fixed gpu::pyrUp (now it matches cpu analog)

fixed several warnings
pull/13383/head
Vladislav Vinogradov 13 years ago
parent 484fe1d598
commit 6397fa5b38
  1. 8
      modules/gpu/doc/image_processing.rst
  2. 6
      modules/gpu/include/opencv2/gpu/gpu.hpp
  3. 85
      modules/gpu/src/cuda/pyr_down.cu
  4. 99
      modules/gpu/src/cuda/pyr_up.cu
  5. 338
      modules/gpu/src/imgproc.cpp
  6. 249
      modules/gpu/src/pyramids.cpp
  7. 70
      modules/gpu/test/test_calib3d.cpp
  8. 41
      modules/gpu/test/test_features2d.cpp
  9. 239
      modules/gpu/test/test_imgproc.cpp
  10. 126
      modules/gpu/test/test_pyramids.cpp
  11. 4
      modules/gpu/test/utility.hpp

@ -713,13 +713,11 @@ gpu::pyrDown
-------------------
Smoothes an image and downsamples it.
.. ocv:function:: void gpu::pyrDown(const GpuMat& src, GpuMat& dst, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source image.
:param dst: Destination image. Will have ``Size((src.cols+1)/2, (src.rows+1)/2)`` size and the same type as ``src`` .
:param borderType: Pixel extrapolation method (see :ocv:func:`borderInterpolate` ). ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now.
:param stream: Stream for the asynchronous version.
@ -731,13 +729,11 @@ gpu::pyrUp
-------------------
Upsamples an image and then smoothes it.
.. ocv:function:: void gpu::pyrUp(const GpuMat& src, GpuMat& dst, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source image.
:param dst: Destination image. Will have ``Size(src.cols*2, src.rows*2)`` size and the same type as ``src`` .
:param borderType: Pixel extrapolation method (see :ocv:func:`borderInterpolate` ). ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now.
:param stream: Stream for the asynchronous version.

@ -836,10 +836,10 @@ private:
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream& stream = Stream::Null());
//! smoothes the source image and downsamples it
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
//! upsamples the source image and then smoothes it
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
@ -1572,7 +1572,7 @@ public:
int nOctaveLayers;
bool extended;
bool upright;
//! max keypoints = min(keypointsRatio * img.size().area(), 65535)
float keypointsRatio;

@ -46,9 +46,9 @@
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
template <typename T, typename B> __global__ void pyrDown(const PtrStep<T> src, PtrStep<T> dst, const B b, int dst_cols)
{
@ -60,11 +60,11 @@ namespace cv { namespace gpu { namespace device
__shared__ value_type smem[256 + 4];
value_type sum;
const int src_y = 2*y;
sum = VecTraits<value_type>::all(0);
sum = sum + 0.0625f * b.at(src_y - 2, x, src.data, src.step);
sum = sum + 0.25f * b.at(src_y - 1, x, src.data, src.step);
sum = sum + 0.375f * b.at(src_y , x, src.data, src.step);
@ -78,7 +78,7 @@ namespace cv { namespace gpu { namespace device
const int left_x = x - 2;
sum = VecTraits<value_type>::all(0);
sum = sum + 0.0625f * b.at(src_y - 2, left_x, src.data, src.step);
sum = sum + 0.25f * b.at(src_y - 1, left_x, src.data, src.step);
sum = sum + 0.375f * b.at(src_y , left_x, src.data, src.step);
@ -93,7 +93,7 @@ namespace cv { namespace gpu { namespace device
const int right_x = x + 2;
sum = VecTraits<value_type>::all(0);
sum = sum + 0.0625f * b.at(src_y - 2, right_x, src.data, src.step);
sum = sum + 0.25f * b.at(src_y - 1, right_x, src.data, src.step);
sum = sum + 0.375f * b.at(src_y , right_x, src.data, src.step);
@ -124,7 +124,7 @@ namespace cv { namespace gpu { namespace device
}
}
template <typename T, template <typename> class B> void pyrDown_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, cudaStream_t stream)
template <typename T, template <typename> class B> void pyrDown_caller(DevMem2D_<T> src, DevMem2D_<T> dst, cudaStream_t stream)
{
const dim3 block(256);
const dim3 grid(divUp(src.cols, block.x), dst.rows);
@ -138,48 +138,39 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T, int cn> void pyrDown_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream)
template <typename T> void pyrDown_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream)
{
typedef typename TypeVec<T, cn>::vec_type type;
typedef void (*caller_t)(const DevMem2D_<type>& src, const DevMem2D_<type>& dst, cudaStream_t stream);
static const caller_t callers[] =
{
pyrDown_caller<type, BrdReflect101>, pyrDown_caller<type, BrdReplicate>, pyrDown_caller<type, BrdConstant>, pyrDown_caller<type, BrdReflect>, pyrDown_caller<type, BrdWrap>
};
callers[borderType](static_cast< DevMem2D_<type> >(src), static_cast< DevMem2D_<type> >(dst), stream);
pyrDown_caller<T, BrdReflect101>(static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<T> >(dst), stream);
}
template void pyrDown_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrDown_gpu<uchar>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<uchar2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<uchar3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<uchar4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<schar>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<char2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<char3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<char4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<ushort>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<ushort2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<ushort3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<ushort4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<short>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<short2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<short3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<short4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<int>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<int2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<int3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<int4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<float>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrDown_gpu<float2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<float3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrDown_gpu<float4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
} // namespace imgproc
}}} // namespace cv { namespace gpu { namespace device

@ -46,14 +46,13 @@
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
template <class SrcPtr, typename D> __global__ void pyrUp(const SrcPtr src, DevMem2D_<D> dst)
template <typename T> __global__ void pyrUp(const DevMem2D_<T> src, DevMem2D_<T> dst)
{
typedef typename SrcPtr::elem_type src_t;
typedef typename TypeVec<float, VecTraits<D>::cn>::vec_type sum_t;
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
@ -63,8 +62,14 @@ namespace cv { namespace gpu { namespace device
if (threadIdx.x < 10 && threadIdx.y < 10)
{
const int srcx = static_cast<int>((blockIdx.x * blockDim.x) / 2 + threadIdx.x) - 1;
const int srcy = static_cast<int>((blockIdx.y * blockDim.y) / 2 + threadIdx.y) - 1;
int srcx = static_cast<int>((blockIdx.x * blockDim.x) / 2 + threadIdx.x) - 1;
int srcy = static_cast<int>((blockIdx.y * blockDim.y) / 2 + threadIdx.y) - 1;
srcx = ::abs(srcx);
srcx = ::min(src.cols - 1, srcx);
srcy = ::abs(srcy);
srcy = ::min(src.rows - 1, srcy);
s_srcPatch[threadIdx.y][threadIdx.x] = saturate_cast<sum_t>(src(srcy, srcx));
}
@ -134,66 +139,54 @@ namespace cv { namespace gpu { namespace device
sum = sum + 0.0625f * s_dstPatch[2 + tidy + 2][threadIdx.x];
if (x < dst.cols && y < dst.rows)
dst(y, x) = saturate_cast<D>(4.0f * sum);
dst(y, x) = saturate_cast<T>(4.0f * sum);
}
template <typename T, template <typename> class B> void pyrUp_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, cudaStream_t stream)
template <typename T> void pyrUp_caller(DevMem2D_<T> src, DevMem2D_<T> dst, cudaStream_t stream)
{
const dim3 block(16, 16);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
B<T> b(src.rows, src.cols);
BorderReader< PtrStep<T>, B<T> > srcReader(src, b);
pyrUp<<<grid, block, 0, stream>>>(srcReader, dst);
pyrUp<<<grid, block, 0, stream>>>(src, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T, int cn> void pyrUp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream)
template <typename T> void pyrUp_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream)
{
typedef typename TypeVec<T, cn>::vec_type type;
typedef void (*caller_t)(const DevMem2D_<type>& src, const DevMem2D_<type>& dst, cudaStream_t stream);
static const caller_t callers[] =
{
pyrUp_caller<type, BrdReflect101>, pyrUp_caller<type, BrdReplicate>, pyrUp_caller<type, BrdConstant>, pyrUp_caller<type, BrdReflect>, pyrUp_caller<type, BrdWrap>
};
callers[borderType](static_cast< DevMem2D_<type> >(src), static_cast< DevMem2D_<type> >(dst), stream);
pyrUp_caller<T>(static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<T> >(dst), stream);
}
template void pyrUp_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
template void pyrUp_gpu<uchar>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<uchar2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<uchar3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<uchar4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<schar>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<char2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<char3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<char4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<ushort>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<ushort2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<ushort3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<ushort4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<short>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<short2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<short3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<short4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<int>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<int2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<int3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<int4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<float>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
//template void pyrUp_gpu<float2>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<float3>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template void pyrUp_gpu<float4>(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
} // namespace imgproc
}}} // namespace cv { namespace gpu { namespace device

@ -87,8 +87,6 @@ void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int, Stream&) { throw_nogpu(); }
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&, Stream&) { throw_nogpu(); }
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); }
@ -96,17 +94,15 @@ void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, do
cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
void cv::gpu::CannyBuf::release() { throw_nogpu(); }
void cv::gpu::ImagePyramid::build(const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::getLayer(GpuMat&, Size, Stream&) const { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
////////////////////////////////////////////////////////////////////////
// meanShiftFiltering_GPU
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void meanShiftFiltering_gpu(const DevMem2Db& src, DevMem2Db dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
}
@ -140,9 +136,9 @@ void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
////////////////////////////////////////////////////////////////////////
// meanShiftProc_GPU
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void meanShiftProc_gpu(const DevMem2Db& src, DevMem2Db dstr, DevMem2Db dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
}
@ -177,9 +173,9 @@ void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int
////////////////////////////////////////////////////////////////////////
// drawColorDisp
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void drawColorDisp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int ndisp, const cudaStream_t& stream);
void drawColorDisp_gpu(const DevMem2D_<short>& src, const DevMem2Db& dst, int ndisp, const cudaStream_t& stream);
@ -213,9 +209,9 @@ void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& s
////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void reprojectImageTo3D_gpu(const DevMem2Db& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
void reprojectImageTo3D_gpu(const DevMem2D_<short>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
@ -249,9 +245,9 @@ void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q,
////////////////////////////////////////////////////////////////////////
// copyMakeBorder
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
template <typename T, int cn> void copyMakeBorder_gpu(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream);
}
@ -329,7 +325,7 @@ void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom
else
{
typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
static const caller_t callers[6][4] =
static const caller_t callers[6][4] =
{
{ copyMakeBorder_caller<uchar, 1> , 0/*copyMakeBorder_caller<uchar, 2>*/ , copyMakeBorder_caller<uchar, 3> , copyMakeBorder_caller<uchar, 4>},
{0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
@ -352,9 +348,9 @@ void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom
//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void buildWarpPlaneMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
@ -362,7 +358,7 @@ namespace cv { namespace gpu { namespace device
}
}}}
void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T,
void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T,
float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
@ -378,16 +374,16 @@ void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, cons
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
T.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void buildWarpCylindricalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
@ -417,9 +413,9 @@ void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K
//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void buildWarpSphericalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
@ -449,7 +445,7 @@ void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K,
// rotate
namespace
{
{
template<int DEPTH> struct NppTypeTraits;
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; };
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; };
@ -463,7 +459,7 @@ namespace
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
npp_t* pDst, int nDstStep, NppiRect oDstROI,
double nAngle, double nShiftX, double nShiftY, int eInterpolation);
};
@ -503,7 +499,7 @@ void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, d
{
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);
static const func_t funcs[6][4] =
static const func_t funcs[6][4] =
{
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
{0,0,0,0},
@ -536,13 +532,13 @@ void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, S
CV_Assert(src.type() == CV_8UC1);
sum.create(src.rows + 1, src.cols + 1, CV_32S);
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
@ -552,7 +548,7 @@ void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, S
NppStStreamHandler h(stream);
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step),
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step),
sum.ptr<Ncv32u>(), static_cast<int>(sum.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );
if (stream == 0)
@ -570,11 +566,11 @@ void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
GpuMat buf(1, bufSize, CV_8U);
cudaStream_t stream = StreamAccessor::getStream(s);
@ -582,7 +578,7 @@ void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
NppStStreamHandler h(stream);
sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step),
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step),
sqsum.ptr<Ncv64u>(0), static_cast<int>(sqsum.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));
if (stream == 0)
@ -592,7 +588,7 @@ void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
//////////////////////////////////////////////////////////////////////////////
// columnSum
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
@ -651,8 +647,8 @@ namespace
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
};
template<int SDEPTH> struct NppHistogramEvenFuncC4
{
@ -779,7 +775,7 @@ namespace
int buf_size;
get_buf_size(sz, levels.cols, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
@ -931,7 +927,7 @@ void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace hist
{
@ -1002,7 +998,7 @@ void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat&
NppStreamHandler h(stream);
nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
@ -1012,22 +1008,22 @@ void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat&
////////////////////////////////////////////////////////////////////////
// cornerHarris & minEgenVal
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void cornerHarris_gpu(int block_size, float k, DevMem2Df Dx, DevMem2Df Dy, DevMem2Df dst, int border_type, cudaStream_t stream);
void cornerMinEigenVal_gpu(int block_size, DevMem2Df Dx, DevMem2Df Dy, DevMem2Df dst, int border_type, cudaStream_t stream);
}
}}}
namespace
namespace
{
void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
if (ksize < 0)
if (ksize < 0)
scale *= 2.;
if (src.depth() == CV_8U)
@ -1105,7 +1101,7 @@ void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& D
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType)
{
{
GpuMat Dx, Dy;
cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType);
}
@ -1117,7 +1113,7 @@ void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuM
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
{
using namespace ::cv::gpu::device::imgproc;
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
@ -1125,7 +1121,7 @@ void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuM
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);
dst.create(src.size(), CV_32F);
@ -1135,9 +1131,9 @@ void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuM
//////////////////////////////////////////////////////////////////////////////
// mulSpectrums
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, DevMem2D_<cufftComplex> c, cudaStream_t stream);
@ -1145,7 +1141,7 @@ namespace cv { namespace gpu { namespace device
}
}}}
void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB, Stream& stream)
void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
@ -1165,9 +1161,9 @@ void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flag
//////////////////////////////////////////////////////////////////////////////
// mulAndScaleSpectrums
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, DevMem2D_<cufftComplex> c, cudaStream_t stream);
@ -1175,7 +1171,7 @@ namespace cv { namespace gpu { namespace device
}
}}}
void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB, Stream& stream)
void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
@ -1225,7 +1221,7 @@ void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags, Stre
GpuMat src_data;
// Make sure here we work with the continuous input,
// Make sure here we work with the continuous input,
// as CUFFT can't handle gaps
src_data = src;
createContinuous(src.rows, src.cols, src.type(), src_data);
@ -1241,7 +1237,7 @@ void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags, Stre
}
cufftType dft_type = CUFFT_R2C;
if (is_complex_input)
if (is_complex_input)
dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;
CV_Assert(dft_size_opt.width > 1);
@ -1304,7 +1300,7 @@ void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size)
void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size, Size block_size)
{
result_size = Size(image_size.width - templ_size.width + 1,
image_size.height - templ_size.height + 1);
image_size.height - templ_size.height + 1);
this->block_size = block_size;
@ -1377,10 +1373,10 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
templ_spect.ptr<cufftComplex>()));
// Process all blocks of the result matrix
@ -1390,23 +1386,23 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
{
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
std::min(y + dft_size.height, image.rows) - y);
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
image.step);
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
image_spect.ptr<cufftComplex>()));
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
1.f / dft_size.area(), ccorr, stream);
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
result_data.ptr<cufftReal>()));
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
std::min(y + block_size.height, result.rows) - y);
GpuMat result_roi(result_roi_size, result.type(),
GpuMat result_roi(result_roi_size, result.type(),
(void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, result_data.type(),
GpuMat result_block(result_roi_size, result_data.type(),
result_data.ptr(), result_data.step);
if (stream)
@ -1421,83 +1417,6 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
#endif
}
//////////////////////////////////////////////////////////////////////////////
// pyrDown
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T, int cn> void pyrDown_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
}
}}}
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, int borderType, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
typedef void (*func_t)(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{pyrDown_gpu<uchar, 1>, pyrDown_gpu<uchar, 2>, pyrDown_gpu<uchar, 3>, pyrDown_gpu<uchar, 4>},
{pyrDown_gpu<schar, 1>, pyrDown_gpu<schar, 2>, pyrDown_gpu<schar, 3>, pyrDown_gpu<schar, 4>},
{pyrDown_gpu<ushort, 1>, pyrDown_gpu<ushort, 2>, pyrDown_gpu<ushort, 3>, pyrDown_gpu<ushort, 4>},
{pyrDown_gpu<short, 1>, pyrDown_gpu<short, 2>, pyrDown_gpu<short, 3>, pyrDown_gpu<short, 4>},
{pyrDown_gpu<int, 1>, pyrDown_gpu<int, 2>, pyrDown_gpu<int, 3>, pyrDown_gpu<int, 4>},
{pyrDown_gpu<float, 1>, pyrDown_gpu<float, 2>, pyrDown_gpu<float, 3>, pyrDown_gpu<float, 4>},
};
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
funcs[src.depth()][src.channels() - 1](src, dst, gpuBorderType, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// pyrUp
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T, int cn> void pyrUp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
}
}}}
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, int borderType, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
typedef void (*func_t)(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{pyrUp_gpu<uchar, 1>, pyrUp_gpu<uchar, 2>, pyrUp_gpu<uchar, 3>, pyrUp_gpu<uchar, 4>},
{pyrUp_gpu<schar, 1>, pyrUp_gpu<schar, 2>, pyrUp_gpu<schar, 3>, pyrUp_gpu<schar, 4>},
{pyrUp_gpu<ushort, 1>, pyrUp_gpu<ushort, 2>, pyrUp_gpu<ushort, 3>, pyrUp_gpu<ushort, 4>},
{pyrUp_gpu<short, 1>, pyrUp_gpu<short, 2>, pyrUp_gpu<short, 3>, pyrUp_gpu<short, 4>},
{pyrUp_gpu<int, 1>, pyrUp_gpu<int, 2>, pyrUp_gpu<int, 3>, pyrUp_gpu<int, 4>},
{pyrUp_gpu<float, 1>, pyrUp_gpu<float, 2>, pyrUp_gpu<float, 3>, pyrUp_gpu<float, 4>},
};
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
dst.create(src.rows*2, src.cols*2, src.type());
funcs[src.depth()][src.channels() - 1](src, dst, gpuBorderType, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// Canny
@ -1544,9 +1463,9 @@ void cv::gpu::CannyBuf::release()
trackBuf2.release();
}
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace canny
namespace canny
{
void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols);
@ -1554,7 +1473,7 @@ namespace cv { namespace gpu { namespace device
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh);
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols);
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols);
@ -1570,11 +1489,11 @@ namespace
using namespace ::cv::gpu::device::canny;
calcMap_gpu(buf.dx, buf.dy, buf.edgeBuf, buf.edgeBuf, dst.rows, dst.cols, low_thresh, high_thresh);
edgesHysteresisLocal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), dst.rows, dst.cols);
edgesHysteresisGlobal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), buf.trackBuf2.ptr<ushort2>(), dst.rows, dst.cols);
getEdges_gpu(buf.edgeBuf, dst, dst.rows, dst.cols);
}
}
@ -1597,7 +1516,7 @@ void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_th
dst.create(src.size(), CV_8U);
dst.setTo(Scalar::all(0));
buf.create(src.size(), apperture_size);
buf.edgeBuf.setTo(Scalar::all(0));
@ -1636,7 +1555,7 @@ void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& d
dst.create(dx.size(), CV_8U);
dst.setTo(Scalar::all(0));
buf.dx = dx; buf.dy = dy;
buf.create(dx.size(), -1);
buf.edgeBuf.setTo(Scalar::all(0));
@ -1646,129 +1565,6 @@ void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& d
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
//////////////////////////////////////////////////////////////////////////////
// ImagePyramid
namespace cv { namespace gpu { namespace device
{
namespace pyramid
{
template <typename T> void kernelDownsampleX2_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template <typename T> void kernelInterpolateFrom1_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
}
}}}
void cv::gpu::ImagePyramid::build(const GpuMat& img, int numLayers, Stream& stream)
{
using namespace cv::gpu::device::pyramid;
typedef void (*func_t)(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{kernelDownsampleX2_gpu<uchar1>, /*kernelDownsampleX2_gpu<uchar2>*/ 0, kernelDownsampleX2_gpu<uchar3>, kernelDownsampleX2_gpu<uchar4>},
{/*kernelDownsampleX2_gpu<char1>*/0, /*kernelDownsampleX2_gpu<char2>*/ 0, /*kernelDownsampleX2_gpu<char3>*/ 0, /*kernelDownsampleX2_gpu<char4>*/ 0},
{kernelDownsampleX2_gpu<ushort1>, /*kernelDownsampleX2_gpu<ushort2>*/ 0, kernelDownsampleX2_gpu<ushort3>, kernelDownsampleX2_gpu<ushort4>},
{/*kernelDownsampleX2_gpu<short1>*/ 0, /*kernelDownsampleX2_gpu<short2>*/ 0, /*kernelDownsampleX2_gpu<short3>*/ 0, /*kernelDownsampleX2_gpu<short4>*/ 0},
{/*kernelDownsampleX2_gpu<int1>*/ 0, /*kernelDownsampleX2_gpu<int2>*/ 0, /*kernelDownsampleX2_gpu<int3>*/ 0, /*kernelDownsampleX2_gpu<int4>*/ 0},
{kernelDownsampleX2_gpu<float1>, /*kernelDownsampleX2_gpu<float2>*/ 0, kernelDownsampleX2_gpu<float3>, kernelDownsampleX2_gpu<float4>},
{/*kernelDownsampleX2_gpu<double1>*/ 0, /*kernelDownsampleX2_gpu<double2>*/ 0, /*kernelDownsampleX2_gpu<double3>*/ 0, /*kernelDownsampleX2_gpu<double4>*/ 0}
};
CV_Assert(img.channels() == 1 || img.channels() == 3 || img.channels() == 4);
CV_Assert(img.depth() == CV_8U || img.depth() == CV_16U || img.depth() == CV_32F);
layer0_ = img;
Size szLastLayer = img.size();
nLayers_ = 1;
if (numLayers <= 0)
numLayers = 255; //it will cut-off when any of the dimensions goes 1
pyramid_.resize(numLayers);
for (int i = 0; i < numLayers - 1; ++i)
{
Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);
if (szCurLayer.width == 0 || szCurLayer.height == 0)
break;
ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
nLayers_++;
const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];
func_t func = funcs[img.depth()][img.channels() - 1];
CV_Assert(func != 0);
func(prevLayer, pyramid_[i], StreamAccessor::getStream(stream));
szLastLayer = szCurLayer;
}
}
void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream) const
{
using namespace cv::gpu::device::pyramid;
typedef void (*func_t)(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{kernelInterpolateFrom1_gpu<uchar1>, /*kernelInterpolateFrom1_gpu<uchar2>*/ 0, kernelInterpolateFrom1_gpu<uchar3>, kernelInterpolateFrom1_gpu<uchar4>},
{/*kernelInterpolateFrom1_gpu<char1>*/0, /*kernelInterpolateFrom1_gpu<char2>*/ 0, /*kernelInterpolateFrom1_gpu<char3>*/ 0, /*kernelInterpolateFrom1_gpu<char4>*/ 0},
{kernelInterpolateFrom1_gpu<ushort1>, /*kernelInterpolateFrom1_gpu<ushort2>*/ 0, kernelInterpolateFrom1_gpu<ushort3>, kernelInterpolateFrom1_gpu<ushort4>},
{/*kernelInterpolateFrom1_gpu<short1>*/ 0, /*kernelInterpolateFrom1_gpu<short2>*/ 0, /*kernelInterpolateFrom1_gpu<short3>*/ 0, /*kernelInterpolateFrom1_gpu<short4>*/ 0},
{/*kernelInterpolateFrom1_gpu<int1>*/ 0, /*kernelInterpolateFrom1_gpu<int2>*/ 0, /*kernelInterpolateFrom1_gpu<int3>*/ 0, /*kernelInterpolateFrom1_gpu<int4>*/ 0},
{kernelInterpolateFrom1_gpu<float1>, /*kernelInterpolateFrom1_gpu<float2>*/ 0, kernelInterpolateFrom1_gpu<float3>, kernelInterpolateFrom1_gpu<float4>},
{/*kernelInterpolateFrom1_gpu<double1>*/ 0, /*kernelInterpolateFrom1_gpu<double2>*/ 0, /*kernelInterpolateFrom1_gpu<double3>*/ 0, /*kernelInterpolateFrom1_gpu<double4>*/ 0}
};
CV_Assert(outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0);
ensureSizeIsEnough(outRoi, layer0_.type(), outImg);
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
{
if (stream)
stream.enqueueCopy(layer0_, outImg);
else
layer0_.copyTo(outImg);
}
float lastScale = 1.0f;
float curScale;
GpuMat lastLayer = layer0_;
GpuMat curLayer;
for (int i = 0; i < nLayers_ - 1; ++i)
{
curScale = lastScale * 0.5f;
curLayer = pyramid_[i];
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
{
if (stream)
stream.enqueueCopy(curLayer, outImg);
else
curLayer.copyTo(outImg);
}
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
break;
lastScale = curScale;
lastLayer = curLayer;
}
func_t func = funcs[outImg.depth()][outImg.channels() - 1];
CV_Assert(func != 0);
func(lastLayer, outImg, StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */

@ -0,0 +1,249 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifndef HAVE_CUDA
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::build(const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::getLayer(GpuMat&, Size, Stream&) const { throw_nogpu(); }
#else // HAVE_CUDA
//////////////////////////////////////////////////////////////////////////////
// pyrDown
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T> void pyrDown_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
}
}}}
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device::imgproc;
typedef void (*func_t)(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{pyrDown_gpu<uchar> , 0 /*pyrDown_gpu<uchar2>*/ , pyrDown_gpu<uchar3> , pyrDown_gpu<uchar4> },
{0 /*pyrDown_gpu<schar>*/, 0 /*pyrDown_gpu<schar2>*/ , 0 /*pyrDown_gpu<schar3>*/, 0 /*pyrDown_gpu<schar4>*/},
{pyrDown_gpu<ushort> , 0 /*pyrDown_gpu<ushort2>*/, pyrDown_gpu<ushort3> , pyrDown_gpu<ushort4> },
{pyrDown_gpu<short> , 0 /*pyrDown_gpu<short2>*/ , pyrDown_gpu<short3> , pyrDown_gpu<short4> },
{0 /*pyrDown_gpu<int>*/ , 0 /*pyrDown_gpu<int2>*/ , 0 /*pyrDown_gpu<int3>*/ , 0 /*pyrDown_gpu<int4>*/ },
{pyrDown_gpu<float> , 0 /*pyrDown_gpu<float2>*/ , pyrDown_gpu<float3> , pyrDown_gpu<float4> }
};
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
const func_t func = funcs[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
func(src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// pyrUp
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T> void pyrUp_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
}
}}}
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device::imgproc;
typedef void (*func_t)(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{pyrUp_gpu<uchar> , 0 /*pyrUp_gpu<uchar2>*/ , pyrUp_gpu<uchar3> , pyrUp_gpu<uchar4> },
{0 /*pyrUp_gpu<schar>*/, 0 /*pyrUp_gpu<schar2>*/ , 0 /*pyrUp_gpu<schar3>*/, 0 /*pyrUp_gpu<schar4>*/},
{pyrUp_gpu<ushort> , 0 /*pyrUp_gpu<ushort2>*/, pyrUp_gpu<ushort3> , pyrUp_gpu<ushort4> },
{pyrUp_gpu<short> , 0 /*pyrUp_gpu<short2>*/ , pyrUp_gpu<short3> , pyrUp_gpu<short4> },
{0 /*pyrUp_gpu<int>*/ , 0 /*pyrUp_gpu<int2>*/ , 0 /*pyrUp_gpu<int3>*/ , 0 /*pyrUp_gpu<int4>*/ },
{pyrUp_gpu<float> , 0 /*pyrUp_gpu<float2>*/ , pyrUp_gpu<float3> , pyrUp_gpu<float4> }
};
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
const func_t func = funcs[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
dst.create(src.rows * 2, src.cols * 2, src.type());
func(src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// ImagePyramid
namespace cv { namespace gpu { namespace device
{
namespace pyramid
{
template <typename T> void kernelDownsampleX2_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
template <typename T> void kernelInterpolateFrom1_gpu(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
}
}}}
void cv::gpu::ImagePyramid::build(const GpuMat& img, int numLayers, Stream& stream)
{
using namespace cv::gpu::device::pyramid;
typedef void (*func_t)(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{kernelDownsampleX2_gpu<uchar1> , 0 /*kernelDownsampleX2_gpu<uchar2>*/ , kernelDownsampleX2_gpu<uchar3> , kernelDownsampleX2_gpu<uchar4> },
{0 /*kernelDownsampleX2_gpu<char1>*/ , 0 /*kernelDownsampleX2_gpu<char2>*/ , 0 /*kernelDownsampleX2_gpu<char3>*/ , 0 /*kernelDownsampleX2_gpu<char4>*/ },
{kernelDownsampleX2_gpu<ushort1> , 0 /*kernelDownsampleX2_gpu<ushort2>*/, kernelDownsampleX2_gpu<ushort3> , kernelDownsampleX2_gpu<ushort4> },
{0 /*kernelDownsampleX2_gpu<short1>*/ , 0 /*kernelDownsampleX2_gpu<short2>*/ , 0 /*kernelDownsampleX2_gpu<short3>*/, 0 /*kernelDownsampleX2_gpu<short4>*/},
{0 /*kernelDownsampleX2_gpu<int1>*/ , 0 /*kernelDownsampleX2_gpu<int2>*/ , 0 /*kernelDownsampleX2_gpu<int3>*/ , 0 /*kernelDownsampleX2_gpu<int4>*/ },
{kernelDownsampleX2_gpu<float1> , 0 /*kernelDownsampleX2_gpu<float2>*/ , kernelDownsampleX2_gpu<float3> , kernelDownsampleX2_gpu<float4> }
};
CV_Assert(img.depth() <= CV_32F && img.channels() <= 4);
const func_t func = funcs[img.depth()][img.channels() - 1];
CV_Assert(func != 0);
layer0_ = img;
Size szLastLayer = img.size();
nLayers_ = 1;
if (numLayers <= 0)
numLayers = 255; //it will cut-off when any of the dimensions goes 1
pyramid_.resize(numLayers);
for (int i = 0; i < numLayers - 1; ++i)
{
Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);
if (szCurLayer.width == 0 || szCurLayer.height == 0)
break;
ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
nLayers_++;
const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];
func(prevLayer, pyramid_[i], StreamAccessor::getStream(stream));
szLastLayer = szCurLayer;
}
}
void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream) const
{
using namespace cv::gpu::device::pyramid;
typedef void (*func_t)(DevMem2Db src, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{kernelInterpolateFrom1_gpu<uchar1> , 0 /*kernelInterpolateFrom1_gpu<uchar2>*/ , kernelInterpolateFrom1_gpu<uchar3> , kernelInterpolateFrom1_gpu<uchar4> },
{0 /*kernelInterpolateFrom1_gpu<char1>*/ , 0 /*kernelInterpolateFrom1_gpu<char2>*/ , 0 /*kernelInterpolateFrom1_gpu<char3>*/ , 0 /*kernelInterpolateFrom1_gpu<char4>*/ },
{kernelInterpolateFrom1_gpu<ushort1> , 0 /*kernelInterpolateFrom1_gpu<ushort2>*/, kernelInterpolateFrom1_gpu<ushort3> , kernelInterpolateFrom1_gpu<ushort4> },
{0 /*kernelInterpolateFrom1_gpu<short1>*/, 0 /*kernelInterpolateFrom1_gpu<short2>*/ , 0 /*kernelInterpolateFrom1_gpu<short3>*/, 0 /*kernelInterpolateFrom1_gpu<short4>*/},
{0 /*kernelInterpolateFrom1_gpu<int1>*/ , 0 /*kernelInterpolateFrom1_gpu<int2>*/ , 0 /*kernelInterpolateFrom1_gpu<int3>*/ , 0 /*kernelInterpolateFrom1_gpu<int4>*/ },
{kernelInterpolateFrom1_gpu<float1> , 0 /*kernelInterpolateFrom1_gpu<float2>*/ , kernelInterpolateFrom1_gpu<float3> , kernelInterpolateFrom1_gpu<float4> }
};
CV_Assert(outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0);
ensureSizeIsEnough(outRoi, layer0_.type(), outImg);
const func_t func = funcs[outImg.depth()][outImg.channels() - 1];
CV_Assert(func != 0);
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
{
if (stream)
stream.enqueueCopy(layer0_, outImg);
else
layer0_.copyTo(outImg);
}
float lastScale = 1.0f;
float curScale;
GpuMat lastLayer = layer0_;
GpuMat curLayer;
for (int i = 0; i < nLayers_ - 1; ++i)
{
curScale = lastScale * 0.5f;
curLayer = pyramid_[i];
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
{
if (stream)
stream.enqueueCopy(curLayer, outImg);
else
curLayer.copyTo(outImg);
}
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
break;
lastScale = curScale;
lastLayer = curLayer;
}
func(lastLayer, outImg, StreamAccessor::getStream(stream));
}
#endif // HAVE_CUDA

@ -54,38 +54,38 @@ struct StereoBlockMatching : TestWithParam<cv::gpu::DeviceInfo>
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
img_r = readImage("stereobm/aloe-R.png", CV_LOAD_IMAGE_GRAYSCALE);
img_template = readImage("stereobm/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoBlockMatching, Regression)
{
TEST_P(StereoBlockMatching, Regression)
{
cv::Mat disp;
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoBM_GPU bm(0, 128, 19);
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 0.0);
}
@ -99,26 +99,26 @@ struct StereoBeliefPropagation : TestWithParam<cv::gpu::DeviceInfo>
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("stereobp/aloe-L.png");
img_r = readImage("stereobp/aloe-R.png");
img_template = readImage("stereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoBeliefPropagation, Regression)
TEST_P(StereoBeliefPropagation, Regression)
{
cv::Mat disp;
@ -126,11 +126,11 @@ TEST_P(StereoBeliefPropagation, Regression)
cv::gpu::StereoBeliefPropagation bpm(64, 8, 2, 25, 0.1f, 15, 1, CV_16S);
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 0.0);
}
@ -144,15 +144,15 @@ struct StereoConstantSpaceBP : TestWithParam<cv::gpu::DeviceInfo>
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("csstereobp/aloe-L.png");
img_r = readImage("csstereobp/aloe-R.png");
@ -160,14 +160,14 @@ struct StereoConstantSpaceBP : TestWithParam<cv::gpu::DeviceInfo>
img_template = readImage("csstereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
else
img_template = readImage("csstereobp/aloe-disp_CC1X.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoConstantSpaceBP, Regression)
TEST_P(StereoConstantSpaceBP, Regression)
{
cv::Mat disp;
@ -175,11 +175,11 @@ TEST_P(StereoConstantSpaceBP, Regression)
cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4);
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 1.0);
}
@ -191,12 +191,12 @@ INSTANTIATE_TEST_CASE_P(Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
struct ProjectPoints : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat src;
cv::Mat rvec;
cv::Mat tvec;
cv::Mat camera_mat;
std::vector<cv::Point2f> dst_gold;
virtual void SetUp()
@ -220,17 +220,17 @@ struct ProjectPoints : TestWithParam<cv::gpu::DeviceInfo>
}
};
TEST_P(ProjectPoints, Accuracy)
TEST_P(ProjectPoints, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::projectPoints(cv::gpu::GpuMat(src), rvec, tvec, camera_mat, cv::Mat(), d_dst);
d_dst.download(dst);
ASSERT_EQ(dst_gold.size(), dst.cols);
ASSERT_EQ(dst_gold.size(), static_cast<size_t>(dst.cols));
ASSERT_EQ(1, dst.rows);
ASSERT_EQ(CV_32FC2, dst.type());
@ -257,7 +257,7 @@ struct TransformPoints : TestWithParam<cv::gpu::DeviceInfo>
cv::Mat rvec;
cv::Mat tvec;
cv::Mat rot;
virtual void SetUp()
{
devInfo = GetParam();
@ -283,7 +283,7 @@ TEST_P(TransformPoints, Accuracy)
cv::gpu::transformPoints(cv::gpu::GpuMat(src), rvec, tvec, d_dst);
d_dst.download(dst);
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(src.type(), dst.type());
@ -318,7 +318,7 @@ struct SolvePnPRansac : TestWithParam<cv::gpu::DeviceInfo>
cv::Mat rvec_gold;
cv::Mat tvec_gold;
virtual void SetUp()
{
devInfo = GetParam();
@ -346,7 +346,7 @@ TEST_P(SolvePnPRansac, Accuracy)
cv::Mat rvec, tvec;
std::vector<int> inliers;
cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat,
cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat,
cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers);
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3f);

@ -90,7 +90,7 @@ struct SURF : TestWithParam<cv::gpu::DeviceInfo>
std::vector<cv::KeyPoint> keypoints_gold;
std::vector<float> descriptors_gold;
virtual void SetUp()
{
devInfo = GetParam();
@ -157,20 +157,20 @@ PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, DistType, int)
cv::gpu::DeviceInfo devInfo;
cv::gpu::BruteForceMatcher_GPU_base::DistType distType;
int dim;
int queryDescCount;
int countFactor;
cv::Mat query, train;
virtual void SetUp()
virtual void SetUp()
{
devInfo = GET_PARAM(0);
distType = (cv::gpu::BruteForceMatcher_GPU_base::DistType)(int)GET_PARAM(1);
dim = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
queryDescCount = 300; // must be even number because we split train data in some cases in two
countFactor = 4; // do not change it
@ -218,7 +218,7 @@ TEST_P(BruteForceMatcher, Match)
matcher.match(loadMat(query), loadMat(train), matches);
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
@ -259,7 +259,7 @@ TEST_P(BruteForceMatcher, MatchAdd)
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
@ -292,7 +292,7 @@ TEST_P(BruteForceMatcher, KnnMatch2)
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn);
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
@ -324,7 +324,7 @@ TEST_P(BruteForceMatcher, KnnMatch3)
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn);
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
@ -375,7 +375,7 @@ TEST_P(BruteForceMatcher, KnnMatchAdd2)
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = isMaskSupported ? 1 : 0;
@ -437,7 +437,7 @@ TEST_P(BruteForceMatcher, KnnMatchAdd3)
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = isMaskSupported ? 1 : 0;
@ -485,7 +485,7 @@ TEST_P(BruteForceMatcher, RadiusMatch)
matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius);
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
@ -536,7 +536,7 @@ TEST_P(BruteForceMatcher, RadiusMatchAdd)
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(queryDescCount, matches.size());
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = isMaskSupported ? 1 : 0;
@ -588,17 +588,16 @@ struct FAST : TestWithParam<cv::gpu::DeviceInfo>
int threshold;
std::vector<cv::KeyPoint> keypoints_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
threshold = 30;
cv::FAST(image, keypoints_gold, threshold);
@ -630,7 +629,7 @@ TEST_P(FAST, Accuracy)
cv::gpu::FAST_GPU fastGPU(threshold);
fastGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(), keypoints);
ASSERT_EQ(keypoints.size(), keypoints_gold.size());
std::sort(keypoints.begin(), keypoints.end(), KeyPointCompare());
@ -663,16 +662,16 @@ struct ORB : TestWithParam<cv::gpu::DeviceInfo>
std::vector<cv::KeyPoint> keypoints_gold;
cv::Mat descriptors_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
ASSERT_FALSE(image.empty());
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));

@ -58,7 +58,7 @@ PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, UseRoi)
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
@ -70,9 +70,9 @@ PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, UseRoi)
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
src = randomMat(rng, size, CV_8UC1, 0.0, 255.0, false);
src = randomMat(rng, size, CV_8UC1, 0.0, 255.0, false);
cv::integral(src, dst_gold, CV_32S);
cv::integral(src, dst_gold, CV_32S);
}
};
@ -90,7 +90,7 @@ TEST_P(Integral, Accuracy)
}
INSTANTIATE_TEST_CASE_P(ImgProc, Integral, Combine(
ALL_DEVICES,
ALL_DEVICES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
@ -101,9 +101,9 @@ PARAM_TEST_CASE(CvtColor, cv::gpu::DeviceInfo, MatType, UseRoi)
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Mat img;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
@ -111,7 +111,7 @@ PARAM_TEST_CASE(CvtColor, cv::gpu::DeviceInfo, MatType, UseRoi)
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat imgBase = readImage("stereobm/aloe-L.png");
ASSERT_FALSE(imgBase.empty());
@ -1998,7 +1998,7 @@ TEST_P(CvtColor, RGBA2YUV4)
}
INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, Combine(
ALL_DEVICES,
ALL_DEVICES,
Values(CV_8U, CV_16U, CV_32F),
WHOLE_SUBMAT));
@ -2009,18 +2009,18 @@ PARAM_TEST_CASE(SwapChannels, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Mat img;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat imgBase = readImage("stereobm/aloe-L.png");
ASSERT_FALSE(imgBase.empty());
@ -2051,23 +2051,23 @@ INSTANTIATE_TEST_CASE_P(ImgProc, SwapChannels, Combine(ALL_DEVICES, WHOLE_SUBMAT
struct HistEven : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat hsv;
int hbins;
float hranges[2];
cv::Mat hist_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("stereobm/aloe-L.png");
ASSERT_FALSE(img.empty());
cv::cvtColor(img, hsv, CV_BGR2HSV);
hbins = 30;
@ -2092,7 +2092,7 @@ struct HistEven : TestWithParam<cv::gpu::DeviceInfo>
TEST_P(HistEven, Accuracy)
{
cv::Mat hist;
std::vector<cv::gpu::GpuMat> srcs;
cv::gpu::split(loadMat(hsv), srcs);
@ -2114,7 +2114,7 @@ struct CalcHist : TestWithParam<cv::gpu::DeviceInfo>
cv::Size size;
cv::Mat src;
cv::Mat hist_gold;
virtual void SetUp()
{
devInfo = GetParam();
@ -2124,7 +2124,7 @@ struct CalcHist : TestWithParam<cv::gpu::DeviceInfo>
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
src = randomMat(rng, size, CV_8UC1, 0, 255, false);
hist_gold.create(1, 256, CV_32SC1);
@ -2144,7 +2144,7 @@ struct CalcHist : TestWithParam<cv::gpu::DeviceInfo>
TEST_P(CalcHist, Accuracy)
{
cv::Mat hist;
cv::gpu::GpuMat gpuHist;
cv::gpu::calcHist(loadMat(src), gpuHist);
@ -2163,7 +2163,7 @@ struct EqualizeHist : TestWithParam<cv::gpu::DeviceInfo>
cv::Size size;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GetParam();
@ -2173,7 +2173,7 @@ struct EqualizeHist : TestWithParam<cv::gpu::DeviceInfo>
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
src = randomMat(rng, size, CV_8UC1, 0, 255, false);
cv::equalizeHist(src, dst_gold);
@ -2183,7 +2183,7 @@ struct EqualizeHist : TestWithParam<cv::gpu::DeviceInfo>
TEST_P(EqualizeHist, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpuDst;
cv::gpu::equalizeHist(loadMat(src), gpuDst);
@ -2217,7 +2217,7 @@ PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, Border, int, int)
type = GET_PARAM(1);
borderType = GET_PARAM(2);
blockSize = GET_PARAM(3);
apertureSize = GET_PARAM(4);
apertureSize = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
@ -2248,8 +2248,8 @@ TEST_P(CornerHarris, Accuracy)
}
INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_32FC1),
ALL_DEVICES,
Values(CV_8UC1, CV_32FC1),
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT),
Values(3, 5, 7),
Values(0, 3, 5, 7)));
@ -2268,19 +2268,17 @@ PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, Border, int, int)
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
borderType = GET_PARAM(2);
blockSize = GET_PARAM(3);
apertureSize = GET_PARAM(4);
apertureSize = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img.empty());
@ -2304,8 +2302,8 @@ TEST_P(CornerMinEigen, Accuracy)
}
INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigen, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_32FC1),
ALL_DEVICES,
Values(CV_8UC1, CV_32FC1),
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT),
Values(3, 5, 7),
Values(0, 3, 5, 7)));
@ -2325,7 +2323,7 @@ struct ColumnSum : TestWithParam<cv::gpu::DeviceInfo>
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
@ -2337,7 +2335,7 @@ struct ColumnSum : TestWithParam<cv::gpu::DeviceInfo>
TEST_P(ColumnSum, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::columnSum(loadMat(src), dev_dst);
@ -2387,7 +2385,7 @@ PARAM_TEST_CASE(Norm, cv::gpu::DeviceInfo, MatType, NormCode, UseRoi)
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
@ -2406,7 +2404,7 @@ TEST_P(Norm, Accuracy)
}
INSTANTIATE_TEST_CASE_P(ImgProc, Norm, Combine(
ALL_DEVICES,
ALL_DEVICES,
TYPES(CV_8U, CV_32F, 1, 1),
Values((int) cv::NORM_INF, (int) cv::NORM_L1, (int) cv::NORM_L2),
WHOLE_SUBMAT));
@ -2431,7 +2429,7 @@ PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, UseRoi)
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 500), rng.uniform(100, 500));
@ -2481,7 +2479,7 @@ INSTANTIATE_TEST_CASE_P(ImgProc, ReprojectImageTo3D, Combine(ALL_DEVICES, WHOLE_
struct MeanShift : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat rgba;
int spatialRad;
@ -2492,10 +2490,10 @@ struct MeanShift : TestWithParam<cv::gpu::DeviceInfo>
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("meanshift/cones.png");
ASSERT_FALSE(img.empty());
cv::cvtColor(img, rgba, CV_BGR2BGRA);
spatialRad = 30;
@ -2506,7 +2504,7 @@ struct MeanShift : TestWithParam<cv::gpu::DeviceInfo>
TEST_P(MeanShift, Filtering)
{
cv::Mat img_template;
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
img_template = readImage("meanshift/con_result.png");
else
@ -2562,8 +2560,8 @@ TEST_P(MeanShift, Proc)
d_spmap.download(spmap);
ASSERT_EQ(CV_8UC4, rmap.type());
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);
EXPECT_MAT_NEAR(spmap_template, spmap, 0.0);
}
@ -2573,7 +2571,7 @@ PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, int)
{
cv::gpu::DeviceInfo devInfo;
int minsize;
cv::Mat rgba;
cv::Mat dst_gold;
@ -2584,10 +2582,10 @@ PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, int)
minsize = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("meanshift/cones.png");
ASSERT_FALSE(img.empty());
cv::cvtColor(img, rgba, CV_BGR2BGRA);
std::ostringstream path;
@ -2669,7 +2667,7 @@ TEST_P(MatchTemplate8U, Regression)
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate8U, Combine(
ALL_DEVICES,
Range(1, 5),
Range(1, 5),
Values((int)cv::TM_SQDIFF, (int) cv::TM_SQDIFF_NORMED, (int) cv::TM_CCORR, (int) cv::TM_CCORR_NORMED, (int) cv::TM_CCOEFF, (int) cv::TM_CCOEFF_NORMED)));
@ -2720,8 +2718,8 @@ TEST_P(MatchTemplate32F, Regression)
}
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate32F, Combine(
ALL_DEVICES,
Range(1, 5),
ALL_DEVICES,
Range(1, 5),
Values((int) cv::TM_SQDIFF, (int) cv::TM_CCORR)));
@ -2830,9 +2828,9 @@ PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, DftFlags)
cv::gpu::DeviceInfo devInfo;
int flag;
cv::Mat a, b;
cv::Mat a, b;
virtual void SetUp()
virtual void SetUp()
{
devInfo = GET_PARAM(0);
flag = GET_PARAM(1);
@ -2850,7 +2848,7 @@ TEST_P(MulSpectrums, Simple)
{
cv::Mat c_gold;
cv::mulSpectrums(a, b, c_gold, flag, false);
cv::Mat c;
cv::gpu::GpuMat d_c;
@ -2882,7 +2880,7 @@ TEST_P(MulSpectrums, Scaled)
}
INSTANTIATE_TEST_CASE_P(ImgProc, MulSpectrums, Combine(
ALL_DEVICES,
ALL_DEVICES,
Values(0, (int) cv::DFT_ROWS)));
////////////////////////////////////////////////////////////////////////////
@ -2892,7 +2890,7 @@ struct Dft : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
virtual void SetUp()
{
devInfo = GetParam();
@ -2956,7 +2954,7 @@ TEST_P(Dft, C2C)
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
{
SCOPED_TRACE(hint);
cv::RNG& rng = TS::ptr()->get_rng();
cv::Mat a = randomMat(rng, cv::Size(cols, rows), CV_32FC1, 0.0, 10.0, false);
@ -2981,7 +2979,7 @@ void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
ASSERT_EQ(CV_32F, d_c.depth());
@ -3019,7 +3017,7 @@ INSTANTIATE_TEST_CASE_P(ImgProc, Dft, ALL_DEVICES);
////////////////////////////////////////////////////////////////////////////
// blend
template <typename T>
template <typename T>
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
{
result_gold.create(img1.size(), img1.type());
@ -3057,7 +3055,7 @@ PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, MatType, UseRoi)
cv::Mat result_gold;
virtual void SetUp()
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
@ -3075,7 +3073,7 @@ PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, MatType, UseRoi)
img2 = randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false);
weights1 = randomMat(rng, size, CV_32F, 0, 1, false);
weights2 = randomMat(rng, size, CV_32F, 0, 1, false);
if (depth == CV_8U)
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold);
else
@ -3101,105 +3099,6 @@ INSTANTIATE_TEST_CASE_P(ImgProc, Blend, Combine(
testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////
// pyrDown
PARAM_TEST_CASE(PyrDown, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(rng.uniform(100, 200), rng.uniform(100, 200));
src = randomMat(rng, size, type, 0.0, 255.0, false);
cv::pyrDown(src, dst_gold);
}
};
TEST_P(PyrDown, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::pyrDown(loadMat(src, useRoi), d_dst);
d_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-4 : 1.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, PyrDown, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32FC1, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////
// pyrUp
PARAM_TEST_CASE(PyrUp, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(rng.uniform(200, 400), rng.uniform(200, 400));
src = randomMat(rng, size, type, 0.0, 255.0, false);
cv::pyrUp(src, dst_gold);
}
};
TEST_P(PyrUp, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::pyrUp(loadMat(src, useRoi), d_dst, cv::BORDER_REFLECT);
d_dst.download(dst);
// results differs only on border left and top border due different border extrapolation type
EXPECT_MAT_NEAR(dst_gold(cv::Range(1, dst_gold.rows), cv::Range(1, dst_gold.cols)), dst(cv::Range(1, dst_gold.rows), cv::Range(1, dst_gold.cols)), src.depth() == CV_32F ? 1e-4 : 1.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, PyrUp, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32FC1, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////
// Canny
@ -3209,7 +3108,7 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, int, bool, UseRoi)
int apperture_size;
bool L2gradient;
bool useRoi;
cv::Mat img;
double low_thresh;
@ -3217,7 +3116,7 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, int, bool, UseRoi)
cv::Mat edges_gold;
virtual void SetUp()
virtual void SetUp()
{
devInfo = GET_PARAM(0);
apperture_size = GET_PARAM(1);
@ -3225,13 +3124,13 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, int, bool, UseRoi)
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img.empty());
ASSERT_FALSE(img.empty());
low_thresh = 50.0;
high_thresh = 100.0;
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, L2gradient);
}
};
@ -3301,14 +3200,14 @@ namespace
}
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, int, bool)
{
{
cv::gpu::DeviceInfo devInfo;
int ksize;
bool ccorr;
cv::Mat src;
cv::Mat kernel;
cv::Mat dst_gold;
virtual void SetUp()
@ -3318,14 +3217,14 @@ PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, int, bool)
ccorr = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(rng.uniform(200, 400), rng.uniform(200, 400));
src = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
kernel = randomMat(rng, cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0, false);
convolveDFT(src, kernel, dst_gold, ccorr);
}
};
@ -3345,7 +3244,7 @@ TEST_P(Convolve, Accuracy)
INSTANTIATE_TEST_CASE_P(ImgProc, Convolve, Combine(
ALL_DEVICES,
ALL_DEVICES,
Values(3, 7, 11, 17, 19, 23, 45),
Bool()));

@ -0,0 +1,126 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
////////////////////////////////////////////////////////
// pyrDown
PARAM_TEST_CASE(PyrDown, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(PyrDown, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::gpu::GpuMat dst = createMat(cv::Size((size.width + 1) / 2, (size.height + 1) / 2), type, useRoi);
cv::gpu::pyrDown(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::pyrDown(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-4 : 1.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, PyrDown, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////
// pyrUp
PARAM_TEST_CASE(PyrUp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(PyrUp, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::gpu::GpuMat dst = createMat(cv::Size(size.width * 2, size.height * 2), type, useRoi);
cv::gpu::pyrUp(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::pyrUp(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-4 : 1.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, PyrUp, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
WHOLE_SUBMAT));
#endif // HAVE_CUDA

@ -88,7 +88,7 @@ double checkSimilarity(const cv::Mat& m1, const cv::Mat& m2);
EXPECT_LE(checkSimilarity(cv::Mat(mat1), cv::Mat(mat2)), eps); \
}
namespace cv { namespace gpu
namespace cv { namespace gpu
{
void PrintTo(const DeviceInfo& info, std::ostream* os);
}}
@ -167,6 +167,8 @@ CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113))
#define WHOLE testing::Values(UseRoi(false))
#define SUBMAT testing::Values(UseRoi(true))
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))

Loading…
Cancel
Save