3f); |
||||
|
||||
flowx(y, x) = (g11*h2 - g12*h1) * detInv; |
||||
flowy(y, x) = (g22*h1 - g12*h2) * detInv; |
||||
} |
||||
} |
||||
|
||||
|
||||
void updateFlowGpu(const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y)); |
||||
|
||||
updateFlow<<<grid, block, 0, stream>>>(flowx.rows, flowx.cols, M, flowx, flowy); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
|
||||
|
||||
/*__global__ void boxFilter( |
||||
const int height, const int width, const PtrStepf src, |
||||
const int ksizeHalf, const float boxAreaInv, PtrStepf dst) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * bdx + tx; |
||||
|
||||
extern __shared__ float smem[]; |
||||
volatile float *row = smem + ty * (bdx + 2*ksizeHalf); |
||||
|
||||
if (y < height) |
||||
{ |
||||
// Vertical pass |
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) |
||||
{ |
||||
int xExt = int(bx * bdx) + i - ksizeHalf; |
||||
xExt = ::min(::max(xExt, 0), width - 1); |
||||
|
||||
row[i] = src(y, xExt); |
||||
for (int j = 1; j <= ksizeHalf; ++j) |
||||
row[i] += src(::max(y - j, 0), xExt) + src(::min(y + j, height - 1), xExt); |
||||
} |
||||
|
||||
if (x < width) |
||||
{ |
||||
__syncthreads(); |
||||
|
||||
// Horizontal passs |
||||
row += tx + ksizeHalf; |
||||
float res = row[0]; |
||||
for (int i = 1; i <= ksizeHalf; ++i) |
||||
res += row[-i] + row[i]; |
||||
dst(y, x) = res * boxAreaInv; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) |
||||
{ |
||||
dim3 block(256); |
||||
dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); |
||||
int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float); |
||||
|
||||
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf)); |
||||
boxFilter<<<grid, block, smem, stream>>>(src.rows, src.cols, src, ksizeHalf, boxAreaInv, dst); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
}*/ |
||||
|
||||
|
||||
__global__ void boxFilter5( |
||||
const int height, const int width, const PtrStepf src, |
||||
const int ksizeHalf, const float boxAreaInv, PtrStepf dst) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * bdx + tx; |
||||
|
||||
extern __shared__ float smem[]; |
||||
|
||||
const int smw = bdx + 2*ksizeHalf; // shared memory "width" |
||||
volatile float *row = smem + 5 * ty * smw; |
||||
|
||||
if (y < height) |
||||
{ |
||||
// Vertical pass |
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) |
||||
{ |
||||
int xExt = int(bx * bdx) + i - ksizeHalf; |
||||
xExt = ::min(::max(xExt, 0), width - 1); |
||||
|
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
row[k*smw + i] = src(k*height + y, xExt); |
||||
|
||||
for (int j = 1; j <= ksizeHalf; ++j) |
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
row[k*smw + i] += |
||||
src(k*height + ::max(y - j, 0), xExt) + |
||||
src(k*height + ::min(y + j, height - 1), xExt); |
||||
} |
||||
|
||||
if (x < width) |
||||
{ |
||||
__syncthreads(); |
||||
|
||||
// Horizontal passs |
||||
|
||||
row += tx + ksizeHalf; |
||||
float res[5]; |
||||
|
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
res[k] = row[k*smw]; |
||||
|
||||
for (int i = 1; i <= ksizeHalf; ++i) |
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
res[k] += row[k*smw - i] + row[k*smw + i]; |
||||
|
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
dst(k*height + y, x) = res[k] * boxAreaInv; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) |
||||
{ |
||||
int height = src.rows / 5; |
||||
int width = src.cols; |
||||
|
||||
dim3 block(256); |
||||
dim3 grid(divUp(width, block.x), divUp(height, block.y)); |
||||
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float); |
||||
|
||||
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf)); |
||||
boxFilter5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, boxAreaInv, dst); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
|
||||
|
||||
__constant__ float c_gKer[MAX_KSIZE_HALF + 1]; |
||||
|
||||
template <typename Border> |
||||
__global__ void gaussianBlur( |
||||
const int height, const int width, const PtrStepf src, const int ksizeHalf, |
||||
const Border b, PtrStepf dst) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * bdx + tx; |
||||
|
||||
extern __shared__ float smem[]; |
||||
volatile float *row = smem + ty * (bdx + 2*ksizeHalf); |
||||
|
||||
if (y < height) |
||||
{ |
||||
// Vertical pass |
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) |
||||
{ |
||||
int xExt = int(bx * bdx) + i - ksizeHalf; |
||||
xExt = b.idx_col(xExt); |
||||
row[i] = src(y, xExt) * c_gKer[0]; |
||||
for (int j = 1; j <= ksizeHalf; ++j) |
||||
row[i] += |
||||
(src(b.idx_row_low(y - j), xExt) + |
||||
src(b.idx_row_high(y + j), xExt)) * c_gKer[j]; |
||||
} |
||||
|
||||
if (x < width) |
||||
{ |
||||
__syncthreads(); |
||||
|
||||
// Horizontal pass |
||||
row += tx + ksizeHalf; |
||||
float res = row[0] * c_gKer[0]; |
||||
for (int i = 1; i <= ksizeHalf; ++i) |
||||
res += (row[-i] + row[i]) * c_gKer[i]; |
||||
dst(y, x) = res; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void setGaussianBlurKernel(const float *gKer, int ksizeHalf) |
||||
{ |
||||
cudaSafeCall(cudaMemcpyToSymbol(c_gKer, gKer, (ksizeHalf + 1) * sizeof(*gKer))); |
||||
} |
||||
|
||||
|
||||
template <typename Border> |
||||
void gaussianBlurCaller(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) |
||||
{ |
||||
int height = src.rows; |
||||
int width = src.cols; |
||||
|
||||
dim3 block(256); |
||||
dim3 grid(divUp(width, block.x), divUp(height, block.y)); |
||||
int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float); |
||||
Border b(height, width); |
||||
|
||||
gaussianBlur<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, b, dst); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
|
||||
|
||||
void gaussianBlurGpu( |
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream) |
||||
{ |
||||
typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t); |
||||
|
||||
static const caller_t callers[] = |
||||
{ |
||||
gaussianBlurCaller<BrdReflect101<float> >, |
||||
gaussianBlurCaller<BrdReplicate<float> >, |
||||
}; |
||||
|
||||
callers[borderMode](src, ksizeHalf, dst, stream); |
||||
} |
||||
|
||||
|
||||
template <typename Border> |
||||
__global__ void gaussianBlur5( |
||||
const int height, const int width, const PtrStepf src, const int ksizeHalf, |
||||
const Border b, PtrStepf dst) |
||||
{ |
||||
const int y = by * bdy + ty; |
||||
const int x = bx * bdx + tx; |
||||
|
||||
extern __shared__ float smem[]; |
||||
|
||||
const int smw = bdx + 2*ksizeHalf; // shared memory "width" |
||||
volatile float *row = smem + 5 * ty * smw; |
||||
|
||||
if (y < height) |
||||
{ |
||||
// Vertical pass |
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) |
||||
{ |
||||
int xExt = int(bx * bdx) + i - ksizeHalf; |
||||
xExt = b.idx_col(xExt); |
||||
|
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
row[k*smw + i] = src(k*height + y, xExt) * c_gKer[0]; |
||||
|
||||
for (int j = 1; j <= ksizeHalf; ++j) |
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
row[k*smw + i] += |
||||
(src(k*height + b.idx_row_low(y - j), xExt) + |
||||
src(k*height + b.idx_row_high(y + j), xExt)) * c_gKer[j]; |
||||
} |
||||
|
||||
if (x < width) |
||||
{ |
||||
__syncthreads(); |
||||
|
||||
// Horizontal pass |
||||
|
||||
row += tx + ksizeHalf; |
||||
float res[5]; |
||||
|
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
res[k] = row[k*smw] * c_gKer[0]; |
||||
|
||||
for (int i = 1; i <= ksizeHalf; ++i) |
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i]; |
||||
|
||||
#pragma unroll |
||||
for (int k = 0; k < 5; ++k) |
||||
dst(k*height + y, x) = res[k]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
template <typename Border> |
||||
void gaussianBlur5Caller( |
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) |
||||
{ |
||||
int height = src.rows / 5; |
||||
int width = src.cols; |
||||
|
||||
dim3 block(256); |
||||
dim3 grid(divUp(width, block.x), divUp(height, block.y)); |
||||
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float); |
||||
Border b(height, width); |
||||
|
||||
gaussianBlur5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, b, dst); |
||||
|
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
} |
||||
|
||||
|
||||
void gaussianBlur5Gpu( |
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream) |
||||
{ |
||||
typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t); |
||||
|
||||
static const caller_t callers[] = |
||||
{ |
||||
gaussianBlur5Caller<BrdReflect101<float> >, |
||||
gaussianBlur5Caller<BrdReplicate<float> >, |
||||
}; |
||||
|
||||
callers[borderMode](src, ksizeHalf, dst, stream); |
||||
} |
||||
|
||||
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback |
||||
|
@ -0,0 +1,399 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <opencv2/highgui/highgui.hpp> |
||||
|
||||
#define MIN_SIZE 32 |
||||
|
||||
#define S(x) StreamAccessor::getStream(x) |
||||
|
||||
// GPU resize() is fast, but it differs from the CPU analog. Disabling this flag
|
||||
// leads to an inefficient code. It's for debug purposes only.
|
||||
#define ENABLE_GPU_RESIZE 1 |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined(HAVE_CUDA) |
||||
|
||||
void cv::gpu::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
||||
|
||||
#else |
||||
|
||||
namespace cv { namespace gpu { namespace device { namespace optflow_farneback |
||||
{ |
||||
void setPolinomialExpansionConsts( |
||||
int polyN, const float *g, const float *xg, const float *xxg, |
||||
float ig11, float ig03, float ig33, float ig55); |
||||
|
||||
void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream); |
||||
|
||||
void setUpdateMatricesConsts(); |
||||
|
||||
void updateMatricesGpu( |
||||
const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1, |
||||
DevMem2Df M, cudaStream_t stream); |
||||
|
||||
void updateFlowGpu( |
||||
const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream); |
||||
|
||||
/*void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);*/ |
||||
|
||||
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream); |
||||
|
||||
void setGaussianBlurKernel(const float *gKer, int ksizeHalf); |
||||
|
||||
void gaussianBlurGpu( |
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream); |
||||
|
||||
void gaussianBlur5Gpu( |
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream); |
||||
|
||||
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
|
||||
|
||||
void cv::gpu::FarnebackOpticalFlow::prepareGaussian( |
||||
int n, double sigma, float *g, float *xg, float *xxg, |
||||
double &ig11, double &ig03, double &ig33, double &ig55) |
||||
{ |
||||
double s = 0.; |
||||
for (int x = -n; x <= n; x++) |
||||
{ |
||||
g[x] = (float)std::exp(-x*x/(2*sigma*sigma)); |
||||
s += g[x]; |
||||
} |
||||
|
||||
s = 1./s; |
||||
for (int x = -n; x <= n; x++) |
||||
{ |
||||
g[x] = (float)(g[x]*s); |
||||
xg[x] = (float)(x*g[x]); |
||||
xxg[x] = (float)(x*x*g[x]); |
||||
} |
||||
|
||||
Mat_<double> G(6, 6); |
||||
G.setTo(0); |
||||
|
||||
for (int y = -n; y <= n; y++) |
||||
{ |
||||
for (int x = -n; x <= n; x++) |
||||
{ |
||||
G(0,0) += g[y]*g[x]; |
||||
G(1,1) += g[y]*g[x]*x*x; |
||||
G(3,3) += g[y]*g[x]*x*x*x*x; |
||||
G(5,5) += g[y]*g[x]*x*x*y*y; |
||||
} |
||||
} |
||||
|
||||
//G[0][0] = 1.;
|
||||
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1); |
||||
G(4,4) = G(3,3); |
||||
G(3,4) = G(4,3) = G(5,5); |
||||
|
||||
// invG:
|
||||
// [ x e e ]
|
||||
// [ y ]
|
||||
// [ y ]
|
||||
// [ e z ]
|
||||
// [ e z ]
|
||||
// [ u ]
|
||||
Mat_<double> invG = G.inv(DECOMP_CHOLESKY); |
||||
|
||||
ig11 = invG(1,1); |
||||
ig03 = invG(0,3); |
||||
ig33 = invG(3,3); |
||||
ig55 = invG(5,5); |
||||
} |
||||
|
||||
|
||||
void cv::gpu::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma) |
||||
{ |
||||
vector<float> buf(n*6 + 3); |
||||
float* g = &buf[0] + n; |
||||
float* xg = g + n*2 + 1; |
||||
float* xxg = xg + n*2 + 1; |
||||
|
||||
if (sigma < FLT_EPSILON) |
||||
sigma = n*0.3; |
||||
|
||||
double ig11, ig03, ig33, ig55; |
||||
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55); |
||||
|
||||
device::optflow_farneback::setPolinomialExpansionConsts(n, g, xg, xxg, ig11, ig03, ig33, ig55); |
||||
} |
||||
|
||||
|
||||
void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter( |
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, |
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
||||
{ |
||||
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0])); |
||||
swap(M, bufM); |
||||
|
||||
for (int i = 1; i < 5; ++i) |
||||
streams[i].waitForCompletion(); |
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); |
||||
|
||||
if (updateMatrices) |
||||
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); |
||||
} |
||||
|
||||
|
||||
void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur( |
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, |
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
||||
{ |
||||
device::optflow_farneback::gaussianBlur5Gpu( |
||||
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0])); |
||||
swap(M, bufM); |
||||
|
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); |
||||
|
||||
if (updateMatrices) |
||||
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); |
||||
} |
||||
|
||||
|
||||
void cv::gpu::FarnebackOpticalFlow::operator ()( |
||||
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s) |
||||
{ |
||||
CV_Assert(frame0.type() == CV_8U && frame1.type() == CV_8U); |
||||
CV_Assert(frame0.size() == frame1.size()); |
||||
CV_Assert(polyN == 5 || polyN == 7); |
||||
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6); |
||||
|
||||
Stream streams[5]; |
||||
if (S(s)) |
||||
streams[0] = s; |
||||
|
||||
Size size = frame0.size(); |
||||
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY; |
||||
|
||||
flowx.create(size, CV_32F); |
||||
flowy.create(size, CV_32F); |
||||
GpuMat flowx0 = flowx; |
||||
GpuMat flowy0 = flowy; |
||||
|
||||
// Crop unnecessary levels
|
||||
double scale = 1; |
||||
int numLevelsCropped = 0; |
||||
for (; numLevelsCropped < numLevels; numLevelsCropped++) |
||||
{ |
||||
scale *= pyrScale; |
||||
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE) |
||||
break; |
||||
} |
||||
|
||||
streams[0].enqueueConvert(frame0, frames_[0], CV_32F); |
||||
streams[1].enqueueConvert(frame1, frames_[1], CV_32F); |
||||
|
||||
if (fastPyramids) |
||||
{ |
||||
// Build Gaussian pyramids using pyrDown()
|
||||
pyramid0_.resize(numLevelsCropped + 1); |
||||
pyramid1_.resize(numLevelsCropped + 1); |
||||
pyramid0_[0] = frames_[0]; |
||||
pyramid1_[0] = frames_[1]; |
||||
for (int i = 1; i <= numLevelsCropped; ++i) |
||||
{ |
||||
pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]); |
||||
pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]); |
||||
} |
||||
} |
||||
|
||||
setPolynomialExpansionConsts(polyN, polySigma); |
||||
device::optflow_farneback::setUpdateMatricesConsts(); |
||||
|
||||
for (int k = numLevelsCropped; k >= 0; k--) |
||||
{ |
||||
streams[0].waitForCompletion(); |
||||
|
||||
scale = 1; |
||||
for (int i = 0; i < k; i++) |
||||
scale *= pyrScale; |
||||
|
||||
double sigma = (1./scale - 1) * 0.5; |
||||
int smoothSize = cvRound(sigma*5) | 1; |
||||
smoothSize = std::max(smoothSize, 3); |
||||
|
||||
int width = cvRound(size.width*scale); |
||||
int height = cvRound(size.height*scale); |
||||
|
||||
if (fastPyramids) |
||||
{ |
||||
width = pyramid0_[k].cols; |
||||
height = pyramid0_[k].rows; |
||||
} |
||||
|
||||
if (k > 0) |
||||
{ |
||||
curFlowX.create(height, width, CV_32F); |
||||
curFlowY.create(height, width, CV_32F); |
||||
} |
||||
else |
||||
{ |
||||
curFlowX = flowx0; |
||||
curFlowY = flowy0; |
||||
} |
||||
|
||||
if (!prevFlowX.data) |
||||
{ |
||||
if (flags & OPTFLOW_USE_INITIAL_FLOW) |
||||
{ |
||||
#if ENABLE_GPU_RESIZE |
||||
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
||||
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
||||
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale); |
||||
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale); |
||||
#else |
||||
Mat tmp1, tmp2; |
||||
flowx0.download(tmp1); |
||||
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA); |
||||
tmp2 *= scale; |
||||
curFlowX.upload(tmp2); |
||||
flowy0.download(tmp1); |
||||
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA); |
||||
tmp2 *= scale; |
||||
curFlowY.upload(tmp2); |
||||
#endif |
||||
} |
||||
else |
||||
{ |
||||
streams[0].enqueueMemSet(curFlowX, 0); |
||||
streams[1].enqueueMemSet(curFlowY, 0); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
#if ENABLE_GPU_RESIZE |
||||
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
||||
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
||||
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale); |
||||
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale); |
||||
#else |
||||
Mat tmp1, tmp2; |
||||
prevFlowX.download(tmp1); |
||||
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR); |
||||
tmp2 *= 1./pyrScale; |
||||
curFlowX.upload(tmp2); |
||||
prevFlowY.download(tmp1); |
||||
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR); |
||||
tmp2 *= 1./pyrScale; |
||||
curFlowY.upload(tmp2); |
||||
#endif |
||||
} |
||||
|
||||
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_); |
||||
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_); |
||||
GpuMat R[2] = |
||||
{ |
||||
allocMatFromBuf(5*height, width, CV_32F, R_[0]), |
||||
allocMatFromBuf(5*height, width, CV_32F, R_[1]) |
||||
}; |
||||
|
||||
if (fastPyramids) |
||||
{ |
||||
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0])); |
||||
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1])); |
||||
} |
||||
else |
||||
{ |
||||
GpuMat tmp[2] = |
||||
{ |
||||
allocMatFromBuf(size.height, size.width, CV_32F, tmp_[0]), |
||||
allocMatFromBuf(size.height, size.width, CV_32F, tmp_[1]) |
||||
}; |
||||
GpuMat I[2] = |
||||
{ |
||||
allocMatFromBuf(height, width, CV_32F, I_[0]), |
||||
allocMatFromBuf(height, width, CV_32F, I_[1]) |
||||
}; |
||||
|
||||
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F); |
||||
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
|
||||
|
||||
for (int i = 0; i < 2; i++) |
||||
{ |
||||
device::optflow_farneback::gaussianBlurGpu( |
||||
frames_[i], smoothSize/2, tmp[i], BORDER_REFLECT101_GPU, S(streams[i])); |
||||
#if ENABLE_GPU_RESIZE |
||||
resize(tmp[i], I[i], Size(width, height), INTER_LINEAR, streams[i]); |
||||
#else |
||||
Mat tmp1, tmp2; |
||||
tmp[i].download(tmp1); |
||||
resize(tmp1, tmp2, Size(width, height), INTER_LINEAR); |
||||
I[i].upload(tmp2); |
||||
#endif |
||||
device::optflow_farneback::polynomialExpansionGpu(I[i], polyN, R[i], S(streams[i])); |
||||
} |
||||
} |
||||
|
||||
streams[1].waitForCompletion(); |
||||
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0])); |
||||
|
||||
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) |
||||
{ |
||||
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F); |
||||
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2); |
||||
} |
||||
for (int i = 0; i < numIters; i++) |
||||
{ |
||||
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) |
||||
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); |
||||
else |
||||
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); |
||||
} |
||||
|
||||
prevFlowX = curFlowX; |
||||
prevFlowY = curFlowY; |
||||
} |
||||
|
||||
flowx = curFlowX; |
||||
flowy = curFlowY;
|
||||
|
||||
if (!S(s)) |
||||
streams[0].waitForCompletion(); |
||||
} |
||||
|
||||
#endif |
Loading…
Reference in new issue