diff --git a/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.markdown b/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.markdown index dc77b3deb3..9c6c1fb643 100644 --- a/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.markdown +++ b/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.markdown @@ -150,7 +150,7 @@ So now we have our object points and image points we are ready to go for calibra use the function, **cv2.calibrateCamera()**. It returns the camera matrix, distortion coefficients, rotation and translation vectors etc. @code{.py} -ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None) +ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) @endcode ### Undistortion @@ -165,7 +165,7 @@ So we take a new image (left12.jpg in this case. That is the first image in this @code{.py} img = cv2.imread('left12.jpg') h, w = img.shape[:2] -newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h)) +newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h)) @endcode #### 1. Using **cv2.undistort()** @@ -175,9 +175,9 @@ This is the shortest path. Just call the function and use ROI obtained above to dst = cv2.undistort(img, mtx, dist, None, newcameramtx) # crop the image -x,y,w,h = roi +x, y, w, h = roi dst = dst[y:y+h, x:x+w] -cv2.imwrite('calibresult.png',dst) +cv2.imwrite('calibresult.png', dst) @endcode #### 2. Using **remapping** @@ -185,13 +185,13 @@ This is curved path. First find a mapping function from distorted image to undis use the remap function. @code{.py} # undistort -mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5) -dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR) +mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5) +dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR) # crop the image -x,y,w,h = roi +x, y, w, h = roi dst = dst[y:y+h, x:x+w] -cv2.imwrite('calibresult.png',dst) +cv2.imwrite('calibresult.png', dst) @endcode Both the methods give the same result. See the result below: @@ -215,8 +215,8 @@ calibration images. mean_error = 0 for i in xrange(len(objpoints)): imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist) - error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2) - tot_error += error + error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2)/len(imgpoints2) + mean_error += error print "total error: ", mean_error/len(objpoints) @endcode