|
|
|
@ -73,9 +73,8 @@ static bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& e |
|
|
|
|
|
|
|
|
|
CV_Assert(_p_labels_temp.total() == _o_labels_temp.total()); |
|
|
|
|
CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows); |
|
|
|
|
Mat result = (_p_labels_temp == _o_labels_temp)/255; |
|
|
|
|
|
|
|
|
|
accuracy = (float)cv::sum(result)[0]/result.rows; |
|
|
|
|
accuracy = (float)cv::countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows; |
|
|
|
|
error = 1 - accuracy; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
@ -133,25 +132,23 @@ void CV_LRTest::run( int /*start_from*/ ) |
|
|
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
|
|
|
|
3, 3, 3, 3, 3); |
|
|
|
|
|
|
|
|
|
CvLR_TrainParams params = CvLR_TrainParams(); |
|
|
|
|
Mat responses1, responses2; |
|
|
|
|
float error = 0.0f; |
|
|
|
|
|
|
|
|
|
CvLR_TrainParams params1 = CvLR_TrainParams(); |
|
|
|
|
CvLR_TrainParams params2 = CvLR_TrainParams(); |
|
|
|
|
LogisticRegressionParams params1 = LogisticRegressionParams(); |
|
|
|
|
LogisticRegressionParams params2 = LogisticRegressionParams(); |
|
|
|
|
|
|
|
|
|
params1.alpha = 1.0; |
|
|
|
|
params1.num_iters = 10001; |
|
|
|
|
params1.norm = CvLR::REG_L2; |
|
|
|
|
// params1.debug = 1;
|
|
|
|
|
params1.norm = LogisticRegression::REG_L2; |
|
|
|
|
params1.regularized = 1; |
|
|
|
|
params1.train_method = CvLR::BATCH; |
|
|
|
|
params1.minibatchsize = 10; |
|
|
|
|
params1.train_method = LogisticRegression::BATCH; |
|
|
|
|
params1.mini_batch_size = 10; |
|
|
|
|
|
|
|
|
|
// run LR classifier train classifier
|
|
|
|
|
data.convertTo(data, CV_32FC1); |
|
|
|
|
labels.convertTo(labels, CV_32FC1); |
|
|
|
|
CvLR lr1(data, labels, params1); |
|
|
|
|
LogisticRegression lr1(data, labels, params1); |
|
|
|
|
|
|
|
|
|
// predict using the same data
|
|
|
|
|
lr1.predict(data, responses1); |
|
|
|
@ -164,7 +161,6 @@ void CV_LRTest::run( int /*start_from*/ ) |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" ); |
|
|
|
|
test_code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
else if(error > 0.05f) |
|
|
|
|
{ |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error); |
|
|
|
@ -173,14 +169,13 @@ void CV_LRTest::run( int /*start_from*/ ) |
|
|
|
|
|
|
|
|
|
params2.alpha = 1.0; |
|
|
|
|
params2.num_iters = 9000; |
|
|
|
|
params2.norm = CvLR::REG_L2; |
|
|
|
|
// params2.debug = 1;
|
|
|
|
|
params2.norm = LogisticRegression::REG_L2; |
|
|
|
|
params2.regularized = 1; |
|
|
|
|
params2.train_method = CvLR::MINI_BATCH; |
|
|
|
|
params2.minibatchsize = 10; |
|
|
|
|
params2.train_method = LogisticRegression::MINI_BATCH; |
|
|
|
|
params2.mini_batch_size = 10; |
|
|
|
|
|
|
|
|
|
// now train using mini batch gradient descent
|
|
|
|
|
CvLR lr2(data, labels, params2); |
|
|
|
|
LogisticRegression lr2(data, labels, params2); |
|
|
|
|
lr2.predict(data, responses2); |
|
|
|
|
responses2.convertTo(responses2, CV_32S); |
|
|
|
|
|
|
|
|
@ -191,7 +186,6 @@ void CV_LRTest::run( int /*start_from*/ ) |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" ); |
|
|
|
|
test_code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
else if(error > 0.06f) |
|
|
|
|
{ |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error); |
|
|
|
@ -257,7 +251,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ ) |
|
|
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
|
|
|
|
3, 3, 3, 3, 3); |
|
|
|
|
|
|
|
|
|
CvLR_TrainParams params = CvLR_TrainParams(); |
|
|
|
|
// LogisticRegressionParams params = LogisticRegressionParams();
|
|
|
|
|
|
|
|
|
|
Mat responses1, responses2; |
|
|
|
|
Mat learnt_mat1, learnt_mat2; |
|
|
|
@ -265,28 +259,26 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ ) |
|
|
|
|
|
|
|
|
|
float errorCount = 0.0; |
|
|
|
|
|
|
|
|
|
CvLR_TrainParams params1 = CvLR_TrainParams(); |
|
|
|
|
CvLR_TrainParams params2 = CvLR_TrainParams(); |
|
|
|
|
LogisticRegressionParams params1 = LogisticRegressionParams(); |
|
|
|
|
|
|
|
|
|
params1.alpha = 1.0; |
|
|
|
|
params1.num_iters = 10001; |
|
|
|
|
params1.norm = CvLR::REG_L2; |
|
|
|
|
// params1.debug = 1;
|
|
|
|
|
params1.norm = LogisticRegression::REG_L2; |
|
|
|
|
params1.regularized = 1; |
|
|
|
|
params1.train_method = CvLR::BATCH; |
|
|
|
|
params1.minibatchsize = 10; |
|
|
|
|
params1.train_method = LogisticRegression::BATCH; |
|
|
|
|
params1.mini_batch_size = 10; |
|
|
|
|
|
|
|
|
|
data.convertTo(data, CV_32FC1); |
|
|
|
|
labels.convertTo(labels, CV_32FC1); |
|
|
|
|
|
|
|
|
|
// run LR classifier train classifier
|
|
|
|
|
CvLR lr1(data, labels, params1); |
|
|
|
|
CvLR lr2; |
|
|
|
|
learnt_mat1 = lr1.get_learnt_mat(); |
|
|
|
|
LogisticRegression lr1(data, labels, params1); |
|
|
|
|
LogisticRegression lr2; |
|
|
|
|
learnt_mat1 = lr1.get_learnt_thetas(); |
|
|
|
|
|
|
|
|
|
lr1.predict(data, responses1); |
|
|
|
|
// now save the classifier
|
|
|
|
|
|
|
|
|
|
// Write out
|
|
|
|
|
string filename = cv::tempfile(".xml"); |
|
|
|
|
try |
|
|
|
|
{ |
|
|
|
@ -312,10 +304,9 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ ) |
|
|
|
|
|
|
|
|
|
lr2.predict(data, responses2); |
|
|
|
|
|
|
|
|
|
learnt_mat2 = lr2.get_learnt_mat(); |
|
|
|
|
learnt_mat2 = lr2.get_learnt_thetas(); |
|
|
|
|
|
|
|
|
|
// compare difference in prediction outputs before and after loading from disk
|
|
|
|
|
pred_result1 = (responses1 == responses2)/255; |
|
|
|
|
CV_Assert(responses1.rows == responses2.rows); |
|
|
|
|
|
|
|
|
|
// compare difference in learnt matrices before and after loading from disk
|
|
|
|
|
comp_learnt_mats = (learnt_mat1 == learnt_mat2); |
|
|
|
@ -326,10 +317,9 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ ) |
|
|
|
|
// compare difference in prediction outputs and stored inputs
|
|
|
|
|
// check if there is any difference between computed learnt mat and retreived mat
|
|
|
|
|
|
|
|
|
|
errorCount += 1 - (float)cv::sum(pred_result1)[0]/pred_result1.rows; |
|
|
|
|
errorCount += 1 - (float)cv::countNonZero(responses1 == responses2)/responses1.rows; |
|
|
|
|
errorCount += 1 - (float)cv::sum(comp_learnt_mats)[0]/comp_learnt_mats.rows; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(errorCount>0) |
|
|
|
|
{ |
|
|
|
|
ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errorCount=%d).\n", errorCount ); |
|
|
|
|