mirror of https://github.com/opencv/opencv.git
parent
7707c9bfba
commit
66feea6cac
2 changed files with 182 additions and 0 deletions
@ -0,0 +1,109 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#define Dtype float |
||||
|
||||
__kernel void logistic_activ(const int count, |
||||
__global const Dtype* src, |
||||
const int cell_size, |
||||
__global Dtype* dst) |
||||
{ |
||||
for (int i = get_global_id(0); i < count; i += get_global_size(0)) |
||||
{ |
||||
int index = cell_size * i; |
||||
Dtype x = src[index + 4]; |
||||
dst[index + 4] = 1.f / (1.f + exp(-x)); |
||||
} |
||||
} |
||||
|
||||
__kernel void softmax_activ(const int count, |
||||
__global const Dtype* src, |
||||
__global const Dtype* biasData, |
||||
const int cell_size, |
||||
const int classes, |
||||
const int classfix, |
||||
const int rows, |
||||
const int cols, |
||||
const int anchors, |
||||
const float thresh, |
||||
__global Dtype* dst) |
||||
{ |
||||
for (int index = get_global_id(0); index < count; index += get_global_size(0)) |
||||
{ |
||||
int box_index = index * cell_size; |
||||
float largest = -FLT_MAX; |
||||
__global const Dtype *input = src + box_index + 5; |
||||
__global Dtype *output = dst + box_index + 5; |
||||
|
||||
for (int i = 0; i < classes; ++i) |
||||
largest = fmax(largest, input[i]); |
||||
|
||||
float sum = 0; |
||||
for (int i = 0; i < classes; ++i) |
||||
{ |
||||
float e = exp((input[i] - largest)); |
||||
sum += e; |
||||
output[i] = e; |
||||
} |
||||
|
||||
int y = index / anchors / cols; |
||||
int x = index / anchors % cols; |
||||
int a = index - anchors * (x + y * cols); |
||||
float scale = dst[box_index + 4]; |
||||
if (classfix == -1 && scale < .5) scale = 0; |
||||
|
||||
float v1 = src[box_index + 0]; |
||||
float v2 = src[box_index + 1]; |
||||
float l1 = 1.f / (1.f + exp(-v1)); |
||||
float l2 = 1.f / (1.f + exp(-v2)); |
||||
|
||||
dst[box_index + 0] = (x + l1) / cols; |
||||
dst[box_index + 1] = (y + l2) / rows; |
||||
dst[box_index + 2] = exp(src[box_index + 2]) * biasData[2 * a] / cols; |
||||
dst[box_index + 3] = exp(src[box_index + 3]) * biasData[2 * a + 1] / rows; |
||||
|
||||
for (int i = 0; i < classes; ++i) |
||||
{ |
||||
float prob = scale * output[i] / sum; |
||||
output[i] = (prob > thresh) ? prob : 0; |
||||
} |
||||
} |
||||
} |
Loading…
Reference in new issue