After Width: | Height: | Size: 91 KiB |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 37 KiB |
@ -0,0 +1,314 @@ |
||||
.. _remap: |
||||
|
||||
Remapping |
||||
********* |
||||
|
||||
Goal |
||||
==== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines. |
||||
|
||||
Theory |
||||
====== |
||||
|
||||
What is remapping? |
||||
------------------ |
||||
|
||||
* It is the process of taking pixels from one place in the image and locating them in another position in a new image. |
||||
|
||||
* To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images. |
||||
|
||||
* We can express the remap for every pixel location :math:`(x,y)` as: |
||||
|
||||
.. math:: |
||||
|
||||
g(x,y) = f ( h(x,y) ) |
||||
|
||||
where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`. |
||||
|
||||
* Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do a remap such that: |
||||
|
||||
.. math:: |
||||
|
||||
h(x,y) = (I.cols - x, y ) |
||||
|
||||
What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance, consider the input image: |
||||
|
||||
.. image:: images/Remap_Tutorial_Theory_0.jpg |
||||
:alt: Original test image |
||||
:width: 120pt |
||||
:align: center |
||||
|
||||
observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction): |
||||
|
||||
.. image:: images/Remap_Tutorial_Theory_1.jpg |
||||
:alt: Original test image |
||||
:width: 120pt |
||||
:align: center |
||||
|
||||
* In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation. |
||||
|
||||
Code |
||||
==== |
||||
|
||||
#. **What does this program do?** |
||||
|
||||
* Loads an image |
||||
* Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window. |
||||
* Wait for the user to exit the program |
||||
|
||||
#. The tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_ |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include <iostream> |
||||
#include <stdio.h> |
||||
|
||||
using namespace cv; |
||||
|
||||
/// Global variables |
||||
Mat src, dst; |
||||
Mat map_x, map_y; |
||||
char* remap_window = "Remap demo"; |
||||
int ind = 0; |
||||
|
||||
/// Function Headers |
||||
void update_map( void ); |
||||
|
||||
/** |
||||
* @function main |
||||
*/ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
/// Load the image |
||||
src = imread( argv[1], 1 ); |
||||
|
||||
/// Create dst, map_x and map_y with the same size as src: |
||||
dst.create( src.size(), src.type() ); |
||||
map_x.create( src.size(), CV_32FC1 ); |
||||
map_y.create( src.size(), CV_32FC1 ); |
||||
|
||||
/// Create window |
||||
namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); |
||||
|
||||
/// Loop |
||||
while( true ) |
||||
{ |
||||
/// Each 1 sec. Press ESC to exit the program |
||||
int c = waitKey( 1000 ); |
||||
|
||||
if( (char)c == 27 ) |
||||
{ break; } |
||||
|
||||
/// Update map_x & map_y. Then apply remap |
||||
update_map(); |
||||
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); |
||||
|
||||
/// Display results |
||||
imshow( remap_window, dst ); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
/** |
||||
* @function update_map |
||||
* @brief Fill the map_x and map_y matrices with 4 types of mappings |
||||
*/ |
||||
void update_map( void ) |
||||
{ |
||||
ind = ind%4; |
||||
|
||||
for( int j = 0; j < src.rows; j++ ) |
||||
{ for( int i = 0; i < src.cols; i++ ) |
||||
{ |
||||
switch( ind ) |
||||
{ |
||||
case 0: |
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) |
||||
{ |
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; |
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; |
||||
} |
||||
else |
||||
{ map_x.at<float>(j,i) = 0 ; |
||||
map_y.at<float>(j,i) = 0 ; |
||||
} |
||||
break; |
||||
case 1: |
||||
map_x.at<float>(j,i) = i ; |
||||
map_y.at<float>(j,i) = src.rows - j ; |
||||
break; |
||||
case 2: |
||||
map_x.at<float>(j,i) = src.cols - i ; |
||||
map_y.at<float>(j,i) = j ; |
||||
break; |
||||
case 3: |
||||
map_x.at<float>(j,i) = src.cols - i ; |
||||
map_y.at<float>(j,i) = src.rows - j ; |
||||
break; |
||||
} // end of switch |
||||
} |
||||
} |
||||
ind++; |
||||
} |
||||
|
||||
Explanation |
||||
=========== |
||||
|
||||
#. Create some variables we will use: |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
Mat src, dst; |
||||
Mat map_x, map_y; |
||||
char* remap_window = "Remap demo"; |
||||
int ind = 0; |
||||
|
||||
#. Load an image: |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
src = imread( argv[1], 1 ); |
||||
|
||||
#. Create the destination image and the two mapping matrices (for x and y ) |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
dst.create( src.size(), src.type() ); |
||||
map_x.create( src.size(), CV_32FC1 ); |
||||
map_y.create( src.size(), CV_32FC1 ); |
||||
|
||||
#. Create a window to display results |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); |
||||
|
||||
#. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image: |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
while( true ) |
||||
{ |
||||
/// Each 1 sec. Press ESC to exit the program |
||||
int c = waitKey( 1000 ); |
||||
|
||||
if( (char)c == 27 ) |
||||
{ break; } |
||||
|
||||
/// Update map_x & map_y. Then apply remap |
||||
update_map(); |
||||
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); |
||||
|
||||
/// Display results |
||||
imshow( remap_window, dst ); |
||||
} |
||||
|
||||
The function that applies the remapping is :remap:`remap <>`. We give the following arguments: |
||||
|
||||
* **src**: Source image |
||||
* **dst**: Destination image of same size as *src* |
||||
* **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)` |
||||
* **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src* |
||||
* **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default. |
||||
* **BORDER_CONSTANT**: Default |
||||
|
||||
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading: |
||||
|
||||
#. **Updating the mapping matrices:** We are going to perform 4 different mappings: |
||||
|
||||
a. Reduce the picture to half its size and will display it in the middle: |
||||
|
||||
.. math:: |
||||
|
||||
h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5) |
||||
|
||||
for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}` and :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}` |
||||
|
||||
b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)` |
||||
|
||||
c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )` |
||||
|
||||
d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )` |
||||
|
||||
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate. |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
for( int j = 0; j < src.rows; j++ ) |
||||
{ for( int i = 0; i < src.cols; i++ ) |
||||
{ |
||||
switch( ind ) |
||||
{ |
||||
case 0: |
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) |
||||
{ |
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; |
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; |
||||
} |
||||
else |
||||
{ map_x.at<float>(j,i) = 0 ; |
||||
map_y.at<float>(j,i) = 0 ; |
||||
} |
||||
break; |
||||
case 1: |
||||
map_x.at<float>(j,i) = i ; |
||||
map_y.at<float>(j,i) = src.rows - j ; |
||||
break; |
||||
case 2: |
||||
map_x.at<float>(j,i) = src.cols - i ; |
||||
map_y.at<float>(j,i) = j ; |
||||
break; |
||||
case 3: |
||||
map_x.at<float>(j,i) = src.cols - i ; |
||||
map_y.at<float>(j,i) = src.rows - j ; |
||||
break; |
||||
} // end of switch |
||||
} |
||||
} |
||||
ind++; |
||||
} |
||||
|
||||
|
||||
Result |
||||
====== |
||||
|
||||
#. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image: |
||||
|
||||
.. image:: images/Remap_Tutorial_Original_Image.jpg |
||||
:alt: Original test image |
||||
:width: 250pt |
||||
:align: center |
||||
|
||||
#. This is the result of reducing it to half the size and centering it: |
||||
|
||||
.. image:: images/Remap_Tutorial_Result_0.jpg |
||||
:alt: Result 0 for remapping |
||||
:width: 250pt |
||||
:align: center |
||||
|
||||
#. Turning it upside down: |
||||
|
||||
.. image:: images/Remap_Tutorial_Result_1.jpg |
||||
:alt: Result 0 for remapping |
||||
:width: 250pt |
||||
:align: center |
||||
|
||||
#. Reflecting it in the x direction: |
||||
|
||||
.. image:: images/Remap_Tutorial_Result_2.jpg |
||||
:alt: Result 0 for remapping |
||||
:width: 250pt |
||||
:align: center |
||||
|
||||
#. Reflecting it in both directions: |
||||
|
||||
.. image:: images/Remap_Tutorial_Result_3.jpg |
||||
:alt: Result 0 for remapping |
||||
:width: 250pt |
||||
:align: center |
||||
|
After Width: | Height: | Size: 35 KiB |
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 19 KiB |
@ -0,0 +1,117 @@ |
||||
.. _warp_affine: |
||||
|
||||
Affine Transformations |
||||
********************** |
||||
|
||||
|
||||
Goal |
||||
==== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
a. Use the OpenCV function :warp_affine:`warpAffine <>` to implement simple remapping routines. |
||||
b. Use the OpenCV function :get_rotation_matrix_2d:`getRotationMatrix2D <>` to obtain a :math:`2 \times 3` rotation matrix |
||||
|
||||
|
||||
Theory |
||||
====== |
||||
|
||||
Code |
||||
==== |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include <iostream> |
||||
#include <stdio.h> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
/// Global variables |
||||
char* source_window = "Source image"; |
||||
char* warp_window = "Warp"; |
||||
char* warp_rotate_window = "Warp + Rotate"; |
||||
|
||||
/** @function main */ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
Point2f srcTri[3]; |
||||
Point2f dstTri[3]; |
||||
|
||||
Mat rot_mat( 2, 3, CV_32FC1 ); |
||||
Mat warp_mat( 2, 3, CV_32FC1 ); |
||||
Mat src, warp_dst, warp_rotate_dst; |
||||
|
||||
/// Load the image |
||||
src = imread( argv[1], 1 ); |
||||
|
||||
/// Set the dst image the same type and size as src |
||||
warp_dst = Mat::zeros( src.rows, src.cols, src.type() ); |
||||
|
||||
/// Set your 3 points to calculate the Affine Transform |
||||
srcTri[0] = Point2f( 0,0 ); |
||||
srcTri[1] = Point2f( src.cols - 1, 0 ); |
||||
srcTri[2] = Point2f( 0, src.rows - 1 ); |
||||
|
||||
dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 ); |
||||
dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 ); |
||||
dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 ); |
||||
|
||||
/// Get the Affine Transform |
||||
warp_mat = getAffineTransform( srcTri, dstTri ); |
||||
|
||||
/// Apply the Affine Transform just found to the src image |
||||
warpAffine( src, warp_dst, warp_mat, warp_dst.size() ); |
||||
|
||||
/** Rotating the image after Warp */ |
||||
|
||||
/// Compute a rotation matrix with respect to the center of the image |
||||
Point center = Point( warp_dst.cols/2, warp_dst.rows/2 ); |
||||
double angle = -50.0; |
||||
double scale = 0.6; |
||||
|
||||
/// Get the rotation matrix with the specifications above |
||||
rot_mat = getRotationMatrix2D( center, angle, scale ); |
||||
|
||||
/// Rotate the warped image |
||||
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() ); |
||||
|
||||
/// Show what you got |
||||
namedWindow( source_window, CV_WINDOW_AUTOSIZE ); |
||||
imshow( source_window, src ); |
||||
|
||||
namedWindow( warp_window, CV_WINDOW_AUTOSIZE ); |
||||
imshow( warp_window, warp_dst ); |
||||
|
||||
namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE ); |
||||
imshow( warp_rotate_window, warp_rotate_dst ); |
||||
|
||||
/// Wait until user exits the program |
||||
waitKey(0); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
Explanation |
||||
=========== |
||||
|
||||
Result |
||||
====== |
||||
|
||||
.. image:: images/Warp_Affine_Tutorial_Original_Image.jpg |
||||
:alt: Original image |
||||
:width: 250pt |
||||
:align: center |
||||
|
||||
.. image:: images/Warp_Affine_Tutorial_Result_Warp.jpg |
||||
:alt: Original image |
||||
:width: 250pt |
||||
:align: center |
||||
|
||||
.. image:: images/Warp_Affine_Tutorial_Result_Warp_Rotate.jpg |
||||
:alt: Original image |
||||
:width: 250pt |
||||
:align: center |
||||
|
After Width: | Height: | Size: 79 KiB |
After Width: | Height: | Size: 20 KiB |