Merge pull request #7972 from catree:tutorial_brightness

pull/7998/head
Vadim Pisarevsky 8 years ago
commit 65598e4075
  1. 160
      doc/tutorials/core/basic_linear_transform/basic_linear_transform.markdown
  2. BIN
      doc/tutorials/core/basic_linear_transform/images/Basic_Linear_Transform_Tutorial_gamma.png
  3. BIN
      doc/tutorials/core/basic_linear_transform/images/Basic_Linear_Transform_Tutorial_gamma_correction.jpg
  4. BIN
      doc/tutorials/core/basic_linear_transform/images/Basic_Linear_Transform_Tutorial_hist_alpha.png
  5. BIN
      doc/tutorials/core/basic_linear_transform/images/Basic_Linear_Transform_Tutorial_hist_beta.png
  6. BIN
      doc/tutorials/core/basic_linear_transform/images/Basic_Linear_Transform_Tutorial_histogram_compare.png
  7. BIN
      doc/tutorials/core/basic_linear_transform/images/Basic_Linear_Transform_Tutorial_linear_transform_correction.jpg
  8. 87
      samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp
  9. 91
      samples/cpp/tutorial_code/ImgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.cpp

@ -10,6 +10,7 @@ In this tutorial you will learn how to:
- Initialize a matrix with zeros
- Learn what @ref cv::saturate_cast does and why it is useful
- Get some cool info about pixel transformations
- Improve the brightness of an image on a practical example
Theory
------
@ -53,87 +54,29 @@ Code
----
- The following code performs the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ :
@code{.cpp}
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
double alpha; /*< Simple contrast control */
int beta; /*< Simple brightness control */
int main( int argc, char** argv )
{
/// Read image given by user
Mat image = imread( argv[1] );
Mat new_image = Mat::zeros( image.size(), image.type() );
/// Initialize values
std::cout<<" Basic Linear Transforms "<<std::endl;
std::cout<<"-------------------------"<<std::endl;
std::cout<<"* Enter the alpha value [1.0-3.0]: ";std::cin>>alpha;
std::cout<<"* Enter the beta value [0-100]: "; std::cin>>beta;
/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
for( int y = 0; y < image.rows; y++ ) {
for( int x = 0; x < image.cols; x++ ) {
for( int c = 0; c < 3; c++ ) {
new_image.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
/// Create Windows
namedWindow("Original Image", 1);
namedWindow("New Image", 1);
/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);
/// Wait until user press some key
waitKey();
return 0;
}
@endcode
@include BasicLinearTransforms.cpp
Explanation
-----------
-# We begin by creating parameters to save \f$\alpha\f$ and \f$\beta\f$ to be entered by the user:
@code{.cpp}
double alpha;
int beta;
@endcode
@snippet BasicLinearTransforms.cpp basic-linear-transform-parameters
-# We load an image using @ref cv::imread and save it in a Mat object:
@code{.cpp}
Mat image = imread( argv[1] );
@endcode
@snippet BasicLinearTransforms.cpp basic-linear-transform-load
-# Now, since we will make some transformations to this image, we need a new Mat object to store
it. Also, we want this to have the following features:
- Initial pixel values equal to zero
- Same size and type as the original image
@code{.cpp}
Mat new_image = Mat::zeros( image.size(), image.type() );
@endcode
@snippet BasicLinearTransforms.cpp basic-linear-transform-output
We observe that @ref cv::Mat::zeros returns a Matlab-style zero initializer based on
*image.size()* and *image.type()*
-# Now, to perform the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ we will access to each
pixel in image. Since we are operating with BGR images, we will have three values per pixel (B,
G and R), so we will also access them separately. Here is the piece of code:
@code{.cpp}
for( int y = 0; y < image.rows; y++ ) {
for( int x = 0; x < image.cols; x++ ) {
for( int c = 0; c < 3; c++ ) {
new_image.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
@endcode
@snippet BasicLinearTransforms.cpp basic-linear-transform-operation
Notice the following:
- To access each pixel in the images we are using this syntax: *image.at\<Vec3b\>(y,x)[c]*
where *y* is the row, *x* is the column and *c* is R, G or B (0, 1 or 2).
@ -142,15 +85,7 @@ Explanation
values are valid.
-# Finally, we create windows and show the images, the usual way.
@code{.cpp}
namedWindow("Original Image", 1);
namedWindow("New Image", 1);
imshow("Original Image", image);
imshow("New Image", new_image);
waitKey(0);
@endcode
@snippet BasicLinearTransforms.cpp basic-linear-transform-display
@note
Instead of using the **for** loops to access each pixel, we could have simply used this command:
@ -176,3 +111,82 @@ Result
- We get this:
![](images/Basic_Linear_Transform_Tutorial_Result_big.jpg)
Practical example
----
In this paragraph, we will put into practice what we have learned to correct an underexposed image by adjusting the brightness
and the contrast of the image. We will also see another technique to correct the brightness of an image called
gamma correction.
### Brightness and contrast adjustments
Increasing (/ decreasing) the \f$\beta\f$ value will add (/ subtract) a constant value to every pixel. Pixel values outside of the [0 ; 255]
range will be saturated (i.e. a pixel value higher (/ lesser) than 255 (/ 0) will be clamp to 255 (/ 0)).
![In light gray, histogram of the original image, in dark gray when brightness = 80 in Gimp](images/Basic_Linear_Transform_Tutorial_hist_beta.png)
The histogram represents for each color level the number of pixels with that color level. A dark image will have many pixels with
low color value and thus the histogram will present a peak in his left part. When adding a constant bias, the histogram is shifted to the
right as we have added a constant bias to all the pixels.
The \f$\alpha\f$ parameter will modify how the levels spread. If \f$ \alpha < 1 \f$, the color levels will be compressed and the result
will be an image with less contrast.
![In light gray, histogram of the original image, in dark gray when contrast < 0 in Gimp](images/Basic_Linear_Transform_Tutorial_hist_alpha.png)
Note that these histograms have been obtained using the Brightness-Contrast tool in the Gimp software. The brightness tool should be
identical to the \f$\beta\f$ bias parameters but the contrast tool seems to differ to the \f$\alpha\f$ gain where the output range
seems to be centered with Gimp (as you can notice in the previous histogram).
It can occur that playing with the \f$\beta\f$ bias will improve the brightness but in the same time the image will appear with a
slight veil as the contrast will be reduced. The \f$\alpha\f$ gain can be used to diminue this effect but due to the saturation,
we will lose some details in the original bright regions.
### Gamma correction
[Gamma correction](https://en.wikipedia.org/wiki/Gamma_correction) can be used to correct the brightness of an image by using a non
linear transformation between the input values and the mapped output values:
\f[O = \left( \frac{I}{255} \right)^{\gamma} \times 255\f]
As this relation is non linear, the effect will not be the same for all the pixels and will depend to their original value.
![Plot for different values of gamma](images/Basic_Linear_Transform_Tutorial_gamma.png)
When \f$ \gamma < 1 \f$, the original dark regions will be brighter and the histogram will be shifted to the right whereas it will
be the opposite with \f$ \gamma > 1 \f$.
### Correct an underexposed image
The following image has been corrected with: \f$ \alpha = 1.3 \f$ and \f$ \beta = 40 \f$.
![By Visem (Own work) [CC BY-SA 3.0], via Wikimedia Commons](images/Basic_Linear_Transform_Tutorial_linear_transform_correction.jpg)
The overall brightness has been improved but you can notice that the clouds are now greatly saturated due to the numerical saturation
of the implementation used. A custom method that preserves the original color range can of course be implemented instead.
The following image has been corrected with: \f$ \gamma = 0.4 \f$.
![By Visem (Own work) [CC BY-SA 3.0], via Wikimedia Commons](images/Basic_Linear_Transform_Tutorial_gamma_correction.jpg)
The gamma correction should tend to add less saturation effect but should introduce some other type of color artifacts instead.
![Left: histogram after alpha, beta correction ; Center: histogram of the original image ; Right: histogram after the gamma correction](images/Basic_Linear_Transform_Tutorial_histogram_compare.png)
The previous figure compares the histograms for the three images (the y-ranges are not the same between the three histograms).
You can notice that most of the pixel values are in the lower part of the histogram for the original image. After \f$ \alpha \f$,
\f$ \beta \f$ correction, we can observe a big peak at 255 due to the saturation as well as a shift in the right.
After gamma correction, the histogram is shifted to the right but the pixels in the dark regions are more shifted
(see the gamma curves [figure](Basic_Linear_Transform_Tutorial_gamma.png)) than those in the bright regions.
In this tutorial, you have seen two simple methods to adjust the contrast and the brightness of an image. **They are basic techniques
and are not intended to be used as a replacement of a raster graphics editor!**
### Code
Code for the tutorial is [here](changing_contrast_brightness_image.cpp). Code for the gamma correction:
@snippet changing_contrast_brightness_image.cpp changing-contrast-brightness-gamma-correction
A look-up table is used to improve the performance of the computation as only 256 values needs to be calculated once.

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

@ -8,51 +8,60 @@
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace std;
using namespace cv;
double alpha; /**< Simple contrast control */
int beta; /**< Simple brightness control */
/**
* @function main
* @brief Main function
*/
int main( int, char** argv )
{
/// Read image given by user
Mat image = imread( argv[1] );
Mat new_image = Mat::zeros( image.size(), image.type() );
/// Initialize values
std::cout<<" Basic Linear Transforms "<<std::endl;
std::cout<<"-------------------------"<<std::endl;
std::cout<<"* Enter the alpha value [1.0-3.0]: ";std::cin>>alpha;
std::cout<<"* Enter the beta value [0-100]: "; std::cin>>beta;
/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
/// Instead of these 'for' loops we could have used simply:
/// image.convertTo(new_image, -1, alpha, beta);
/// but we wanted to show you how to access the pixels :)
for( int y = 0; y < image.rows; y++ )
{ for( int x = 0; x < image.cols; x++ )
{ for( int c = 0; c < 3; c++ )
{
new_image.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
/// Create Windows
namedWindow("Original Image", 1);
namedWindow("New Image", 1);
/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);
/// Wait until user press some key
waitKey();
return 0;
//! [basic-linear-transform-parameters]
double alpha = 1.0; /*< Simple contrast control */
int beta = 0; /*< Simple brightness control */
//! [basic-linear-transform-parameters]
/// Read image given by user
//! [basic-linear-transform-load]
Mat image = imread( argv[1] );
//! [basic-linear-transform-load]
//! [basic-linear-transform-output]
Mat new_image = Mat::zeros( image.size(), image.type() );
//! [basic-linear-transform-output]
/// Initialize values
cout << " Basic Linear Transforms " << endl;
cout << "-------------------------" << endl;
cout << "* Enter the alpha value [1.0-3.0]: "; cin >> alpha;
cout << "* Enter the beta value [0-100]: "; cin >> beta;
/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
/// Instead of these 'for' loops we could have used simply:
/// image.convertTo(new_image, -1, alpha, beta);
/// but we wanted to show you how to access the pixels :)
//! [basic-linear-transform-operation]
for( int y = 0; y < image.rows; y++ ) {
for( int x = 0; x < image.cols; x++ ) {
for( int c = 0; c < 3; c++ ) {
new_image.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
//! [basic-linear-transform-operation]
//! [basic-linear-transform-display]
/// Create Windows
namedWindow("Original Image", WINDOW_AUTOSIZE);
namedWindow("New Image", WINDOW_AUTOSIZE);
/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);
/// Wait until user press some key
waitKey();
//! [basic-linear-transform-display]
return 0;
}

@ -0,0 +1,91 @@
#include <iostream>
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
namespace
{
/** Global Variables */
int alpha = 100;
int beta = 100;
int gamma_cor = 100;
Mat img_original, img_corrected, img_gamma_corrected;
void basicLinearTransform(const Mat &img, const double alpha_, const int beta_)
{
Mat res;
img.convertTo(res, -1, alpha_, beta_);
hconcat(img, res, img_corrected);
}
void gammaCorrection(const Mat &img, const double gamma_)
{
CV_Assert(gamma_ >= 0);
//![changing-contrast-brightness-gamma-correction]
Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.ptr();
for( int i = 0; i < 256; ++i)
p[i] = saturate_cast<uchar>(pow(i / 255.0, gamma_) * 255.0);
Mat res = img.clone();
LUT(img, lookUpTable, res);
//![changing-contrast-brightness-gamma-correction]
hconcat(img, res, img_gamma_corrected);
}
void on_linear_transform_alpha_trackbar(int, void *)
{
double alpha_value = alpha / 100.0;
int beta_value = beta - 100;
basicLinearTransform(img_original, alpha_value, beta_value);
}
void on_linear_transform_beta_trackbar(int, void *)
{
double alpha_value = alpha / 100.0;
int beta_value = beta - 100;
basicLinearTransform(img_original, alpha_value, beta_value);
}
void on_gamma_correction_trackbar(int, void *)
{
double gamma_value = gamma_cor / 100.0;
gammaCorrection(img_original, gamma_value);
}
}
int main( int, char** argv )
{
img_original = imread( argv[1] );
img_corrected = Mat(img_original.rows, img_original.cols*2, img_original.type());
img_gamma_corrected = Mat(img_original.rows, img_original.cols*2, img_original.type());
hconcat(img_original, img_original, img_corrected);
hconcat(img_original, img_original, img_gamma_corrected);
namedWindow("Brightness and contrast adjustments", WINDOW_AUTOSIZE);
namedWindow("Gamma correction", WINDOW_AUTOSIZE);
createTrackbar("Alpha gain (contrast)", "Brightness and contrast adjustments", &alpha, 500, on_linear_transform_alpha_trackbar);
createTrackbar("Beta bias (brightness)", "Brightness and contrast adjustments", &beta, 200, on_linear_transform_beta_trackbar);
createTrackbar("Gamma correction", "Gamma correction", &gamma_cor, 200, on_gamma_correction_trackbar);
while (true)
{
imshow("Brightness and contrast adjustments", img_corrected);
imshow("Gamma correction", img_gamma_corrected);
int c = waitKey(30);
if (c == 27)
break;
}
imwrite("linear_transform_correction.png", img_corrected);
imwrite("gamma_correction.png", img_gamma_corrected);
return 0;
}
Loading…
Cancel
Save