|
|
|
@ -29,10 +29,7 @@ public: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler, |
|
|
|
|
const Mat& input, const std::string& outputLayer = "") |
|
|
|
|
{ |
|
|
|
|
randu(input, 0.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
const std::vector<std::tuple<Mat, std::string>>& inputs, const std::string& outputLayer = ""){ |
|
|
|
|
weights = findDataFile(weights, false); |
|
|
|
|
if (!proto.empty()) |
|
|
|
|
proto = findDataFile(proto); |
|
|
|
@ -44,7 +41,11 @@ public: |
|
|
|
|
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true); |
|
|
|
|
} |
|
|
|
|
net = readNet(proto, weights); |
|
|
|
|
net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false)); |
|
|
|
|
// Set multiple inputs
|
|
|
|
|
for(auto &inp: inputs){ |
|
|
|
|
net.setInput(std::get<0>(inp), std::get<1>(inp)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend); |
|
|
|
|
net.setPreferableTarget(target); |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
@ -52,10 +53,14 @@ public: |
|
|
|
|
net.setHalideScheduler(halide_scheduler); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
MatShape netInputShape = shape(1, 3, input.rows, input.cols); |
|
|
|
|
// Calculate multiple inputs memory consumption
|
|
|
|
|
std::vector<MatShape> netMatShapes; |
|
|
|
|
for(auto &inp: inputs){ |
|
|
|
|
netMatShapes.push_back(shape(std::get<0>(inp))); |
|
|
|
|
} |
|
|
|
|
size_t weightsMemory = 0, blobsMemory = 0; |
|
|
|
|
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); |
|
|
|
|
int64 flops = net.getFLOPS(netInputShape); |
|
|
|
|
net.getMemoryConsumption(netMatShapes, weightsMemory, blobsMemory); |
|
|
|
|
int64 flops = net.getFLOPS(netMatShapes); |
|
|
|
|
CV_Assert(flops > 0); |
|
|
|
|
|
|
|
|
|
net.forward(outputLayer); // warmup
|
|
|
|
@ -71,31 +76,46 @@ public: |
|
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler, |
|
|
|
|
Mat &input, const std::string& outputLayer = "") |
|
|
|
|
{ |
|
|
|
|
processNet(weights, proto, halide_scheduler, {std::make_tuple(input, "")}, outputLayer); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler, |
|
|
|
|
Size inpSize, const std::string& outputLayer = "") |
|
|
|
|
{ |
|
|
|
|
Mat input_data(inpSize, CV_32FC3); |
|
|
|
|
randu(input_data, 0.0f, 1.0f); |
|
|
|
|
Mat input = blobFromImage(input_data, 1.0, Size(), Scalar(), false); |
|
|
|
|
processNet(weights, proto, halide_scheduler, input, outputLayer); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, AlexNet) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
|
|
|
|
"alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3)); |
|
|
|
|
"alexnet.yml", cv::Size(227, 227)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
|
|
|
|
"", Mat(cv::Size(224, 224), CV_32FC3)); |
|
|
|
|
"", cv::Size(224, 224)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ResNet_50) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
|
|
|
|
"resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3)); |
|
|
|
|
"resnet_50.yml", cv::Size(224, 224)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
|
|
|
|
"squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3)); |
|
|
|
|
"squeezenet_v1_1.yml", cv::Size(227, 227)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h) |
|
|
|
@ -103,7 +123,7 @@ PERF_TEST_P_(DNNTestNetwork, Inception_5h) |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException(""); |
|
|
|
|
processNet("dnn/tensorflow_inception_graph.pb", "", |
|
|
|
|
"inception_5h.yml", |
|
|
|
|
Mat(cv::Size(224, 224), CV_32FC3), "softmax2"); |
|
|
|
|
cv::Size(224, 224), "softmax2"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ENet) |
|
|
|
@ -116,13 +136,13 @@ PERF_TEST_P_(DNNTestNetwork, ENet) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
#endif |
|
|
|
|
processNet("dnn/Enet-model-best.net", "", "enet.yml", |
|
|
|
|
Mat(cv::Size(512, 256), CV_32FC3)); |
|
|
|
|
cv::Size(512, 256)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SSD) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled", |
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3)); |
|
|
|
|
cv::Size(300, 300)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, OpenFace) |
|
|
|
@ -134,7 +154,7 @@ PERF_TEST_P_(DNNTestNetwork, OpenFace) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
#endif |
|
|
|
|
processNet("dnn/openface_nn4.small2.v1.t7", "", "", |
|
|
|
|
Mat(cv::Size(96, 96), CV_32FC3)); |
|
|
|
|
cv::Size(96, 96)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
|
|
@ -142,7 +162,7 @@ PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt", "", |
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3)); |
|
|
|
|
cv::Size(300, 300)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) |
|
|
|
@ -150,7 +170,7 @@ PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", "", |
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3)); |
|
|
|
|
cv::Size(300, 300)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) |
|
|
|
@ -158,7 +178,7 @@ PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", "", |
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3)); |
|
|
|
|
cv::Size(300, 300)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, DenseNet_121) |
|
|
|
@ -166,7 +186,7 @@ PERF_TEST_P_(DNNTestNetwork, DenseNet_121) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", "", |
|
|
|
|
Mat(cv::Size(224, 224), CV_32FC3)); |
|
|
|
|
cv::Size(224, 224)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
|
|
@ -177,7 +197,7 @@ PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
|
|
|
// The same .caffemodel but modified .prototxt
|
|
|
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", "", |
|
|
|
|
Mat(cv::Size(368, 368), CV_32FC3)); |
|
|
|
|
cv::Size(368, 368)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, opencv_face_detector) |
|
|
|
@ -185,7 +205,7 @@ PERF_TEST_P_(DNNTestNetwork, opencv_face_detector) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", "", |
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3)); |
|
|
|
|
cv::Size(300, 300)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
|
|
@ -193,7 +213,7 @@ PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "", |
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3)); |
|
|
|
|
cv::Size(300, 300)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv3) |
|
|
|
@ -213,9 +233,7 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv3) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
cvtColor(sample, sample, COLOR_BGR2RGB); |
|
|
|
|
Mat inp; |
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0f / 255, 0); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true); |
|
|
|
|
processNet("dnn/yolov3.weights", "dnn/yolov3.cfg", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -233,9 +251,7 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv4) |
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4"); |
|
|
|
|
#endif |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
cvtColor(sample, sample, COLOR_BGR2RGB); |
|
|
|
|
Mat inp; |
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0f / 255, 0); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true); |
|
|
|
|
processNet("dnn/yolov4.weights", "dnn/yolov4.cfg", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -248,24 +264,43 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
#endif |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
cvtColor(sample, sample, COLOR_BGR2RGB); |
|
|
|
|
Mat inp; |
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0f / 255, 0); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true); |
|
|
|
|
processNet("dnn/yolov4-tiny-2020-12.weights", "dnn/yolov4-tiny-2020-12.cfg", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv5) { |
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true); |
|
|
|
|
processNet("", "dnn/yolov5n.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv8) { |
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true); |
|
|
|
|
processNet("", "dnn/yolov8n.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOX) { |
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true); |
|
|
|
|
processNet("", "dnn/yolox_s.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/frozen_east_text_detection.pb", "", "", Mat(cv::Size(320, 320), CV_32FC3)); |
|
|
|
|
processNet("dnn/frozen_east_text_detection.pb", "", "", cv::Size(320, 320)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", "", Mat(cv::Size(320, 240), CV_32FC3)); |
|
|
|
|
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", "", cv::Size(320, 240)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN) |
|
|
|
@ -288,7 +323,7 @@ PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb", |
|
|
|
|
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt", "", |
|
|
|
|
Mat(cv::Size(800, 600), CV_32FC3)); |
|
|
|
|
cv::Size(800, 600)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet) |
|
|
|
@ -296,12 +331,76 @@ PERF_TEST_P_(DNNTestNetwork, EfficientDet) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || target != DNN_TARGET_CPU) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
resize(sample, sample, Size(512, 512)); |
|
|
|
|
Mat inp; |
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0/255); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(512, 512), Scalar(), true); |
|
|
|
|
processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientNet) |
|
|
|
|
{ |
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(224, 224), Scalar(), true); |
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp); |
|
|
|
|
processNet("", "dnn/efficientnet-lite4.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YuNet) { |
|
|
|
|
processNet("", "dnn/onnx/models/yunet-202303.onnx", "", cv::Size(640, 640)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SFace) { |
|
|
|
|
processNet("", "dnn/face_recognition_sface_2021dec.onnx", "", cv::Size(112, 112)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPPalm) { |
|
|
|
|
Mat inp(cv::Size(192, 192), CV_32FC3); |
|
|
|
|
randu(inp, 0.0f, 1.0f); |
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); |
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp); |
|
|
|
|
processNet("", "dnn/palm_detection_mediapipe_2023feb.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPHand) { |
|
|
|
|
Mat inp(cv::Size(224, 224), CV_32FC3); |
|
|
|
|
randu(inp, 0.0f, 1.0f); |
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); |
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp); |
|
|
|
|
processNet("", "dnn/handpose_estimation_mediapipe_2023feb.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPPose) { |
|
|
|
|
Mat inp(cv::Size(256, 256), CV_32FC3); |
|
|
|
|
randu(inp, 0.0f, 1.0f); |
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); |
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp); |
|
|
|
|
processNet("", "dnn/pose_estimation_mediapipe_2023mar.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, PPOCRv3) { |
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
|
|
|
processNet("", "dnn/onnx/models/PP_OCRv3_DB_text_det.onnx", "", cv::Size(736, 736)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, PPHumanSeg) { |
|
|
|
|
processNet("", "dnn/human_segmentation_pphumanseg_2023mar.onnx", "", cv::Size(192, 192)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, CRNN) { |
|
|
|
|
Mat inp(cv::Size(100, 32), CV_32FC1); |
|
|
|
|
randu(inp, 0.0f, 1.0f); |
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); |
|
|
|
|
processNet("", "dnn/text_recognition_CRNN_EN_2021sep.onnx", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ViTTrack) { |
|
|
|
|
Mat inp1(cv::Size(128, 128), CV_32FC3); |
|
|
|
|
Mat inp2(cv::Size(256, 256), CV_32FC3); |
|
|
|
|
randu(inp1, 0.0f, 1.0f); |
|
|
|
|
randu(inp2, 0.0f, 1.0f); |
|
|
|
|
inp1 = blobFromImage(inp1, 1.0, Size(), Scalar(), false); |
|
|
|
|
inp2 = blobFromImage(inp2, 1.0, Size(), Scalar(), false); |
|
|
|
|
processNet("", "dnn/onnx/models/vitTracker.onnx", "", {std::make_tuple(inp1, "template"), std::make_tuple(inp2, "search")}); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet_int8) |
|
|
|
|
{ |
|
|
|
@ -310,7 +409,7 @@ PERF_TEST_P_(DNNTestNetwork, EfficientDet_int8) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
} |
|
|
|
|
Mat inp = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
resize(inp, inp, Size(320, 320)); |
|
|
|
|
inp = blobFromImage(inp, 1.0 / 255.0, Size(320, 320), Scalar(), true); |
|
|
|
|
processNet("", "dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", "", inp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|