|
|
|
@ -299,8 +299,11 @@ TEST(usac_Fundamental, regression_19639) |
|
|
|
|
EXPECT_TRUE(m.empty()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_ENUM(UsacMethod, USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC) |
|
|
|
|
typedef TestWithParam<UsacMethod> usac_Essential; |
|
|
|
|
|
|
|
|
|
TEST(usac_Essential, accuracy) { |
|
|
|
|
TEST_P(usac_Essential, accuracy) { |
|
|
|
|
int method = GetParam(); |
|
|
|
|
std::vector<int> gt_inliers; |
|
|
|
|
const int pts_size = 1500; |
|
|
|
|
cv::RNG &rng = cv::theRNG(); |
|
|
|
@ -312,10 +315,9 @@ TEST(usac_Essential, accuracy) { |
|
|
|
|
int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/, |
|
|
|
|
pts_size, TestSolver ::Fundam, inl_ratio, 0.01 /*noise std, works bad with high noise*/, gt_inliers); |
|
|
|
|
const double conf = 0.99, thr = 1.; |
|
|
|
|
for (auto flag : flags) { |
|
|
|
|
cv::Mat mask, E; |
|
|
|
|
try { |
|
|
|
|
E = cv::findEssentialMat(pts1, pts2, K1, flag, conf, thr, mask); |
|
|
|
|
E = cv::findEssentialMat(pts1, pts2, K1, method, conf, thr, mask); |
|
|
|
|
} catch (cv::Exception &e) { |
|
|
|
|
if (e.code != cv::Error::StsNotImplemented) |
|
|
|
|
FAIL() << "Essential matrix estimation failed!\n"; |
|
|
|
@ -330,7 +332,40 @@ TEST(usac_Essential, accuracy) { |
|
|
|
|
cpts1_3d.rowRange(0,2), cpts2_3d.rowRange(0,2), E, mask); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(usac_Essential, maxiters) { |
|
|
|
|
int method = GetParam(); |
|
|
|
|
cv::RNG &rng = cv::theRNG(); |
|
|
|
|
cv::Mat mask; |
|
|
|
|
cv::Mat K1 = cv::Mat(cv::Matx33d(1, 0, 0, |
|
|
|
|
0, 1, 0, |
|
|
|
|
0, 0, 1.)); |
|
|
|
|
const double conf = 0.99, thr = 0.5; |
|
|
|
|
int roll_results_sum = 0; |
|
|
|
|
|
|
|
|
|
for (int iters = 0; iters < 10; iters++) { |
|
|
|
|
cv::Mat E1, E2; |
|
|
|
|
try { |
|
|
|
|
cv::Mat pts1 = cv::Mat(2, 50, CV_64F); |
|
|
|
|
cv::Mat pts2 = cv::Mat(2, 50, CV_64F); |
|
|
|
|
rng.fill(pts1, cv::RNG::UNIFORM, 0.0, 1.0); |
|
|
|
|
rng.fill(pts2, cv::RNG::UNIFORM, 0.0, 1.0); |
|
|
|
|
|
|
|
|
|
E1 = cv::findEssentialMat(pts1, pts2, K1, method, conf, thr, 1, mask); |
|
|
|
|
E2 = cv::findEssentialMat(pts1, pts2, K1, method, conf, thr, 1000, mask); |
|
|
|
|
|
|
|
|
|
if (E1.dims != E2.dims) { continue; } |
|
|
|
|
roll_results_sum += cv::norm(E1, E2, NORM_L1) != 0; |
|
|
|
|
} catch (cv::Exception &e) { |
|
|
|
|
if (e.code != cv::Error::StsNotImplemented) |
|
|
|
|
FAIL() << "Essential matrix estimation failed!\n"; |
|
|
|
|
else continue; |
|
|
|
|
} |
|
|
|
|
EXPECT_NE(roll_results_sum, 0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Calib3d, usac_Essential, UsacMethod::all()); |
|
|
|
|
|
|
|
|
|
TEST(usac_P3P, accuracy) { |
|
|
|
|
std::vector<int> gt_inliers; |
|
|
|
|