|
|
|
@ -112,7 +112,7 @@ protected: |
|
|
|
|
std::unique_ptr<ONNXLayerHandler> layerHandler; |
|
|
|
|
Net& dstNet; |
|
|
|
|
|
|
|
|
|
opencv_onnx::GraphProto graph_proto; |
|
|
|
|
opencv_onnx::GraphProto* graph_proto; |
|
|
|
|
std::string framework_name; |
|
|
|
|
|
|
|
|
|
std::map<std::string, Mat> constBlobs; |
|
|
|
@ -787,7 +787,7 @@ void ONNXImporter::setParamsDtype(LayerParams& layerParams, const opencv_onnx::N |
|
|
|
|
void ONNXImporter::populateNet() |
|
|
|
|
{ |
|
|
|
|
CV_Assert(model_proto.has_graph()); |
|
|
|
|
graph_proto = model_proto.graph(); |
|
|
|
|
graph_proto = model_proto.mutable_graph(); |
|
|
|
|
|
|
|
|
|
std::string framework_version; |
|
|
|
|
if (model_proto.has_producer_name()) |
|
|
|
@ -799,25 +799,25 @@ void ONNXImporter::populateNet() |
|
|
|
|
<< (model_proto.has_ir_version() ? cv::format(" v%d", (int)model_proto.ir_version()) : cv::String()) |
|
|
|
|
<< " model produced by '" << framework_name << "'" |
|
|
|
|
<< (framework_version.empty() ? cv::String() : cv::format(":%s", framework_version.c_str())) |
|
|
|
|
<< ". Number of nodes = " << graph_proto.node_size() |
|
|
|
|
<< ", initializers = " << graph_proto.initializer_size() |
|
|
|
|
<< ", inputs = " << graph_proto.input_size() |
|
|
|
|
<< ", outputs = " << graph_proto.output_size() |
|
|
|
|
<< ". Number of nodes = " << graph_proto->node_size() |
|
|
|
|
<< ", initializers = " << graph_proto->initializer_size() |
|
|
|
|
<< ", inputs = " << graph_proto->input_size() |
|
|
|
|
<< ", outputs = " << graph_proto->output_size() |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
parseOperatorSet(); |
|
|
|
|
|
|
|
|
|
simplifySubgraphs(graph_proto); |
|
|
|
|
simplifySubgraphs(*graph_proto); |
|
|
|
|
|
|
|
|
|
const int layersSize = graph_proto.node_size(); |
|
|
|
|
const int layersSize = graph_proto->node_size(); |
|
|
|
|
CV_LOG_DEBUG(NULL, "DNN/ONNX: graph simplified to " << layersSize << " nodes"); |
|
|
|
|
|
|
|
|
|
constBlobs = getGraphTensors(graph_proto); // scan GraphProto.initializer
|
|
|
|
|
constBlobs = getGraphTensors(*graph_proto); // scan GraphProto.initializer
|
|
|
|
|
std::vector<String> netInputs; // map with network inputs (without const blobs)
|
|
|
|
|
// Add all the inputs shapes. It includes as constant blobs as network's inputs shapes.
|
|
|
|
|
for (int i = 0; i < graph_proto.input_size(); ++i) |
|
|
|
|
for (int i = 0; i < graph_proto->input_size(); ++i) |
|
|
|
|
{ |
|
|
|
|
const opencv_onnx::ValueInfoProto& valueInfoProto = graph_proto.input(i); |
|
|
|
|
const opencv_onnx::ValueInfoProto& valueInfoProto = graph_proto->input(i); |
|
|
|
|
CV_Assert(valueInfoProto.has_name()); |
|
|
|
|
const std::string& name = valueInfoProto.name(); |
|
|
|
|
CV_Assert(valueInfoProto.has_type()); |
|
|
|
@ -873,26 +873,26 @@ void ONNXImporter::populateNet() |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// dump outputs
|
|
|
|
|
for (int i = 0; i < graph_proto.output_size(); ++i) |
|
|
|
|
for (int i = 0; i < graph_proto->output_size(); ++i) |
|
|
|
|
{ |
|
|
|
|
dumpValueInfoProto(i, graph_proto.output(i), "output"); |
|
|
|
|
dumpValueInfoProto(i, graph_proto->output(i), "output"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (DNN_DIAGNOSTICS_RUN) { |
|
|
|
|
CV_LOG_INFO(NULL, "DNN/ONNX: start diagnostic run!"); |
|
|
|
|
layerHandler->fillRegistry(graph_proto); |
|
|
|
|
layerHandler->fillRegistry(*graph_proto); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for(int li = 0; li < layersSize; li++) |
|
|
|
|
{ |
|
|
|
|
const opencv_onnx::NodeProto& node_proto = graph_proto.node(li); |
|
|
|
|
const opencv_onnx::NodeProto& node_proto = graph_proto->node(li); |
|
|
|
|
handleNode(node_proto); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// register outputs
|
|
|
|
|
for (int i = 0; i < graph_proto.output_size(); ++i) |
|
|
|
|
for (int i = 0; i < graph_proto->output_size(); ++i) |
|
|
|
|
{ |
|
|
|
|
const std::string& output_name = graph_proto.output(i).name(); |
|
|
|
|
const std::string& output_name = graph_proto->output(i).name(); |
|
|
|
|
if (output_name.empty()) |
|
|
|
|
{ |
|
|
|
|
CV_LOG_ERROR(NULL, "DNN/ONNX: can't register output without name: " << i); |
|
|
|
@ -3180,9 +3180,9 @@ void ONNXImporter::parseLayerNorm(LayerParams& layerParams, const opencv_onnx::N |
|
|
|
|
{ |
|
|
|
|
// remove from graph proto
|
|
|
|
|
for (size_t i = 1; i < node_proto.output_size(); i++) { |
|
|
|
|
for (int j = graph_proto.output_size() - 1; j >= 0; j--) { |
|
|
|
|
if (graph_proto.output(j).name() == node_proto.output(i)) { |
|
|
|
|
graph_proto.mutable_output()->DeleteSubrange(j, 1); |
|
|
|
|
for (int j = graph_proto->output_size() - 1; j >= 0; j--) { |
|
|
|
|
if (graph_proto->output(j).name() == node_proto.output(i)) { |
|
|
|
|
graph_proto->mutable_output()->DeleteSubrange(j, 1); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -3683,9 +3683,9 @@ void ONNXImporter::parseQEltwise(LayerParams& layerParams, const opencv_onnx::No |
|
|
|
|
layerParams.type = "ScaleInt8"; |
|
|
|
|
layerParams.set("bias_term", op == "sum"); |
|
|
|
|
int axis = 1; |
|
|
|
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
|
|
|
|
for (int i = 0; i < graph_proto->initializer_size(); i++) |
|
|
|
|
{ |
|
|
|
|
opencv_onnx::TensorProto tensor_proto = graph_proto.initializer(i); |
|
|
|
|
opencv_onnx::TensorProto tensor_proto = graph_proto->initializer(i); |
|
|
|
|
if (tensor_proto.name() == node_proto.input(constId)) |
|
|
|
|
{ |
|
|
|
|
axis = inpShape.size() - tensor_proto.dims_size(); |
|
|
|
|