@ -787,10 +787,14 @@ Ptr<FeatureEvaluator> FeatureEvaluator::create( int featureType )
CascadeClassifier : : CascadeClassifier ( )
{
maskGenerator = getDefaultMaskGenerator ( ) ;
}
CascadeClassifier : : CascadeClassifier ( const string & filename )
{ load ( filename ) ; }
{
load ( filename ) ;
maskGenerator = getDefaultMaskGenerator ( ) ;
}
CascadeClassifier : : ~ CascadeClassifier ( )
{
@ -859,12 +863,29 @@ bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& featureEvaluator, const
return empty ( ) ? false : featureEvaluator - > setImage ( image , data . origWinSize ) ;
}
void CascadeClassifier : : setMaskGenerator ( Ptr < MaskGenerator > _maskGenerator )
{
maskGenerator = _maskGenerator ;
}
Ptr < CascadeClassifier : : MaskGenerator > CascadeClassifier : : getMaskGenerator ( )
{
return maskGenerator ;
}
Ptr < CascadeClassifier : : MaskGenerator > CascadeClassifier : : getDefaultMaskGenerator ( )
{
# ifdef HAVE_TEGRA_OPTIMIZATION
return tegra : : getCascadeClassifierMaskGenerator ( * this ) ;
# else
return Ptr < CascadeClassifier : : MaskGenerator > ( ) ;
# endif
}
struct CascadeClassifierInvoker
{
CascadeClassifierInvoker ( const Mat & _image , CascadeClassifier & _cc , Size _sz1 , int _stripSize , int _yStep , double _factor ,
ConcurrentRectVector & _vec , vector < int > & _levels , vector < double > & _weights , bool outputLevels = false )
CascadeClassifierInvoker ( CascadeClassifier & _cc , Size _sz1 , int _stripSize , int _yStep , double _factor ,
ConcurrentRectVector & _vec , vector < int > & _levels , vector < double > & _weights , bool outputLevels , const Mat & _mask )
{
image = _image ;
classifier = & _cc ;
processingRectSize = _sz1 ;
stripSize = _stripSize ;
@ -873,15 +894,13 @@ struct CascadeClassifierInvoker
rectangles = & _vec ;
rejectLevels = outputLevels ? & _levels : 0 ;
levelWeights = outputLevels ? & _weights : 0 ;
mask = _mask ;
}
void operator ( ) ( const BlockedRange & range ) const
{
Ptr < FeatureEvaluator > evaluator = classifier - > featureEvaluator - > clone ( ) ;
# ifdef HAVE_TEGRA_OPTIMIZATION
Mat currentMask = tegra : : getCascadeClassifierMask ( image , classifier - > data . origWinSize ) ;
# endif
Size winSize ( cvRound ( classifier - > data . origWinSize . width * scalingFactor ) , cvRound ( classifier - > data . origWinSize . height * scalingFactor ) ) ;
int y1 = range . begin ( ) * stripSize ;
@ -890,11 +909,9 @@ struct CascadeClassifierInvoker
{
for ( int x = 0 ; x < processingRectSize . width ; x + = yStep )
{
# ifdef HAVE_TEGRA_OPTIMIZATION
if ( ( ! currentMask . empty ( ) ) & & ( currentMask . at < uchar > ( Point ( x , y ) ) = = 0 ) ) {
if ( ( ! mask . empty ( ) ) & & ( mask . at < uchar > ( Point ( x , y ) ) = = 0 ) ) {
continue ;
}
# endif
double gypWeight ;
int result = classifier - > runAt ( evaluator , Point ( x , y ) , gypWeight ) ;
@ -918,7 +935,6 @@ struct CascadeClassifierInvoker
}
}
Mat image ;
CascadeClassifier * classifier ;
ConcurrentRectVector * rectangles ;
Size processingRectSize ;
@ -926,6 +942,7 @@ struct CascadeClassifierInvoker
double scalingFactor ;
vector < int > * rejectLevels ;
vector < double > * levelWeights ;
Mat mask ;
} ;
struct getRect { Rect operator ( ) ( const CvAvgComp & e ) const { return e . rect ; } } ;
@ -937,20 +954,25 @@ bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Siz
if ( ! featureEvaluator - > setImage ( image , data . origWinSize ) )
return false ;
Mat currentMask ;
if ( ! maskGenerator . empty ( ) ) {
currentMask = maskGenerator - > generateMask ( image ) ;
}
ConcurrentRectVector concurrentCandidates ;
vector < int > rejectLevels ;
vector < double > levelWeights ;
if ( outputRejectLevels )
{
parallel_for ( BlockedRange ( 0 , stripCount ) , CascadeClassifierInvoker ( image , * this , processingRectSize , stripSize , yStep , factor ,
concurrentCandidates , rejectLevels , levelWeights , true ) ) ;
parallel_for ( BlockedRange ( 0 , stripCount ) , CascadeClassifierInvoker ( * this , processingRectSize , stripSize , yStep , factor ,
concurrentCandidates , rejectLevels , levelWeights , true , currentMask ) ) ;
levels . insert ( levels . end ( ) , rejectLevels . begin ( ) , rejectLevels . end ( ) ) ;
weights . insert ( weights . end ( ) , levelWeights . begin ( ) , levelWeights . end ( ) ) ;
}
else
{
parallel_for ( BlockedRange ( 0 , stripCount ) , CascadeClassifierInvoker ( image , * this , processingRectSize , stripSize , yStep , factor ,
concurrentCandidates , rejectLevels , levelWeights , false ) ) ;
parallel_for ( BlockedRange ( 0 , stripCount ) , CascadeClassifierInvoker ( * this , processingRectSize , stripSize , yStep , factor ,
concurrentCandidates , rejectLevels , levelWeights , false , currentMask ) ) ;
}
candidates . insert ( candidates . end ( ) , concurrentCandidates . begin ( ) , concurrentCandidates . end ( ) ) ;