|
|
@ -150,7 +150,7 @@ So now we have our object points and image points we are ready to go for calibra |
|
|
|
use the function, **cv2.calibrateCamera()**. It returns the camera matrix, distortion coefficients, |
|
|
|
use the function, **cv2.calibrateCamera()**. It returns the camera matrix, distortion coefficients, |
|
|
|
rotation and translation vectors etc. |
|
|
|
rotation and translation vectors etc. |
|
|
|
@code{.py} |
|
|
|
@code{.py} |
|
|
|
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None) |
|
|
|
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) |
|
|
|
@endcode |
|
|
|
@endcode |
|
|
|
### Undistortion |
|
|
|
### Undistortion |
|
|
|
|
|
|
|
|
|
|
@ -165,7 +165,7 @@ So we take a new image (left12.jpg in this case. That is the first image in this |
|
|
|
@code{.py} |
|
|
|
@code{.py} |
|
|
|
img = cv2.imread('left12.jpg') |
|
|
|
img = cv2.imread('left12.jpg') |
|
|
|
h, w = img.shape[:2] |
|
|
|
h, w = img.shape[:2] |
|
|
|
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h)) |
|
|
|
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h)) |
|
|
|
@endcode |
|
|
|
@endcode |
|
|
|
#### 1. Using **cv2.undistort()** |
|
|
|
#### 1. Using **cv2.undistort()** |
|
|
|
|
|
|
|
|
|
|
@ -175,9 +175,9 @@ This is the shortest path. Just call the function and use ROI obtained above to |
|
|
|
dst = cv2.undistort(img, mtx, dist, None, newcameramtx) |
|
|
|
dst = cv2.undistort(img, mtx, dist, None, newcameramtx) |
|
|
|
|
|
|
|
|
|
|
|
# crop the image |
|
|
|
# crop the image |
|
|
|
x,y,w,h = roi |
|
|
|
x, y, w, h = roi |
|
|
|
dst = dst[y:y+h, x:x+w] |
|
|
|
dst = dst[y:y+h, x:x+w] |
|
|
|
cv2.imwrite('calibresult.png',dst) |
|
|
|
cv2.imwrite('calibresult.png', dst) |
|
|
|
@endcode |
|
|
|
@endcode |
|
|
|
#### 2. Using **remapping** |
|
|
|
#### 2. Using **remapping** |
|
|
|
|
|
|
|
|
|
|
@ -185,13 +185,13 @@ This is curved path. First find a mapping function from distorted image to undis |
|
|
|
use the remap function. |
|
|
|
use the remap function. |
|
|
|
@code{.py} |
|
|
|
@code{.py} |
|
|
|
# undistort |
|
|
|
# undistort |
|
|
|
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5) |
|
|
|
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5) |
|
|
|
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR) |
|
|
|
dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
|
|
|
|
# crop the image |
|
|
|
# crop the image |
|
|
|
x,y,w,h = roi |
|
|
|
x, y, w, h = roi |
|
|
|
dst = dst[y:y+h, x:x+w] |
|
|
|
dst = dst[y:y+h, x:x+w] |
|
|
|
cv2.imwrite('calibresult.png',dst) |
|
|
|
cv2.imwrite('calibresult.png', dst) |
|
|
|
@endcode |
|
|
|
@endcode |
|
|
|
Both the methods give the same result. See the result below: |
|
|
|
Both the methods give the same result. See the result below: |
|
|
|
|
|
|
|
|
|
|
@ -215,8 +215,8 @@ calibration images. |
|
|
|
mean_error = 0 |
|
|
|
mean_error = 0 |
|
|
|
for i in xrange(len(objpoints)): |
|
|
|
for i in xrange(len(objpoints)): |
|
|
|
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist) |
|
|
|
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist) |
|
|
|
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2) |
|
|
|
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2)/len(imgpoints2) |
|
|
|
tot_error += error |
|
|
|
mean_error += error |
|
|
|
|
|
|
|
|
|
|
|
print "total error: ", mean_error/len(objpoints) |
|
|
|
print "total error: ", mean_error/len(objpoints) |
|
|
|
@endcode |
|
|
|
@endcode |
|
|
|