region layer ocl implementation

Signed-off-by: Li Peng <peng.li@intel.com>
pull/10228/head
Li Peng 7 years ago
parent 7707c9bfba
commit 66feea6cac
  1. 73
      modules/dnn/src/layers/region_layer.cpp
  2. 109
      modules/dnn/src/opencl/region.cl

@ -44,6 +44,7 @@
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <iostream>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
@ -114,11 +115,83 @@ public:
}
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (useSoftmaxTree) { // Yolo 9000
CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented");
return false;
}
CV_Assert(inputs.size() >= 1);
int const cell_size = classes + coords + 1;
UMat blob_umat = blobs[0].getUMat(ACCESS_READ);
for (size_t ii = 0; ii < outputs.size(); ii++)
{
UMat& inpBlob = inputs[ii];
UMat& outBlob = outputs[ii];
int rows = inpBlob.size[1];
int cols = inpBlob.size[2];
ocl::Kernel logistic_kernel("logistic_activ", ocl::dnn::region_oclsrc);
size_t global = rows*cols*anchors;
logistic_kernel.set(0, (int)global);
logistic_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
logistic_kernel.set(2, (int)cell_size);
logistic_kernel.set(3, ocl::KernelArg::PtrWriteOnly(outBlob));
logistic_kernel.run(1, &global, NULL, false);
if (useSoftmax)
{
// Yolo v2
// softmax activation for Probability, for each grid cell (X x Y x Anchor-index)
ocl::Kernel softmax_kernel("softmax_activ", ocl::dnn::region_oclsrc);
size_t nthreads = rows*cols*anchors;
softmax_kernel.set(0, (int)nthreads);
softmax_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
softmax_kernel.set(2, ocl::KernelArg::PtrReadOnly(blob_umat));
softmax_kernel.set(3, (int)cell_size);
softmax_kernel.set(4, (int)classes);
softmax_kernel.set(5, (int)classfix);
softmax_kernel.set(6, (int)rows);
softmax_kernel.set(7, (int)cols);
softmax_kernel.set(8, (int)anchors);
softmax_kernel.set(9, (float)thresh);
softmax_kernel.set(10, ocl::KernelArg::PtrWriteOnly(outBlob));
if (!softmax_kernel.run(1, &nthreads, NULL, false))
return false;
}
if (nmsThreshold > 0) {
Mat mat = outBlob.getMat(ACCESS_WRITE);
float *dstData = mat.ptr<float>();
do_nms_sort(dstData, rows*cols*anchors, nmsThreshold);
//do_nms(dstData, rows*cols*anchors, nmsThreshold);
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}

@ -0,0 +1,109 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
__kernel void logistic_activ(const int count,
__global const Dtype* src,
const int cell_size,
__global Dtype* dst)
{
for (int i = get_global_id(0); i < count; i += get_global_size(0))
{
int index = cell_size * i;
Dtype x = src[index + 4];
dst[index + 4] = 1.f / (1.f + exp(-x));
}
}
__kernel void softmax_activ(const int count,
__global const Dtype* src,
__global const Dtype* biasData,
const int cell_size,
const int classes,
const int classfix,
const int rows,
const int cols,
const int anchors,
const float thresh,
__global Dtype* dst)
{
for (int index = get_global_id(0); index < count; index += get_global_size(0))
{
int box_index = index * cell_size;
float largest = -FLT_MAX;
__global const Dtype *input = src + box_index + 5;
__global Dtype *output = dst + box_index + 5;
for (int i = 0; i < classes; ++i)
largest = fmax(largest, input[i]);
float sum = 0;
for (int i = 0; i < classes; ++i)
{
float e = exp((input[i] - largest));
sum += e;
output[i] = e;
}
int y = index / anchors / cols;
int x = index / anchors % cols;
int a = index - anchors * (x + y * cols);
float scale = dst[box_index + 4];
if (classfix == -1 && scale < .5) scale = 0;
float v1 = src[box_index + 0];
float v2 = src[box_index + 1];
float l1 = 1.f / (1.f + exp(-v1));
float l2 = 1.f / (1.f + exp(-v2));
dst[box_index + 0] = (x + l1) / cols;
dst[box_index + 1] = (y + l2) / rows;
dst[box_index + 2] = exp(src[box_index + 2]) * biasData[2 * a] / cols;
dst[box_index + 3] = exp(src[box_index + 3]) * biasData[2 * a + 1] / rows;
for (int i = 0; i < classes; ++i)
{
float prob = scale * output[i] / sum;
output[i] = (prob > thresh) ? prob : 0;
}
}
}
Loading…
Cancel
Save