|
|
|
@ -15,29 +15,36 @@ const size_t network_width = 416; |
|
|
|
|
const size_t network_height = 416; |
|
|
|
|
|
|
|
|
|
const char* about = "This sample uses You only look once (YOLO)-Detector " |
|
|
|
|
"(https://arxiv.org/abs/1612.08242)" |
|
|
|
|
"to detect objects on image\n"; // TODO: link
|
|
|
|
|
"(https://arxiv.org/abs/1612.08242) " |
|
|
|
|
"to detect objects on camera/video/image.\n" |
|
|
|
|
"Models can be downloaded here: " |
|
|
|
|
"https://pjreddie.com/darknet/yolo/\n" |
|
|
|
|
"Default network is 416x416.\n" |
|
|
|
|
"Class names can be downloaded here: " |
|
|
|
|
"https://github.com/pjreddie/darknet/tree/master/data\n"; |
|
|
|
|
|
|
|
|
|
const char* params |
|
|
|
|
= "{ help | false | print usage }" |
|
|
|
|
"{ cfg | | model configuration }" |
|
|
|
|
"{ model | | model weights }" |
|
|
|
|
"{ image | | image for detection }" |
|
|
|
|
"{ min_confidence | 0.24 | min confidence }"; |
|
|
|
|
"{ camera_device | 0 | camera device number}" |
|
|
|
|
"{ video | | video or image for detection}" |
|
|
|
|
"{ min_confidence | 0.24 | min confidence }" |
|
|
|
|
"{ class_names | | class names }"; |
|
|
|
|
|
|
|
|
|
int main(int argc, char** argv) |
|
|
|
|
{ |
|
|
|
|
cv::CommandLineParser parser(argc, argv, params); |
|
|
|
|
CommandLineParser parser(argc, argv, params); |
|
|
|
|
|
|
|
|
|
if (parser.get<bool>("help")) |
|
|
|
|
{ |
|
|
|
|
std::cout << about << std::endl; |
|
|
|
|
cout << about << endl; |
|
|
|
|
parser.printMessage(); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
String modelConfiguration = parser.get<string>("cfg"); |
|
|
|
|
String modelBinary = parser.get<string>("model"); |
|
|
|
|
String modelConfiguration = parser.get<String>("cfg"); |
|
|
|
|
String modelBinary = parser.get<String>("model"); |
|
|
|
|
|
|
|
|
|
//! [Initialize network]
|
|
|
|
|
dnn::Net net = readNetFromDarknet(modelConfiguration, modelBinary); |
|
|
|
@ -53,65 +60,130 @@ int main(int argc, char** argv) |
|
|
|
|
exit(-1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat frame = cv::imread(parser.get<string>("image")); |
|
|
|
|
VideoCapture cap; |
|
|
|
|
if (parser.get<String>("video").empty()) |
|
|
|
|
{ |
|
|
|
|
int cameraDevice = parser.get<int>("camera_device"); |
|
|
|
|
cap = VideoCapture(cameraDevice); |
|
|
|
|
if(!cap.isOpened()) |
|
|
|
|
{ |
|
|
|
|
cout << "Couldn't find camera: " << cameraDevice << endl; |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cap.open(parser.get<String>("video")); |
|
|
|
|
if(!cap.isOpened()) |
|
|
|
|
{ |
|
|
|
|
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl; |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vector<string> classNamesVec; |
|
|
|
|
ifstream classNamesFile(parser.get<String>("class_names").c_str()); |
|
|
|
|
if (classNamesFile.is_open()) |
|
|
|
|
{ |
|
|
|
|
string className = ""; |
|
|
|
|
while (classNamesFile >> className) |
|
|
|
|
classNamesVec.push_back(className); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//! [Resizing without keeping aspect ratio]
|
|
|
|
|
cv::Mat resized; |
|
|
|
|
cv::resize(frame, resized, cv::Size(network_width, network_height)); |
|
|
|
|
//! [Resizing without keeping aspect ratio]
|
|
|
|
|
for(;;) |
|
|
|
|
{ |
|
|
|
|
Mat frame; |
|
|
|
|
cap >> frame; // get a new frame from camera/video or read image
|
|
|
|
|
|
|
|
|
|
//! [Prepare blob]
|
|
|
|
|
Mat inputBlob = blobFromImage(resized, 1 / 255.F); //Convert Mat to batch of images
|
|
|
|
|
//! [Prepare blob]
|
|
|
|
|
if (frame.empty()) |
|
|
|
|
{ |
|
|
|
|
waitKey(); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//! [Set input blob]
|
|
|
|
|
net.setInput(inputBlob, "data"); //set the network input
|
|
|
|
|
//! [Set input blob]
|
|
|
|
|
if (frame.channels() == 4) |
|
|
|
|
cvtColor(frame, frame, COLOR_BGRA2BGR); |
|
|
|
|
|
|
|
|
|
//! [Make forward pass]
|
|
|
|
|
cv::Mat detectionMat = net.forward("detection_out"); //compute output
|
|
|
|
|
//! [Make forward pass]
|
|
|
|
|
//! [Resizing without keeping aspect ratio]
|
|
|
|
|
Mat resized; |
|
|
|
|
resize(frame, resized, Size(network_width, network_height)); |
|
|
|
|
//! [Resizing without keeping aspect ratio]
|
|
|
|
|
|
|
|
|
|
//! [Prepare blob]
|
|
|
|
|
Mat inputBlob = blobFromImage(resized, 1 / 255.F); //Convert Mat to batch of images
|
|
|
|
|
//! [Prepare blob]
|
|
|
|
|
|
|
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
|
|
|
for (int i = 0; i < detectionMat.rows; i++) |
|
|
|
|
{ |
|
|
|
|
const int probability_index = 5; |
|
|
|
|
const int probability_size = detectionMat.cols - probability_index; |
|
|
|
|
float *prob_array_ptr = &detectionMat.at<float>(i, probability_index); |
|
|
|
|
//! [Set input blob]
|
|
|
|
|
net.setInput(inputBlob, "data"); //set the network input
|
|
|
|
|
//! [Set input blob]
|
|
|
|
|
|
|
|
|
|
//! [Make forward pass]
|
|
|
|
|
Mat detectionMat = net.forward("detection_out"); //compute output
|
|
|
|
|
//! [Make forward pass]
|
|
|
|
|
|
|
|
|
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
|
|
|
float confidence = detectionMat.at<float>(i, (int)objectClass + probability_index); |
|
|
|
|
vector<double> layersTimings; |
|
|
|
|
double freq = getTickFrequency() / 1000; |
|
|
|
|
double time = net.getPerfProfile(layersTimings) / freq; |
|
|
|
|
ostringstream ss; |
|
|
|
|
ss << "FPS: " << 1000/time << " ; time: " << time << " ms"; |
|
|
|
|
putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255)); |
|
|
|
|
|
|
|
|
|
if (confidence > confidenceThreshold) |
|
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
|
|
|
for (int i = 0; i < detectionMat.rows; i++) |
|
|
|
|
{ |
|
|
|
|
float x = detectionMat.at<float>(i, 0); |
|
|
|
|
float y = detectionMat.at<float>(i, 1); |
|
|
|
|
float width = detectionMat.at<float>(i, 2); |
|
|
|
|
float height = detectionMat.at<float>(i, 3); |
|
|
|
|
float xLeftBottom = (x - width / 2) * frame.cols; |
|
|
|
|
float yLeftBottom = (y - height / 2) * frame.rows; |
|
|
|
|
float xRightTop = (x + width / 2) * frame.cols; |
|
|
|
|
float yRightTop = (y + height / 2) * frame.rows; |
|
|
|
|
|
|
|
|
|
std::cout << "Class: " << objectClass << std::endl; |
|
|
|
|
std::cout << "Confidence: " << confidence << std::endl; |
|
|
|
|
|
|
|
|
|
std::cout << " " << xLeftBottom |
|
|
|
|
<< " " << yLeftBottom |
|
|
|
|
<< " " << xRightTop |
|
|
|
|
<< " " << yRightTop << std::endl; |
|
|
|
|
|
|
|
|
|
Rect object((int)xLeftBottom, (int)yLeftBottom, |
|
|
|
|
(int)(xRightTop - xLeftBottom), |
|
|
|
|
(int)(yRightTop - yLeftBottom)); |
|
|
|
|
|
|
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
|
|
|
const int probability_index = 5; |
|
|
|
|
const int probability_size = detectionMat.cols - probability_index; |
|
|
|
|
float *prob_array_ptr = &detectionMat.at<float>(i, probability_index); |
|
|
|
|
|
|
|
|
|
size_t objectClass = max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
|
|
|
float confidence = detectionMat.at<float>(i, (int)objectClass + probability_index); |
|
|
|
|
|
|
|
|
|
if (confidence > confidenceThreshold) |
|
|
|
|
{ |
|
|
|
|
float x = detectionMat.at<float>(i, 0); |
|
|
|
|
float y = detectionMat.at<float>(i, 1); |
|
|
|
|
float width = detectionMat.at<float>(i, 2); |
|
|
|
|
float height = detectionMat.at<float>(i, 3); |
|
|
|
|
int xLeftBottom = static_cast<int>((x - width / 2) * frame.cols); |
|
|
|
|
int yLeftBottom = static_cast<int>((y - height / 2) * frame.rows); |
|
|
|
|
int xRightTop = static_cast<int>((x + width / 2) * frame.cols); |
|
|
|
|
int yRightTop = static_cast<int>((y + height / 2) * frame.rows); |
|
|
|
|
|
|
|
|
|
Rect object(xLeftBottom, yLeftBottom, |
|
|
|
|
xRightTop - xLeftBottom, |
|
|
|
|
yRightTop - yLeftBottom); |
|
|
|
|
|
|
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
|
|
|
|
|
|
|
|
if (objectClass < classNamesVec.size()) |
|
|
|
|
{ |
|
|
|
|
ss.str(""); |
|
|
|
|
ss << confidence; |
|
|
|
|
String conf(ss.str()); |
|
|
|
|
String label = String(classNamesVec[objectClass]) + ": " + conf; |
|
|
|
|
int baseLine = 0; |
|
|
|
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
|
|
|
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
|
|
|
|
Size(labelSize.width, labelSize.height + baseLine)), |
|
|
|
|
Scalar(255, 255, 255), CV_FILLED); |
|
|
|
|
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
|
|
|
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cout << "Class: " << objectClass << endl; |
|
|
|
|
cout << "Confidence: " << confidence << endl; |
|
|
|
|
cout << " " << xLeftBottom |
|
|
|
|
<< " " << yLeftBottom |
|
|
|
|
<< " " << xRightTop |
|
|
|
|
<< " " << yRightTop << endl; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
imshow("detections", frame); |
|
|
|
|
waitKey(); |
|
|
|
|
imshow("detections", frame); |
|
|
|
|
if (waitKey(1) >= 0) break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} // main
|
|
|
|
|
} // main
|
|
|
|
|